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DATA COLLECTIONS AND MONADS

RADU TRIMBITAS

Dedicated to Professors Emil Muntean and Stefan Nifehi

Abstract. This paper tries to introduce data collection using monads. Three
data collection types are defined: weak, zero-element and strong. The main
vesult shows that monads lead to data collection types. Then the algebraic
properties of data collections are studied and some identities useful to query
optimization are given. Another result shows the equivalence of ringad and
extended monad with zero. Finally, we treat the type conversion problem.

1. Collections

Data collections are defined in [1]. We shall use other definitions for data
collections, and our approach wili be categorical. For notions of Category Theory
the reader may consult [3, 4, 11]. Also the paper [§] illustrates how Category
Theory notions and constructions can be systematically used in Computer Science.

Definition 1.1. A weak data collection C s a parametrized abstract data type
(vith type parameter T)
C(T) = < 7, [¢], ++, aggr >
where -
o 7 is the set of data collections over T
o [z] is the singleton (single element) collection,
o 4+: 7 x 1 — 7T is the concatenation operator of two collections;
e aggr is the aggregation operator defined as follows: f f+ T — S and
a; - § xS - S is a binary operation, then aggr(f,®) : 7 — S (i.e.
aggr - (T — S) x 7 5) which has the following properties:
(1) ager(f, ®)([x]) = f(x)
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(2) aggr(f, @) (z+ty) = ager(f, @) (x) D aggr(f,®)(y), z,y¢

—

/.
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Definition 1.2. A zero-element data collectio p etrized abstmct
data type (with type parameter T)

o) =< [} [z], A+, aggr >

where

o < 7, [z], ++, aggr > is a weak data collection;
o /] is the empty collection and

(3) Ve er r+[] = []JH+z = 2.

e aggr is the aggregation operator defined as follows: f f 0T S

and @ : S x S = S is a binary operation with neutral element u, they

aggr(f,®) : 7 = S (ie. aggr: (T > S) x 7 — S ) which verifies (1), (2]
and

\

(4) aggr(f,®)([]) = u.

Definition 1.3. A strong data collection is a zero-clement data collection such
that the concatenation is associative, that is

(5) Ve, y,z €1 (x44y)++2 = o4+ (y++2).

The notion of strong collection is similar to monoid collection defined in
(5, 6, 7], but there the approach is not categorical.

Remark 1.4. FEach strong data collection is aleo a zero-element data collection;
each zero-clement data collection is also a we:lk

data collection.

In the sequel [z, , Zn] will denote the finite collection having the
elements zy,...2,.

2. Monads and data ccllection

Definition of dat: S thr '
Programming. As eacl ta}%}’peb.thx(‘)ugh monads is a usual method in Functional
10]) and each 'monad lelaz( J:nC:O“ nduces g monad (Huber’s theorem see [3, 4

ahd eac A4S 10 adjunctions iy e - 's and

Kleisli’s construction being 1,0 ;. 1S I several ways, Bilenberg-Moore’s an
: gt

those obtained throueh

o

most known ( 3 : t resemble
adjunctions, ([3,4, 10]), the results must resem
Definition 2.1 A

' oL, nonad PR ] .
functor T . ¢ _, C together (or t tple) T=(T

with tweo
10 ura

) 1) on category C 1s an endo-
Utransformations n :ide — 1 and
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" 72 — T such that the Jollowing diagrams commute:

!l . A ol
8 Ko po M 77 Iy
AN /
T i N J /
l d \\ ) id
RN »
T2 7 7t
J
(monl) (mon?2)

In these diagrams T™ means T composed by himself n times. B

For examples and properties of monads see [3, 10] and for applications of
monads in Computer Science see [12, 13, 14, 15].
Another equivalent definition [9, 14] is:

Remark 2.2. A monad on C is the system (7,7, —*) where T and 7 are as above,
and * is the iteration operator (the Kleisli star) defined as follows: if f:A>1TB
then f* : TA — T'B and it satisfies

(ns)* = idra
j.* o A - f
g*of* — (_(j*Of\)‘..

Let’s see how data collections, aggregation operators and their properties
may be obtained through monads, using the Eilenberg-Moore’s construction.

Definition 2.3. If T=(1,n,p) s a monad on C, a T-algebra s a pair (A, a),
where A € ObC and a : TA — A such that the following diagrams commute:

Y Ta
A T4 T?°A ——- TA
(6) A a 14 a

\ i
ida ™
\ \

/ TA ——— A

a

The arrow a is the structure-mapping of the algebra. M

11
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U (Aa) (B”’) 15 a T-algebra homomor hien .
it] A mapping [ ( 1) = " |
Definition 2.4.

the diagram

A g

A—:— B
/

commutes. W

T-algebra and T-algebra homomorphisms form a category CT'. we define
IVT :va a b\ I.YT(.“\,(I) = A and UT(f) Fs f and 1'711 : C — CT by FT(a) =

(T4, pa) and FT(f) = I'(f). The functor FT is the Jeft adjoint of U7 and the uni:
and counit of the adjunction are nT =7 and eT(A,a) = a - FTUT(4,q) - (4,4
respectively (the Eilenberg-Moore’s construction). We shall consider only monads
over Cartesian closed categories and C will be T (the category of types).
Definition 2

tf:

5. The quadruple T:(T,r),p,conc) ts an extended monad on (

1
H

L s @ monad on C;
2. cone :

ne TXT S Tisg natural transformatz'on;
0 VB € ObC yp vconcy = conepp o

KB X nB), that is the Jollowing diagram
T'QB X TQB CO\M.TL_‘N 7~2B

| 3 X
KB X gy .

——— R
cone ‘
"'/7'1"("1165, . O'lL]}

- "
I FOposition 2.6

p, ]':’)l' «
110} /tj“( ’] oy //

;j,('ll "“‘)]l’]‘i fl\, i -
rp al —_— 1 oy & N 1 ¢ S1¢ '”l\l
LAV AT} holdy (1 ", 1) and for each natural transfor

( ’/‘“('l‘

finition we have

) ’ 1
o 1t o [I“; Lconep - (-()'II('H..
Lo
1lef "onad (‘1

|
‘ _ ak dat
Vhibeone) determines a weak
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Proof. For a type X we build

CX) =< 7 (2], ++, aggr >
such that 7 is T(X), [2] is nx (2) and 4+ is cone.
defined as follows: let f
ad®f = b[“»ﬁ], where

The aggregation operator is
A= Bwhere (Bb) is a1 algebra. If o, 3 € I3 we define

[, 8] = coney([a],[A]) = coney (i (), s (9)).

Now we define ae,gr(f d‘) = bol'[ Let’s prove the above operator satisfies (1)

and (2). As pdd = This a natural transformation and (13,b) is a T-algebra we
have the following commutative diagrams

At Ly

NA 77B\idB

TA——«-»TB_—b—_.B

/I_!f
that 1s
(9) Tfona = mnpof
(10) bong = 1idp

From (9) and (10) we have
{11) boTfona=bongof=idpof=/
that is (1).

We have successively the following equalities:

boTfoconcy =
=boconcgo (Tf xTf)

(naturality of conc)
(
=boconcg o (up x pg) o (nrp x nru) o (Tf x Tf) (
(
(

monad)
extended monad)
(B,b) T-algebra)

naturality of conc)

=bopug oconcrp o (nrp X Nra)© (71'/' X ’Tf)
=boTboconcyp o (nrp » nru) o (') xT)) .
=boconcg o (Thx Tb)o (nre x nre) o (Tf x ffj) | |
=boconcg o [(Tbonrpolf)x (Tbonrpo T.f)] (naturality of 1)
=boconcg o[(nrpo(boTf)) x (mrpo(boTf))]

Thus we have
bo'l'f oconcy = boconcgo [(nrro(boTf)) x (boT)))].
The above relation applied Lo (@, y) where v,y € 7 gives us
(bo'l'f oconea)(e,y) = (boTf)etty) = ager(f, &) (v++y)

13
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" welmuo (T x (o (6o TNz
b o (bo 1)) (), (s (0o 7)) (o)
- ? o (~:>n:':; (s (aggr(f, ®) (@), nrn (asgr (], D) (y)))
: I: o :'om‘n(li\!i%"(f- ) ()], [aggr(f. D) (1))

— aggr(f> ) (@) @ ager(f, D))

that 1s (2). @
Proposition 2.8. 1t holds |
2) ager(), ++) = idy.

- & is a T-algebra and from monads definis,, .

["1\)0]._ Because (] J\,l’,»\} Is a 1-alg : N we
have forx € T A |

ager(n, +) = (pa 0 Ta)(2) = idpy(x) W
Proposition 2.9. If f : A 5 Band h : B = (' 1s a T-algebra homomorphisy,
then
hoboTf=coT(hof).
FProof. We have
hoboTf = (h T-algebra homomorphism)

coThoTf = (T functor
coT(hof). ®B

Corollary 2.10.

hoaggr(f, @) = aggriho f, Q). @
Definition 2.11. A quad or monad with ze

Yo s a monad with a famudy of
Junctions 2€ros p which satisfies

Tfo eroc 4 = 2€ros g oy

Hp o Z(,%’I'OA)TB 307'()["}3

1B o’]‘(zcroA,B = zerorap
rAand A T'B, that is the

Jor each g:C —

following diagrams commute.

) ZET0c 4 , )
( — 7 ) " zep ) T(zeroa B) . 4
e jA 4 ~e7 ()[1’78 2 ( :—’——-—" T
i L ~B < —
1 1,/, | AN
/ \\ }Ll{ yd N "")T‘\ B
' TET04 g v ZETCIih
) \ P
Ay Yo
.,([(,A If r[vB
(/]uur]l)

» (quad?) .
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pemark 2.12. We have an equivalent definition stating | -
4= T B the conditions (sce [9]): bing for the family zeroy p

3(77.()/“,’ oq = ZC€r0¢ p
YO * |
(zeroqp)” = Zerop A p
) )
f I8) Z’(’-"'”(f,',/\ P i,’('fT‘()(; B .
L e 2. 3- | € ' (T '
Definition 1 The qttadv uple (T, =", ++) s o semivingad if (1,9, —*) is a
monad, and the concatenation 4+ verifies o
. ; — X ]
f (H+y) = f (.L)++f* ()
foreach f: A—=TA W

Definition 2.14. A I.‘ingad is a semiringad (T, 7, —*, ++) which s also a quad,
and the zero of quad is the neutral element for concatenation.

The notion of ringad was introduced by Philip Wadler and colab. They
consider it as a natural framework for data collection definition and study.
Semiringad and extended monad are equivalent notions.

Theorem 2.15. The quadruple T = (T,n, =", ++) 15 an extended monad off it s
a semiringad.

Proof.
(Necessity) If f : A -» T'B we have
(13) F*=pupoT/f
f* oconca = pB° Tfoconcy = (from (13)

QB © CONCTB © (1'fx1Tf) = (extended monad)

concg o (pB X pp) o (T] % Tf) =
concp o (pp x Tf) o (1B X Tf) =
conep o (f* < f7):

(from (13)

(SUfficiency)

From f* o conca = CONCB o (f* X ) (semiringad property) we obtain

= (naturality of conc)

o o conc | | ‘
e o f’l’f xTf) = (naturality of conc)
pup oconecrp @\ . )
concg o (4B xlu,)o(,lj < 1'f). v‘ o
! ' A TB choosing fsuch that (1'fx1'f)
li“'“aUSe the last equality holds (or cach f 1A ,
¢ an epimorphism we have i}
jigy 0 CONCrH = conen © (ftn X Hu)-
’ v
1which is also a quad and the
Rmnark 2.16. BEacl ling'ul 15 an cxtended monad which s also a q ¢
; .10, lhach 1 i B .
concatenation. W

2¢10 of quad is neutral clement 10 e
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h ringad determanes a sero-clement data collection
)} MIngac

. 1 ¢ true. The pro P
16, (1) and (2) arc !Ill( Ihe proof proceeds 4 .
From ringad defimtion we have

Theorem 2.17. Fac
Proof. From remark 2

theorem 2.7 putting b([]) = . e .
ager(f, @) (@) = agar(f D) () = ager([, @) (x) b aggr(f, B)([])
which implies aggr(./. @)([]) = u, that is (1). ™

Corollary 2.18. Each ringad whose concatenation 1s associative determines ,
OO LLE '. - . Adg <

strong data collection. [ |

3. Examples

Example 3.1. If 7" is the functor which maps a type (set) A to the free algebra
with one binary operation (subject to no restriction) generated by A we obtain
labeled rooted ordered binary trees. The mapping n maps € € A to the single-node
labeled with x tree, the multiplication p maps a tree whose labels are trees in TA
to the tree obtained attaching to each node the tree having as name the label of
that node. The concatenation of trees t; and - is the tree having ¢, as left subtree
and 79 as right subtree. The empty tree 1s the zero of the monad. Alternatively,
this collection type may be obtained using an adjunction from the category B of
algebras with one binary operation to the category 7 of types. B

Example 3.2. Let T : 7 — 7T be the functor which maps the type(set) A to
Kleene’s closure A™ of A (the underlying set of free-monoid generated by A) and
the function f : A — B to the unique extension f* : A* — B*. Let nA
A — A7 be the application which maps a to the word [a] (having length equal
to 1) and A : A** — A which take a word of words [s1, ..., sk] and maps it
to the concatenation s; ...s; in A" (obtained removing inner parentheses). The
concatenation concA @ A” x A* — A* is as usual and the null word is his neutral
(unit) element. The mappings niid =T, pw: 1% T and conc: T x T — T are
natural transformations and (T, 1, K, cone, zero) 1s a ringad (zero4 g 1s the null
word ). Thus we have the ljst collection type. |

functor (,1' h]IS\/Iri)nrigdj Z?I;Lr?(l;(jli}iel(?f}t)ta:;-]e-d from the monad determined by forgetful

's left adjoint (the free functor). m

Example 3.3, Let 7. 7 T be the

the underlying functor which maps the type(set) X to

monoid generated by X. 7°X is the set

from symbols z € X ; a word which contain
word obtained re

, ’ set of commutative free-
of equivalence classes of words made
A segment zy s equivalent 1o (Jye
by Y. let {‘U/] class of -
a{xrl nX maps a word of words iy 'I'XT m: ‘.) o
Concatenation of two words 1S oy
usual concatenation | s
collection type.

placing all occurrences of 2V
The application 5.X maps z to []
ord in X removing inner parentheses:
fll(yl'("’ class of the word obtained through
dringad which determines the multiset(bag)

be the cquivalece

the cquiy
We Ghiain

16
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Equivalently, this monad is induced by the adjunc
A ) ad, Lion <

: .- : U, I''n, 1> where
. CMon — T 1s the fm.g(,t.fnl functor and Jo . T < CMon is hi ,’I,I,ﬁ adioimt

<tended with concatenation and null word). W s S
(e '

D MONADg

Example 34 Let be P o7 T(or more generally P - Set 5 Set) given
b P(X) = P(x)(the powerset of X) and for 7 - y _, Y, Pf o P(X)
p(), (PHX) = F(X).

we define 7.X : X — PX), nX(2) = 2 and pX PP(X
2 set of sets to their union. The concatenation is the usual union and the zero
s 0. We have a ringad which generates the set collection type. The equivalent
adjunction 1s determined by the underlying functor {7/ - UCSL —» 7 from the
aategory of upper complete semilattices to T (0v Set) and his left
corresponding extension). W

) = P(X) which maps

adjoint (with

Remark 3.5. In fact, every equationally defined category of one sorted alge-

braic structures 1s equivalent to the category of Eilenberg-Moore algebras for sorme
monad in Set (Linton’s theorem [3]). W

Example 3.6. (Arrays) The example is inspired from [2] which treats it in the
context of computing the Fast Fourier Transform of a vector stored in a database.
An array 1s like a list having in front its size. The unit of monad is a one element
array, p 1s the flatten(linearization) of a two dimensional array, the zero is the
empty array, and the concatenation is the juxtaposition. H

4. Type conversion

Type conversion would be an answer to the problem of managing simul-
laneous several collection type.

Definition 4.1. Let T=(T,n,p) and T =(T",7, ') two monads on the same cat-
%01y C. A monad homomorphism o : T — T’ is a natural transformation
“:T = T such that the following diagrams commaule:

2 22
1d T - T
/
7 78 I l,u
“ gl
7 IS all ’[' R —— [
| H___;;__-ﬁ.) / o
v 9
(rmonadhom)) (monadhom?)

";/“'7'(.' (12

= '/ "!r ool — o'l o'l L
17
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9 & ’ ’ y 4 Al / / > i i
Definition 4.2, Lot’T (] 1y cone) and’l (1 o cone’) crlende 10y
’ . 2 -)'ul
on the same category C. An extended monnd homomorphism, Jrom to T
2 & g/ } v N
a monad homomaorphsm o T T such that the following diagran, Commayg,
s

(1 )
ts

N

o’

(rrpe J:l//,/////./ [ ]
Definition 4.3, L1 (7 Wobrszero)y and L7017 of ' zerd ) lwo quads on the
same calegory C. A guad homomorphism or o monsd with zero homeo-
morphism from T 1o T 15 4 monad homaomarphism o @ T 5 T such that the

following diagram COTtnules

A

Py ' 210/ 4 J4
2000 /2 A TS
, -
T -1
7y
{’/”l/l//,/l.’/llt.} 3

Definition 4.4, [0 g Wb o, zevay o and T (7

/ 2
rf ) cond | zerd') two
r‘:nqaf/a g7 ’,,lt' VNI //}[,:,,,//,!/ (/’

A ringad bty phisi from T to T s an

crtended oo h///lt,l/’m,r/f]/h'(:;m, 2.8 N bk s also quad hmm)rnof'[)h“’”'

l/‘" ////’/. o "/ ‘41723 » . 4 Tz /ot / 7 /o~ b(f
/ ' LS o oang () =y Az 4+ aggr >
Ql»f’ /’,/'t;:( (//‘”,/ ";’,,' 4‘,1,,,1_.\ PR ? J

e, L e satne Lyt ' defined by Lthe extended monad

4 (” T ok / '
V1T 0y pocomey a4 1y o4t e
» ’ 4
4 & , & 4 f ¢
I/ v Ay 1 | AP LIy '/,, (755 /8 857, Jl'/ T /‘!’/ 17 ("(’I‘}
) ’ ’ L 7 Y} 7 7 N
l/" ’ 7 I A t 1y
/ ’ // SRR IEATES FEOIIT [ smition 4%
’
7, ’ 4 47,1
4 el
“rs f .5y 7 i Ji ey ¢
14 ; /4
Vi / 4 /
A y
é
’ s / / y 7 / , P : /
!, 49 Ly
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PrOpOSition 4.5. The mapping « defined as above is an extended monad homo-
Proof.
) J > ~ . " :
(a) Let’s prove the naturality of o. Let [z, ] € TA. We have
. e b = 1 — . (9] ~

,.’l‘n_]) = [f('rl)\ v vf(-rn.)]~ Also,
@BoThH([er - rl) = oB(U[(r1), . [(ra)] =
= [f(l‘|),..,,f(mn)]l

Tf(lers -

and
(T'f o ad)((xy, . . xn]) = (T"Hlzy, .- za) =
= [f(z1),..., fl=)]
tat aBoTf =T'foaA
(b) The commutativity of (monadhoml) follows immediately from the
definition of a:
(@ on)(z) = a([e]) = [=] = 7' ().
(c) Let’s prove the commutativity of (monadhom?2).
Let [[z1,1,--- ’xl,k1]> Cen [xl‘l; e ey .I.‘z)k,]] e T?A.

(aop) ([[e1,1,- - TN R TR TR STkl =
a([Z1,1,-- > Tlkry - B VLK) =
[$1,1]’++' e 'Hl[xl,kl]/H‘/ . --H-'[ilfz,1]++/ e [zR]) =

(16) [Z1,1) s @1 kas e ,évl,k,]/

On the other hand:
o ([[xr,1, - TN IR C R T, Tk ]
(T’ © Ta) ([[x1,1)- - T ke Sz, - - Tk
aT” ([[z1,1,- - NN R LIS TRRE LT k)
]

and
(1 o alpha®) ([[z1,1: - - TN P ETR R akll) =
i
74 ([[-’1:1;1, Ce ,:L'l,kl]lu S EIRTEE .;L’z,k.]/] ) -
(17
) [wl,ls"')'ltl,kl"" ’:cl'k']/
Re

alions (16) and (17) imply the desired cominutativity.
(d) Let’s prove now the commutativity of (mcxt,hom).

Let (,,
('l"y) = ([z1,... ax], [¥2, ) € 1A X ‘'A. We have

(o (,‘O’IL(,')(-’L','!/) =a(lr), - Tk Yy, - ;I/(]) = [.l‘|, NN SN2 R ~!Il],
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and | -
(cone’ o (a x a)) (@) = cone' (v, awl sl ml') = (L
cone < y !

af ia sxthom). W : ) : ollection-
that s (‘lml\‘tl 1(‘)1\1 now the conversion to zero-element collection:
¢S ©X ( '

(18) a((]) il
a(2) = [

1 NN |
d([-l‘] e J‘nD l"“‘],"*"{—l Sk I.IT,,I - ['l Ly e "L"]

Proposition 4.6. a defined above is a ringad homomorphism.

. )'l/'k,y]’_ . "/,U

Proof. The previous proposition implies « is an extended monad home,

morphism and (18) implies the commutativity of (qnadhom). m
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