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DATA COLLECTIONS AND MONADS 

RADU TR*MBITAS 

Dedicated to Profcssors imil Munteun and Stefan Nitchi 

Abstract. This paper tries to introduce data collection using monads. Three 
data collection types are defined: weak, zero-element and strong. The main 
result shows that monads lead to data collection types. Then the algebraic 

properties of data collections are studied and some identities useful to query 

optimization are given. Another result shows the equivalence of ringad and 

extended inonad with zero. Finally, we treat the type conversion problem. 

1. Collections 

Data collections are defined in [1]. We shall use other definitions for data 

collections, and our approach wili be categorical. For notions of Category Theory 
the reader may consult [3, 4, 11]. Also the paper 8] illustrates how Category 
Theory notions and constructions can be systematically used in Computer Science. 

Definition 1.1. A weak data collection C is a parumetrized abstract data type 

vwith type parameter T) 

C(T)= <T, [], ++, aggr> 
where 

T1s the set of data collections over T; 

is the singleton (single element) collection; 
4+T x T r is the concatenation operator of two collections 

aggr is the aggregation operator defined as follous: 
S S Sis a binary operation, then agET(f, D) : T S (i.e. 

aggr (T+ S) xTS) uwhich has the following properties: 

f f: T> S and 

(1) aggr(/, D)[E}) = S(r) 
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,y ET. 
(2) aggr(f.9)(r+y) = aggr{/,D)(7} aggr{f, D)(). z,y E 

abstract Definition 1.2. A zero-element data collection C' 18 a parametrized 

data type (with type parameter 1) 

C(T) = < T. ]. (F], , aggr > 

where 

T, , ++, aggr is a w cak data collection 

is the empty collection and 

(3) Vr ET ++[]= [0++r = a 

if f: TS aggr is the aggregation operator defined as follows: 
and S xS S is a binary operation with neutral element u, ihen 
aggr(,):TS (i.e. aggr: (T> S) x T S) which verifies (1), (9) 
and 

(4) aggr(f, e)([)) = u. 

Definition 1.3. A strong data collection is a zero-clement data collection such 
that the concatenation is associative, that is 

(5) Væ, y, z ET (++y)++: = r++(y++a). 

The notiou of strong collection is similar to nonoid collection defined in 
5, 6, 7. but there the approach is not categorica 

Remark 1.4. Each strong data collection is also a zero-element data collection, 
each zero-element data collection is also a weak data collection 

In the sequel |a 1, , tn will denote the finite collection having ne 
elernents #1,. . n 

2. Monads and data collection 
Definition of data types through mouads is a usual method in F'unci 

onal Progranming. As each adjunction induces a monad (Huber's theorem see 
4, 10) and each monad leads to adjunctions in several ways, Eilenberg- Moore s Kleisli's construction being the most kuown ( 3, 4, 101), the results must re 

and 

those otbtained through adjunctions. 
emble 

Definition 2.1. A monad (or triple) T=(T, 1, ) on category C 15 u and 
functor T : C >C together with tuvo natural transformations n 1dc 

ndo- 

10 



DATA COLLECTIONS AND MONADS 

T2T such that the following diagrams commute: 

T T T? 

TH id id 

(mon2) mon 1) 

In these diagrams T" means T composed by himself n times. 

For examples and properties of monads see 3, 10 and for applications of 

monads in Computer Science see [12, 13, 14, 15) 
Another equivalent definition [9, 14 is: 

Remark 2.2. A monad on C is the system (?T,n, -*) where T and n are as above, 

and is the iteration operator (the Kleisli star) defined as follows: iff : A>TB 
then f": TA > TB and it satisfies 

(ns)= idra 
onA =f 

Let's see how data collections, aggregation operators and their properties 

may be obtained through monads, using the Eilenberg- Moore's construction.

Definition 2.3. If T=(T, 7, j4) is a monad on C, a T-algebra is a pair (A, a), 

where A E ObC anda : TA - A such that the following diagrams commute: 

a 
2A TA 11A TA A 

1A (6) 
idA 

TA A 

ne arrowa is the struclure-mapping of the algebra. T 
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Definition 2.4. A mapping f : (A,a)+ (B, b) is a T-algebra hon 

the diagram morphism i 
T TB TA- 

(7) 

A B 

commutes. 

T-algebra and T-algebra homomorphisms form a category C'. We define :C C by U"(A, a) = A and U"(f) = f and F : C > C' by F'(a) = (TA.#A) and F' ($) = T(f). The functor F is the left adjoint of U", and the unit and counit of the adjunction are n = n and e' (A,a) ==a: FiU (4,a) > (A,a) respectively (the Eilenberg-Moore's construction). We shall consider only monads Over Cartesian closed categories and C will be T (the category of types). Definition 2.5. The quadruple T=[T, 7, #, conc) is an extended monad on C 

1.(7,n.) is a monad on C; 2. conc: T x T+T is a natural transformation; 3 TBE OC pB o cOncB = concTB o (Hp x jLB), that is the following diagru 
TBx TB ConcTH 

T*B 

B X B 

|B 

TB TB 
- TB 

ConcB Ommules. 

Proposition 2.6. For each nnonad T-(T, u, u) and for each inavul 

tion conc: TT-T it holds atural transfor 

conen= JL o ConcTB o (TnBx T)B) Proof. Csing naturalily of cOne and mo nonad definition we have Theoren 2.7. The ntended monad T-(T,1, Jl, 0 
. collectio 

data 1,!, cone) delermine a weak 
12 
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Proof. For a type X we build 

C(X) =< T, |#], ++, aggr 
etuch that r is T(\X), [*] is 7x (r) and ++ is conc. The aggregation operator 1s 

defined as follows: let f: A -B where (B,b) is a T-algebra. If a, E B we define 

a 
= bla, B], where 

a, 3= conca ((a], B}) = concH (7n(o), 7s(P)). 
Now we define aggr(J, D) =bo TJ. Let's prove the above operator satisfies (1) 
and (2). As 7: id Tis a natural transformation and (B,6) is a T-algebra we 

have the following commnutative diagrams 

B 

idp B 

TA TB B 

that is 

(9) Tfo nA 
(10) bo nB idB 
From (9) and (10) we have 

(11) boTfonA = bo mp of = idp of = f 

that is (1). 
We have successively the following equalities: 

boTfo concA= 
=bo concg o (Tf x TJ) 

o conch o (B HB) o (Tu x Tu)o (Tfx TS) 
bogo concsB o (rB x nTB) o (7f x Tf) 
bTb o concTB o (NTB X TB) o (7J x TJ) 

= bo concB o (Th x Tb) o (7rB x YTB) o (Tfx T) 
6o concp o [(Tbo TB ° 7}) x (Tbo nTB o T)| 

bo concg o [(7T3 o (boTf)) x (7Tn o (boT)) 

naturality of conc) 

monad) 
(extended monad) 
((B,6) T-algebra) 
naturality of conc) 

(naturality of ) 

Thus we have 

bo TfoconcA = bo concg o l{yrn o (bo T/)) x (b o T). 

The above relation applied to (, y) where t, E r gives us 

(b o Tfo conca)(*, y)= (bo T)(r++y)= aggr(f, P)(r++ y) 
13 
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bo concB o [7TH o (boT))x (7TH o (b o T/)(r. 

= bo conc»[(0T3 o (boTT)){*), (7ru o (boT))(yl

= bo concCB(9TB(aggr(J, D){*)), 7TB(aggr(J, D)(y)) 
= bo concn (laggr(f, d)(P)), [aggr(J, D)(u)])D 
= aggr(f. P)(2) # aggr(S, D)() 

and 

that is (2). 

Proposition 2.8. It holds 

aggr(y, t++) = idr. 
(12) 

Proof. Because (TA, #A) is a T-algebra and from monads definition 
We 

have for r ¬ TA 

sggr(, ++) = (4a o Tna)(») = idra(). 

Proposition 2.9. If f: A > B and h: BCs a T-algebra homomorphism 
then 

hoboTf = co T(h o f). 

Proof. We have 

hoboTf 
coThoTf 
co T(ho f). 

(h T-algebra homomorphism) 
(T functor 

Corollary 2.10. 

ho aggr(f. ®) = aggr(h o f,8). 
Definition 2.11. A quad or monad with zero is a monad with a famuly oj functions zeroA,B which satisfies 

Tf o zeroc,A 
2eroA,B °9 

B ZerOA,TB 
2erOA,B 

B OT2eroA,B zeroTA ,B Jur each g:C> A and f : A - TB, that is the following diagrams com 
zeroA TB, (zero4,B)TA 

te 
2EroC, A 

TA 
A 

4B ZerOA,B ZeroTA, 

TR ErOA 1 
TB 

(guad 
14 (guad) 



DATA COLLECTIONS AND MONADs 
ark 2.12. We have an equivalent definitionstating for the family zeroA,B ATB the conditions (sce 9]) 

zeroc,B 
(2eroA,B) 2eroT A,B 

ozerOC,A zeroc,By. 
Definition 2.13. The quadruple (T, 7,-,+) is a semiringad if (T, 7, -*) is a 

monad, and the concatenation ++ verifies 

S(a++y) =Sl)+S() 
for each f:A>TA. 

Definition 2.14. A ringad is a semiringad (T, 7, -*,++) uhich is also a quad, 

and the zero of quad is the neutral element for concatenation. 

The notion of ringad was introduced by Philip Wadler and colab. They 
consider it as a natural framework for data collection definition and study. 

Semiringad and extended monad are equivalent notions. 

Theorem 2.15. The quadruple T = (T, n, -*, ++) is an ertended nonad if it is 

a semiringad. 

Proo. 
(Necessity) If f: A -+ TB we have 

(13) F = pB oTf 

(Irom (13) 
(extended monad) 

o concA = HB oTfo concA 

HB ConcTB ° (Tfx Tf) 

concg o (4B X #B) o (Tf x T/) 
(from (13) 

conc o(HB x 7f) o (up x Tf) = 

conc o (f x f°). 

Sufficiency) 
From f" o concA = concp o (S" x j)(semiringad property) we obtain 

(naturality of conc) 

B OTo concA (naturality of couc) 

HB O ConeTy o (Tj x Tf) 

conc o (/4B % U») o (Tf x T/). 

ause the last equality holds for each f : A -> TB, choosing fsuch that (7fxTf) 

Beca 
De an epimorphism we have 

o concrn= 
concp o (/n X jlp). 

emark 2.16. Each ringad d is an 
cxtended 

monad which is àlso a quad and the 

15 O quad is neutral element ifor 
concatenation. 
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Theorem 2.17. Each ringad determines a ze0-clement data collection 

in Proof. From remark 2.16, (1) and (2) are true. The proof proceel. 

theorem 2.7 putting b(U) = tu. From ringad definition wc have 

aggr(f. ®)(r) = aggr(f, P)(r++U)= aggr(U, P)(r) D aggr(f, D)[) 

which innplies aggr(f, )(U)= u, that is (1). 

Corollary 2.18. Each ringad whose concatenalion 18 assocCiative determines 

strong data collection. 

a 

3. Exaunples 

Example 3.1. If T is the functor which maps a type (set) A to the free algebra 

with one binary operation (subject to no restriction) generatcd by A we obtain 
labeled rooted ordered binary trees. The mapping n maps * E A to the single-node 

labeled with x tree, the multiplication maps a tree whose labels are trees in TA 
to the tree obtained attaching to each node the tree having as name the label of 
that node. The concatenation of trees t1 and t2 is the tree having t1 as left subtree 
and t2 as right subtree. The empty tree is the zero of the monad. Alternatively, 

this collection type may be obtained using an adjunction from the category B of 
algebras with one binary operation to the category T of types. 

Example 3.2. Let T : T - T be the functor which maps the type(set) A to 
Kleene's closure A of A (the underlying set of free-monoid generated by A) and 
the function f : A B to the unique extension f* A* B. Let nA : 
A A be the application which maps a to the word (a (having length equal 
to 1) and uA : A*" > A which take a word of words [s1, 
to the concatenation s1 .. .Sk in A" (obtained removing inner parentheses). The 
concatenation concA : A* x A* > A" is as usual and the null word is his neutral 
(unit) element. The mappings 7: id T, p: T> T and conc: T xT T are natural transformations and (T, 7, , conc, zero) is a ringad (zeroA B is the null 
word). Thus we have the list collection type. 

. 8k] and maps it 

This ringad can also be obtained from the monad determined by forgetrul functor U: Mon T and his left adjoint (the free functor). 
Example 3.3. Let T : T - T be the functor which mnaps the type(set) A the underlying set of commutative free-monoid generated by X. TX is the see of equivalence classes of words made from symbols a E X; a word which conta a seginent zy is equivalent to the word obtained replacing all occurrences ol by y. et jwj be the cquivalence class of w. The application nX maps and X maps a word of words in T'X to a word in X removing inner parentne Concatenation of wo words is the cquivalence class of the word obtained thr usual concatenation. 'Thus we olbtain a ringad whichh determines the multiset( collection type. 

igh 
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Mon T is th 

with concat atenation and null word). 

Eauivalently, this monad is induced by the adjunction < U, V, n, where the forgetful functor and : T-> CMon is his left adjoint 
(extended 

Let be P : T T(or more generally P Set Set) given 
nple 3.4. 

D 
by 

= P(r)(the powerset of X) and for I:X > Y, Pf:P(X)> P(Y), (PJ)X) = f(X). 
e define 1X : X+ PX), X(r) = a and uX : PP(X) - P(X) which maps 

set of sets to their union. The concatenation is the usual union and the zero We have a ringad which generates the set collection type. The equivalent adjunction is determined by the underlying functor U : UCSL -> T fron the 

Category of upper complete semilattices to T (o: Set) and his left adjoint (with 

corresponding extension). 

Remark 3.5. In fact, every equationally defined category of one sorted alge- 

braic structures is equivalent to the category of Eilenberg-Moore algebras for some 

monad in Set (Linton's theorem 3). 

Example 3.6. (Arrays) The example is inspired from [2] which treats it in the 
context of computing the Fast Fourier Transform of a vector stored in a database. 

An array is like a list having in front its size. The unit of monad is a one elernent 

array, is the fHatten(linearization) of a two dimensional array, the zero is the 

empty array, and the concatenation is the juxtaposition. 

4. Type conversion 

Type conversion wouid be an answer to the problem of managing simul- 

taneous several collection type. 

Definition 4.1. Let T=(T, , 4) and T'=(T", ',W') two monads on the same cat- 
gory C. A monad homomorphism a : T T is a natural transformation 
:TT' such that the following diagrams commule: 

T? T2 id 

T" T T 

wlere a2= T'a al'= aT' o 'Ta. 

(1nonudhom1) (monadhom2) 
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on the same category C. An extendod ungnad honomorphism frm ds 
T a monad homomorphsm T T nuch lhat Lh: Jollowing diaqram com 

Definition 4.2. L T-(1, 71. p, cmr) and T-(T 1,cone) eztended 

nutes: 
TT 

"T" 
Cme 

(rar atheu) 
Definition 4.3. Let T=(1,7, p, zera) and T° z-(T', 17, , zerd) two quads on the saTne tegory C. 

morphisn fromn T to T" 1 monad honoTnoT phhIm a T T such that the follourng diagran nLulen 

A quad homomorphinm ora monad with zero homo-

(quadhom) 
Dfinition 4.4. Lost T={" 1.p, mnt, zeTo) Ard T'=(T', T, , conc, zerd') tuo ringads on the en1n, 1ntegury C A ringal hononorphisnn from T to T s crtended monad homumrphtenm 1 T T uhch 1s also a quad hOTnOmorphisi 

9 ati (""1) = < T, {z!, ++', aggr t ata ribsti tyt3 (1 the an typ 1, defined by the extended o T-T ,um ani T T f , m s th st,iden 1185n 18ifi itroiti C(T) 1o C"(T) 
T, W iaIrr profnition 2.8 ' 
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morphisnm. 

Proo. 

Propo. 
eition 4.5. The mapping a defined as above is an extended nonad homo- 

(a) Let s prove the turality of . Let T1, *.. , #y) ¬ TA. 

Tf(l1 , Tnl)=lJ(#1),.. , f(tn)]. AIso, 

(oB o TS([21,... ,n) 

We have 

aB(U(1),.. fltn)]= 
= S(r1),... .J(Tn)} 

and 

(Tfo aA){{#1,... , Tn])=(TDlE1.. nl= 

S(1),.. . S(zn)l, 

that aB o Tf = T'f o aA. 

(b) The conmutativity of (monadhom1) follows immediately frorm thhe 

definition of a: 

(ao n)(r) = a([-]) = [e]' = 7(z) 

(c) Let's prove the commutativity of (monadhom2). 

Let llri,1, ... , #1,k1ls. [ci,1, . . . , wl,k] ET*A. 

u) (lT1,1,. . , T1,k1] . .li,1, . , Ti,k l) 

a([1,1, . ,T1,k1) . "1,1,. . *1,ki]) 

1,1++...++'[*1,k.]'++ ++'[z1,1]++++[a1,kl 

(16) 
T1,1 1,k17 T1,k1l 

On the other hand: 

a (l1,1, .. . ,"1,kl. lEi,1,.. , Wl,k;l) 

(aT o Ta) ([[71,1,... , *1,k1l. .|*1,1. , TI,k) 
aT" ([1,1, . . . ,*1,k,l, . |a1,1,. , Ti,k;) 

= 

(lla1,1. , #1,kJs .1,1 Ti,kil) 

and 

('o alpha ) ([lF1,1,-., *1,k.. .li,1,. F1k)= 

(l1,1,. .. , T1,k),.1. .i,klT) 

(17) 
ions (16) and (17) imply the desired conutativity. 

1,1 I,k1 . 1, k; 

Let's prove now the commutativity of (mexthom). 

(l21, . . . , *k]. [y1,. . . , yl) E TA x TA. We have et (r, 

(ao conc)(r, y) = al|t1 , tk 1,. )= |t'11 *'k, U1, 
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and 

(conc' o (a x a))(r, v) = cone'(l#1 k /1, nl) = [r1,.. .. 

that is (mexthonm). 
Let's extend now the conversion to 2ero-element collection: 

(18) a(1)= I 
() 

ol l)=ll++"..++'l#» = ri,... 
Proposition 4.6. a defined above is a ringad honomorphisn. 

Prof. The previous proposition implies a 1s an extendcd monad homo morphism and (18) implies the commutativity of (quadhom). 
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