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ON FACTORIZATION OVER k((2))18 
A. BLAGA 

Ahstract. The article is conceived to have a background in order to obtain an algo 

rithmic method for the formal solutions of a linear differential equation. The solving 

method is based on a factorization of the differential operators, proposerd by using the 

Newton polygon of a linear differential operator. A subclass of this class of equations is 

completely solved in the end of the paper. 

1. Introduction 

Suppose we want to solve a linear differential equation with coefficients in k(z) 

dny)+a,-1 + +ay +ao=0. (1) 

We assign to (1) the differential operator: 

d (2) D=an+ lzn-1 t *dz tdo 

After factorizing (2) will be much easier to solve (1). Because the polynomial in 

described by (2) is not in a commutative ring, the usual Hensel lifting cannot be performed. 

Example. Let be the second order linear differential equation

(3) 
-41/2=, 

with 1, z+z2 as solutions (they are not unique). 

One can assign the operator 

D d + 1/2 dz 
d 1d 

Try to factorize it! 

Here D= d4i7 Thus we have one factorization 
cause 1 is a solution of (3) we may think to a factorization of the type D = Di 

d 

D = 
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ores and Descriptors. 1.1.2 [Algebraic 
Manipulaation): 

Algorithma 
- algebraic 

algorithms. 
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Verify that indeed z +z is also a 
solution of the factored eauati 

hat D = -
ation. 

Da willnot 
An important 

remark to make here is that D, = 4_ 

+ will not 

factorization. For example commute. 
This means that it we rewrite L = D,D1, the solutions 1 

verify D= 0 anymore. 
Moreover D= DiDa is not the unique factori. 

D = t4 
2z+1 # 

gives another decomposition of D. Check the solutions! 

2. The Newton polygon of a linear differential operator 

using We will try to give a factorization of a special class of differential operators 

the Newton polygon and its properties. 

Notations. Let be k an algebraically closed field, with char(k) =0 and define D = 

K{( )M] a linear differential operator with Laurent series in z as coefficients. Here 6 = 

0Z 

is defined to preserve the powers of z: 

L =ao, a e kl:]], a, #0, a; =az 
i=0 J=-0 

f a, = 1 we say that the differential operator in d is monic. 

Remark 2.1. 6z = z6 +z (see the noncommutativity). 
Definition 2.2. For m E Z, n ¬N call z"5 monomial 
Definition 2.3. The order on the monomials: 

181za (m1 m2,ni n2). 
Note that this is a partial ordering. 
Remark 2.4. Define (n, m) 2 (n2, ma) * (n a (1, Ty) (n2, m2). 

Thus 2mS1 

n2, m2 m2). 

Definition 2.5. The Newton polygon N(L) of a linear dijeree corvez hull of the set 

yerential operator LEDB 

W= {(7,v) ER°32"8" E L, (r, v)2(n,m)) Denote by (mi, ), (m2, T2),... , (n,, n,) the vertices oj tne 
here the special point (m,0). A slope of a Newton polygo 

of the Neuton polgon, 

including 

and 

the length of the slope k; is ni41- 1i 
lope of a Newton polygo geven by k; = 

iti 
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ON FACTORIZATION DIFFERENTIAL OPERATORS 

Now, we can define a Dpartial ordering for differential operators of D and we say ED if all the terms of li are inside of the Newton polygon of L. that L2 la, L1, la ¬ D i 

Example 

2.6. Mark van Hoeij's erample. 

+2- +225 +32-552 
-32-553 +5z453 +z55 +22-25 

L = 7z5 

+2235 +32-257 +22-158 +59. 

We see that there are no negative slopes allowed, but if our ring were commutative 

we got the negative slope. 

Definition 2.7. The vertices in the Newton polygon are called extremal points. 

The idea of factoring a linear differential operator is contained in the slopes of the 

Newton polygon; permuting slopes gives other factorizations and moreover, the factors 

are diferent for each permutation of slopes. 

Definition 2.8. Let b{L) be the graph of N(L). The boundary part of L is: 

B(L)= an,m"". 
(n,m)Eb(L) 

Example 2.9. In the erample above: 

B(L) = 2-$8 + z85+22 385 + 3:-28 +2:"188 +®. 

Notation. R(L):= L- B(L) and it is called the interior part of L. 

Remark 2.10. R(L) > B(L) and R(L)>L. 

oposition 2.11. Jf M, = 2"mi5, M^= zma2 then 
Prop 

(4) 
M M2 = mtma (6+ mao 

(5) 
B(M,M) =z1tma 8"i tn 

roof. First part ca seco 
part we expa 

can be done by induction and it is left as an exercise. For the 

Pnd the term (8+ m)"i and since the powers of ð are decreasing ro 

hat the boundary part of MM2 will be z"itm"T, U 
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Z 

0 0 2.6 

2 

FiGURE 1. Example 

Example 2.12. Let be two operators Li = z+8 and Lz = z"6+ z6*. Then 

L = Lila = 6+8+:83- 4228+426 + 
+2:6° + z6. 

The interesting thing here are the slopes of L: they include all the slopes of Li and L2, the length of slopes in LLa is the sum of lengths of the same slopes in li an 
Lz and moreover, the Newton polygon of L is the sum of Newton poiygons of L1 and l 
We will prove this in the next lemma. 

Lemma 2.13. Let be Li, L2 ¬ D. Then 

N(LLa)= N(L,) + N(La). 
(6) Proof. Take 

L =ai,='8, La=is. 
3 

Then 

LLa= aibiaazit* (6 + ja)'"8», 1,) 
2 J2) 

The termns zti» (6 + ja)"5" are contained in the Newton polygon n polygon N(LI) + N(La). 
N(LLa) C NL)+ N(La). 

2. Thus 108 



ON FACTORIZATION DIFFERENTIAL OPERATORS 

Now show that extremal points of N(L1) + N(L2) are in N(L L2). So, if (s2, s2) ...)+ N(L2) then there exist unique (i1,j1) E b{Li) and (i2, j2) ¬ b{La) 
is extremal in. 

such that 

(S1,$)= (i1,1) + (i2, in). 
ith sinti E N(L\La). P'rom this it follows the other inclusion, N(L)+ N(L,) C Hence 

NLLa).0 

Remark 2.14. The boundary part of L = 

(i.i)E b{L) 
i ii zntn gitiz is 

(i2, a) ¬ b{IL) 

B(L)= (7) 
(1,2)Eb{Lnla)(i)+(i2n)=(#1,2) 

Take this example, now: 

L1 = +8+ terms "inside" N(LI), 

La=18 + + terms "in side" N(La). 

The extremal points for Ly are (0,-1),(1,0); for La are (1, -1), (2,0). 

LL2 = (:"- 2")8 +2: ++ terms "inside" N(L\ La). 

Ene extremal points are (1, -2), (3, 0). But the all combinations of monomials used 

) are not exhausted. For example we also have 

(0,-1) + (2,0) = (2,-1) 

(1,0) + (1, -1) = (2,-1) (see point P). 

Ly. Moreover (81,* 2) is not an extremal point. 

() The set of slopes of L, L, is the union of the slopes of ly and la. 

So, if (S1,52) is given in a not unique way, then exists common slopes of Li and 

orollary 2.15. If L1, La ¬ D the 
Cor 

o8lopes in L,L2 is the sum of lengths of the same slopes in Li and 

Proof. (i) By (6) and geometry of N(Li) + N(L2). 

Using again (6) and the result of (i). u 
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Z 

3.6 0 

P(2,-1) 
2 

FiGURE 2. The example from the Remark 

Example 2.16. Recall the ezample from the begining of this paper: 
L = 

2 
the linear diferential operator of equation (3). We hare 

given there two ditferent factorizations: 

d 1 L = LiL', L'= : Li= z+ 

+2+ L2"=-2:+1 
z2+2 
2+1 

L = L"L", L" = 2 

Rewriting everything in terms of ð we obtain 

L L=-16- 
+1/2+1/2+5)6- 1), L='8, 

L" 
z 22 +1(z+122+ 3z +1)6 + 222 2z + 1), L" = 

1+)6-22 - 1). z + 

Let's state an important theorem, which sh can be proved by building u 
sirnpler cases. 

up from the 
Theorem 2.17. Let be L E D with its Newlon polygo gon, N(L) having the slopes ki, ka , 2,... ,k 

Then there is a fuctorization 

(8) 
where N(L,) has unique slope k,, Jor each ic{1,2,... ,r}. 
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Case 
of 

one 
slope 

We 
here is that one when the slope is 0. One can write for an L E 

wi start rst from L = lhM, M ¬ D, where L, has only one slope. 

n - {)O), where L{i) E k[5] are polynomials in 6. 

0to be the length of the slope 0 of N(L1) and we want L = LizL(i)(6). 

The 
simplest 

case 
here is that one 

L0) is monic nic of degree ni and Lil?) has degree less than n1, to maintain the uniane 
Also La = Ei>m, zL2{t){0), Where mi 18 the greatest degree occuring in L. 

Successively one can get 

L6): = *i,x6* = zi a6+ 5*= 
k 

6 +i* = ati)5-+j). 

Now we compute the product L L2 

Lala = (L)M2 LG%6)) = 

i20

E: Li)6)2Lz(i)N6) = 

i2m 
= 22 L)6+ i)LiM6) = 

i20 I2m1 

La()(6 + j) L(G)N8). 
k2mi i+j = k 

i 20 

LZm, z*L(k)(8), so 

AN6) = * 2 La(i(8 + j)La(GM8) 

K2m km i+j = k 

20 

2m 
For k Tn 

T+1)Lama +1)(6) + L(1 

ave L(0)(5+m,)La(n )(6) = L(m,)(6). For k = mtl, Li(000+ 

)La(rn1)(8) and the quotient to be Lz(m2 + 1)(8) and by the uniqueness 
or 

tL(1)(6 + m)Lz(m)(8) = L{m^ + 1 8). The last identity 15 

ng else but the 

LY6+m)L- 1On 
of L(m1 + 1)(8) by L,(0)(6 + m1 + 1), with the remainder 
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oing by this 
the division theorem Li(8+ m1) and Lz(m1 t+1) are uniquely determined, Dei. 

way one can find the factorization of L, by lifting from L(0) = Li(0)La(m. 

The ideea of this case is that it reduces to the previous case. Take this one 

Replace by 

Let's start to say something about the case when the one slope of N(L) is >0 
this one slope to 

be the minimal slope of L and that is m = b/a, (a,6) = 1, a, e Z. Replace 

new 

A = t6, =". A = #5 = Thus At = + = +ta. The t 
Newton polygon will have one slope 0. 

Example 2.18. 

L= z6-1. 
(9 

Take m = 1/2,t = z2,A = t6. So At = + tA and 42 = (tQ)(18) = t5° + }14. Thus 8=A2 - tA. Replacing t5 in (8) will give 
L = A-A -1. And thus the unique slope is zero. 
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