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ON FACTORIZATION OVER k((z))[s]
A. BLAGA

Abstract. The article is conceived to have a background in order to obtain an alg
: , "

rithmic method for the formal solutions of a linear differential equation. The solving
method 1s based on a factorization of the differential operators, proposed by using th«;

Newton polygon of a linear differential operator. A subclass of this class of equations is

completely solved in the end of the paper.

1. Introduction

Suppose we want to solve a linear differential equation with coefficients in k(z)
any™ + a1y 4+ @y’ + a0y = 0. (1)

We assign to (1) the differential operator:
d" dr1 d =
D=anzz—n+an-1m+"b'+a1gg+ao- (2)
After factorizing (2) will be much easier to solve (1). Because the polynomial in B
described by (2) is not in a commautative ring, the usual Hensel lifting cannot be performed.

Example. Let be the second order linear differential equation
1
"_ '=0, (3)
YT x 1/2y

with 1, 2 + 22 as solutions (they are not unique).

One can assign the operator

& 1 d

—

. de Z+ 1/2 dz
Try to factorize it!

Because 1 is a solution of (3) we may think to fac

Her ‘ .
-re l) —— i. \ : ' . 17,¢
S Py +', ;- Thus we have one factorization

d 14y
1) = (Zt'; - ;‘:T/_'é)(dz)

torization of the type D =Dz

\
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2 ig also a solution of the f&Ctored equation.
Verify that indeed z + 271

important remark to make here is that Dy = g; — z~i-1/2 and D, = \
An 1mp

Dy D, is not the unique factorlzatxon For ex, e
Mp

This means that f we rewrite D = D3 Dy, the solutions 1 and 5 4 z2
e
commute. This T

) =
ymore. Moreover L
D—(d + 2+2_2z+1 dz 224z

verify D =

1 |
gives another decomposition of D. Check the solutions!

5 The Newton polygon of a linear differential operator

We will try to give a factorization of a special class of differential operators, using
the Newton polygon and its properties.
Notations. Let be k an algebraically closed field, with char(k) = 0 and define D =

k((z))4] a linear differential operator with Laurent series in z as coefficients. Here § = z%

is defined to preserve the powers of z:

o0

n
L= af, a k], an #0, ai= Y a2,
1=0 Jj=—00
f o, =1 we say that the differential operator in & is monic.

Remark 2.1. §z =28+ z (see the noncommutalivity).

Definition 2.2. Form € Z, n € N call z™0™ monomial.

Definition 2.3. The order on the monomials:

m
AP P T K IPN (my > mg,ny < ny).

Note that this i , partial ordering

Remark 9 4 .
e % l)eﬁnf. n ml&ﬂl Z
magen . (ny my) > (ng,mz) & (ny < ngymy > ma). Thus %

(m my) > ("%mz)

Deﬁnition 2.5, The

N(‘Wt()n ) é ‘5 {he
Conver )| of the ot polygon N(L) of a linear differential (,pemtorlz

Denote 4, { ") e RE3.mm € L,(z,y) > (n,m)}.

“ 0 (mla"J) (m;,nz) lﬂd’ny
here the special poiny (m,0). 4 (e, m, ) the vertices of the Newton POIngL’/m, o
the lenggp, of the slop, » slope of Newton polygon is given by ki = n "

t 8 n:
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ON FACTORIZATION DIFFERENTIAL OPERATORS

NOW7 we

can define a partial ordering for differentia] operators of D ang
. .
D if all the terms of [ . N € say
Ly Iy 12 € 1 are inside of the Newton polygon of 1
2.

that 11 Z

fark van Hoeij’s example.
le 2.6. ]M(H‘
ExampP

L = 727° +227% 42,75 43,542
——32-563 +52_4(53 +z“4($5 422245
+227°6% 432727 4227168 40

We see that there are no negative slopes allowed, but if our ring were commutative

we got the negative slope.
Definition 2.7. The vertices in the Newton polygon are called extremal points.

The idea of factoring a linear differential operator is contained in the slopes of the

Newton polygon; permuting slopes gives other factorizations and moreover, the factors

are different for each permutation of slopes.
Definition 2.8. Let b(L) be the graph of N(L). The boundary part of L is:

B(L)= Y annz"d"

(n,m)eb(L)
Example 2.9. In the ezample above:
B(L) =227%8 + 27%6° + 2:738% + 327267 + 227185 + &°.
Notatjon, R(L) := L — B(L) and it is called the interior pari of L.
Hemark 2,10, R(L) > B(L) and R(L) > L.

Propnce..
Position 2.11. If M, = zMgm . M, = z™26™ then

ny §n2 (4)
(5)

MM, = Zm'+m2(5+m2)

B(Mle) — zm|+m25n‘1+m_

. e
P")of, F exercise. For th

irst part can be done by induction and it is left as an

. § are decreasing
€xpand the term (6 + m,)™ and since the powers of 0 a
m1+‘m2(5"l+“2 .0

See
Conq part - from

6n1*n2 A

5 1. _
* 0bvious that the houndary part of My My will be 2
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FIGURE 1. Example

Example 2.12. Let be two operators Ly = 271 4 62 and Ly, = 226 + »42 Then

1)+ N(L,), 0
Proof. Take
L,l = Zai,jzj(;", L2 — Zb . '
1,7 i,sz(sz.
Then ]
[J /) = .
1L, Z a‘l-inbiz.j221‘+j2(6 o
f +.72)“6i2
(21,],) )
(2.2)]'2)
iy . NHz(§ 4Ny g
he terms ,i+s (64 j2)"1 6% are contained ip the Newtop l
NLils) © N(Ly) 4 N(L,), PObgon

108 U+ N(Lz). Thus L
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Now show that extremal points of N(I,) 4 N(Ly)
2 areinN(LlL) .
2). SO, 1f(

(L1) + N(L2) then there exist unique (i1,71) € b( e

is extremal in N
Lh) and (35, 33) € b(L,)

such that
(81,82) = (11,01) + (42, 7).

Hence <

N(L1L2)- 8

tngnte € N(LiLy). Fr is it f
(L1Lg). From this it follows the other inclys:
"L inclusion, N(Ly)+ N(
y L,) C

Remark 2.14. The boundary part of L =Y
(i1,51) € b(Ly)

(iZ’ .72) € b( L2)

B(L) = |
Z z ail,jlbi2,j2 Azsz(g«n' (

(s1,52)€b(L1La) \ (i1,1)+(i2,32)=(s1,52)

iy i biz 2 2+ §ii+i 18

|

Take this eitéinple, now:
Ly = z7' 484 terms "inside” N(Ly),
L, = 271§+ 6% +terms "inside” N(L3).
The ext i »
ex rema1 p?{nts for Ly are (0,—1),(1,0); for Ly are (1,—1),(2,0)
LiLy=(z"% =27} 15745
1Ly = (2 270 + 2z 162 1 5% + terms "inside” N(LiLo).

Here the e ‘
; xtremal poi
al points are (1, 2), (3, 0). But the all combinations of monomials used

i (7) a
) are not exhausted. For example we also have

(07"‘1)+(2v0) = (27_1)

(1,0) 4 (1,—1) = (2,-1) (see point P).

ts common slopes of L, and

So, i
So, if (s ..
1,8 : .
) 2) 1S given In a not unique way, then exis

L.
. M
Ore()v(:r, (S] S ) i
»82) 1S not an extrernal pOiIlt.

("(”'01
la
('I;y 2.15. If Ly, L, € D then:
L 'I'he set
(i) T, of slopes of Ly Ly is the union of the slopes
e lena , R
ength of slopes in Ly Ly is the sum of lengths of the

of In and La.

same slopes in L, and

PTOOf_ :
(1) By (6) and geometry of N(Ly) + N(L2)-

(1) Usi

s .

Ing again (6) and the result of (1).0
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FIGURE 2. The example from the Remark

Example 2.16. Recall the ezample from the begining of this paper:
’ We have
L = % - z+11/2 &, the linear differential operator of equation (3).

given there two different factorizations:

d 1 d
L = L 'L , L p——J ! —_
1Ly, Ly . Yy L, T
L= Ly g @, 2241 9 Lo d 241
AP P L dz ~ 2242
Rewriting everything in terms of § we obtain
/ _ 1
o=tso 1 1 1 _
z+1/2 m((1+§z N8 —1),
Lz’ = 2*15,
L" = 1 (222
z(2z+1)(z+1) z +3z+1)5+r222+2z+1)
1 >
L =

Let’s state ap lmportant theorem
simpler cases,

Which ¢q b
¢ pI’OVed by bllil(ling up fron] t,ht‘

Theorer 2

2.17. Let be |, €D with

ils Newton pol
Then there iy 4 Jactorization,

1

L=1,1,... L,,
where N(L;) has unique slope f,, Jor cach i ¢ {L2,...,»
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e
00 fone SIOP
cas

We

The Simples . .
L T AL()(S) » where L(i) € k[6] are polynomials ; iné.
p, [ ==

# 0 to be the length of the slope 0 of N(L)

Wlll Start ﬁI‘St from L = L[M M € D Where L1

has onl ’
Yy one g|
{ case here is that one when the slope is Oii& ca slope.

n write for ap J, c

Take M1 and we want L, = )3

i> ziLx(i (4 :
onic of degree ny and Ly (i) has degree less than >0 )(9)

1,(0) i to maintain the unique

lpeo Also Ly = Ei>m1 Z‘L2(z)(6)a where my 18 the greatest,
slope -

Juecessively one can get

degree occuring in [,,.

2Ly (1)(8)2°

Z_j Z ai,k(skzj — z‘jzj Z ai,k(5 fs ])k -
k

k

=) a8 +5)F = Li(i) (8 + ).

k

Now we compute the product Ly L,

Ly = (QZLBEN(Y #L0)®) =
= Zz* 2 # L)) =
= Z Z 2 L1(1)(8 + 7) L2(7)(9)
= Z z Yo L)E+)La)().
k>m; ; +] — k
i 20
g zm

But 1 —
L ZkZml ZkL(k)(é-)’ 55

Y FmE =Y Y LOE+)ROO

k>m, k> .
2mi i +] — k
1 >0
i zm

For | For k = mi+1 Ll(O)(J-i-

e Bave Li(0)(&4m) Ea(m)(6) = L(m)(0):
nOt}] l(mz + 1)(5) + Ly(1)(6 + my) Lz(ml)((g) = L(m + 1)( 1

g e A
Ll(l) Se but the division of L(m; + 1)(6) by Ly(0)(d + m); e -
TRI)L2(m1)(6) and the quotlent to be L2(m2 + 1)(

n

§). The Jast identity is

)s with the remainder

ueness of
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the division theorem Ly(8 + m;) and Ly(my + 1) are uniquely determineq. DOing by 4 |
s

way one can find the factorization of L, by lifting from L(0) = L,(0) Ly(my)
Let’s start to say something about the case when the one slope of N(

Ly) i N

Take this ope slope ¢,
be the minimal slope of L and that is m =

= b/a7 (a,b) = 1, (l,b e Z- Rep]aCery ‘
A=t§ z=t" A=t =4 Thus At = £ 4 2424 _

tb+1
Newton polygon will have one slope 0.

The ideea of this case is that it reduces to the previous case.

Example 2.18.

L=28%-1. 9 |
Takem =1/2,t = 2112 A = 5. 50 Ay = T +1A and A? = (16)(t6) = 252 4 it
Thus 262 = A2 _ HA. Replacing 262 ip (8) will give
1
L=A*_ 4A _
2tA 1.

And thus the unique slope ig zero.
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