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Abstract. We introduce data collections through adjoints. Weak, zero-element and
strong data collection types and aggregation operators are introduced. Ones prove that
adjoints lead to data collections. Their properies are studied and we prove some algebraic
properties useful to database query optimization. Thus we find again classical colection

types: lists, trees, sets.
1. Introduction

Data collections play a central role in Database Theory. A database programming
language (DBPL) can model application domains most naturally if it has several collection
(bulk) types, e.g., lists, sets trees and so on. The first demonstration that a collection
type could be accommodated satisfactorily in a strongly typed programming language
was Pascal-R [15]. The collection type concept supports two essential activities. First, it
allows regularity in structure to be described. Second, it supports powerful and succinct
notations for computing with such regular structures. The requirements for collection
data types are summarized and argued about in [2]. A type system for collections tends
1o be rich and complex, since constructs must be provided to declare, construct, inspect
and update instances of each collection type. One needs to control the complexity of such
e systems by exploiting operations and properties common to a variety of collection
types. We think Category Theory is a possible background to describe regularities, de-
veloping algebras for collection types and improving efficiency.

This Paper tries to introduce definitions for data collections and study and model

le : . :
: 7 using *joints. We shall show how data collections can be modelled through ad
Junctiong and how

' ic properties are
: adjunctions lead to collection operators whose algebraic properties
studled. Thf‘Se

Properties may be used for query optimization.

Recejy,

196, A;d:y the editopg; October 20, 1996.
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R. TRIMBITAS
9. Basic Notions

In [4] data collections are defined as follows:

Definition 2.1. A data collection is a parametrized abstract data type (i, typ
A epm

rameter T) of type C(T) with the following operations:

o A family of data constructors Cr : T — C(T) with the arity n, for each 5, > :
o Functions over data collections of type C(T).
o Observers —

(a) selectors: functions from data collections of type C(T) to type T:
(b) predicates over C(T). |

The algebra of the data collections, that is the semantics of the data constructors and other

operations, is defined by a set of first-order Horn clause azioms over the data constructors,

functions and observers.

We shall use other definitions for data collections, and our approach will be cate
gorical. For notions of Category Theory the reader may consult [7, 8, 14]. Also the paper

[12] illustrates how Category Theory notions and constructions can be systematically used

in Computer Science.

Definition 2.2. A weak data collection C is a parametrized abstract data type (with
type parameter T)

C(T) =< 7, [z], ++, aggr >

where
o 7 is the set of data collections over T;
o [z] is the singleton (single element) collection;
¢ +H+:7 X T — T is the concatenation operator of two collections; J
o aggr is the aggregation operator defined as follows: if f: T 2 5
~ v v . . N K /?
®: S%xS — S is a binary operation, then aggr(f,®): 17— S (i.e. aggr- (r
S) x 71— S) has the following properties:
1)
aggr(f,®)([2]) = f(z) |
| )
ager(f,®)(a+y) = aggr(f, ®)(z) ® aggr(f, D)), .y ET (
82
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ADJUNCTIONS AND DATA COLLECTIONS

Deﬁnition 2.3. A zero-element data collection ( s 4 parametrized abstract dat
ata
- (with type parameter T)
C(T) =< 7, (), [=], ++, aggr >
where

o < T, (2], +F, aggr > is a weak data collection;

o [] is the emply collection and
Veer g+t = [[+Hz == 3)

o aggr is the aggregation operator defined as follows: iff: T — S and
B:SxS—>Sis q binary operation with neutral element u, then aggr(f,®) :
r— S (i.e. aggr: (T = S) x 7 = S ) which verifies (1), (2) and

ager(f,®)([]) = u. (4)

Definition 2.4. A strong data collection is a zero-element data collection such that

the concatenation is associative, that is
Vz,y,z€T (z4++y)+Hz = o+ (y+H2)- (5)

The definition of strong data collection requires < 7, ++, [] > be a monoid. A
good model for strong collections is the free monoid over T (directly applicable to lists).

The notion of strong collection is similar to monoid collection defined in [9, 10, 11], but

there the approach is not categorical.

Remark 2.5. Each strong data collection is also a zero-element data collection; each

zero-element data collection is also a weak data collection.

In the sequel [z, ..., z,] will denote the finite collection having the elements

concate-

Z are expressed using

vee e T Some data collections properties from [4]
natiOH;

* permutability — a data collection type is permutable if

duphc t 3 d]) ca io f 1

a ee' 1 tes p' tanS

. € elimlnation - a data collection tyP limina li !
i "1P0tent, tha.t iS

X++X=x
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R. TRIMBITAS

ull value elimination - a zero-element data collection type eliminate, -
en &

values if

x ++ []=x.
Remark 2.6. Bach zero-element data collection elimines null-values.
e -0, bach zc

3. Data collections through adjunctions

Let T be the category of types (whose morphisms are usual functions), 4 a
arbitrary category and < F,U,n,e > an adjunction where U : A - T, F . T A
are functors such that F 4 U, and n and ¢ are the unit and respectively the counit of
the adjunction. Let us suppose A is a category of sets with structure having at leas

one binary operation. Let U : A — T be the forgetful functor. It has a left adjoint
F:T = A HT € ObT then F(T) is the free-algebra generated by T.

Theorem 3.1. If U: A = T is the forgetful functor and F is his left adjoint, then the

adjunction < F,U,n,¢ > determines o weak data collection.

Proof. f ' 4 U then there exist n : idy — UF (the unit of the adjunction) such
that YX € ObT, VY € ObT, Vf : X - UY 3f* ¢ Hom A(F(X),Y) such that the

following diagram commutes

X —", yF(x)
T e (6)
f :U(f )

U(Y)
(sec [8, 14, 13)).
For each T ¢ ObT, F(T) is the free.
by T. We shall take 5 — UF(T)
over F(T).

, fed
algebra with one binary operation gener®

tion
» and the concatenation will be the binary operd l.
m . 18
I'he singleton collection will be given by the unit of adjunction, that
V2 €T (2] = p(z).
The aggregation is defined ag follows: for f: XU (Y) we have

aggr(f, ®) = f#,
Since f# ¢ HomA we obtain

I#U'H-y) = f#(l)

© f#*(y)
84




ADJUNCTIONS AND DATA COLLECTIONS

(hat is (2). ' '
The commutativity ol diagram (6) implies for z € X

(U(./.*)O'L\’)(-T) - U(f#)(l-"fl) = f”([r]);[(r)

(hat is (1)

Example 3.2. If A is the category of sets with one binary operation (subject to no
restrictions) and the arrows are such binary algebra homomorphisims we obtain binary
labelled trees.

An ordered binary rooted tree (OBRT) is a binary rooted tree which has an addi-
tional linear order structure (referred to as left /right) on each set of siblings. An X-labelled
OBRT (LOBRT/X) is an OBRT together with a function from the set of terminal nodes
to X. A free algebra F'(X) expression has the usual representation as a binary tree. For
example (zy)z is represented in figure 1.

The concatenation of two trees t; and ¢, (or of two expressions) is the binary tree

X y z
FIGURE 1. Expression
having ¢, as left subtree and ¢, as right subtree. O

If A is a subcategory of the category Mon of monoids we get an analogous of

Theorem 1 for strong collections.

Theorem 3.3. If A is a subcategory of Mon, U : A — T is the forgetful functor and F
s his left adjoint, then the adjunction < F,U,n,e > determines a strong data collection.

Proof. 1t is a variant of theorem 3.1 proof. The unique morphism f# from diagram
'8 2 monoid-homomorphism and for 7' € ObT, F(T) is the free monoid over T'. Since

F . A .
( (T), ++, [1) is a monoid we obtain (3) and (5); the commutativity of (6) implies (2),
and f*

(6)

Monoid-homomorphism implies (1) and (4).

The :

1 orem 3.4. If Bu is the category of algebras with one binary operation and neutral
tlem . . .. . 3
| et U:Bu — T i the forgetful functor and F is his left adjoint, then the adjunction

<KU .
1h€ > determines a zero-element data collection.

85

*



R. TRIMBITAS

The proof is analogous to that of theorem 3.3.

Example 3.5. Let add to collections from example 3.2 the empty tree (having no node),

If z is the empty tree, the concatenation is extended as follows:
24+t = t+Hz =

for each tree t.
Let (B,®,u) be an algebra with a binary operation @, neutral element u ang

f: A= B. The aggregation is extended as follows
aggr(f,®)(z) = w.
4. Algebraic properties of aggregation
Theorem 4.1. If f : X — U(Y) then the following identity holds
ager(f,®) = ey o F(f) (M)
Proof. Applying F to (6) we have

F(xy —200) by pox)
g
PN UG 9
FU(Y)

The naturality of € gives us

rur(x) L0 FU(Y)

&y (9)

F(X) Y

that is,

¥ oF(f) = ey o FU(f*)o Fny)  (from(8))

= f*o €r(x) o F(nx) (from(9)) |
= f# (ero F, =1id) O

Remark 4.2. Theorem 4.1 also holds for strong collections
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ADJUNCTIONS AND DATA COLLECTIONS

P oposition 4.3. The following holds
r

aggr(n, ++) = 1dp(,) (10)
Proof. From theorem 4.1 and adjunction we have
aggr(n, ++) = ep(ry o F(nr) = idp(ry. O

Remark 4.4. The identity (10) also holds for strong collections.

Proposition 4.5. If h € Homy(T,S) where T' = (T,®) and S = (S,®) are algebras
with one binary operation, then for each f: A = U(T) we have
h o aggr(f,®) = aggr(h o f,®) (11)
Proof. From theorem 4.1 we have
aggr(f,®) = ero F(f)

aggr(Uho f,®) = esoF(Uhof)

and
hoeroF(f) = esoFU(R)o F(f)  ( naturality of )
= esoF(U()of)  (F functor)
= aggi(Uho f,®) (12)
= aggr(Uho f,®),
siuce Uh = h. [,

Re .
Mark 4.6. Formula 11 also holds for zero-element and strong data collections.

p ..
foposition 4.7, [f g:A— Band f: B — C where (C,®) is an algebra with one

Dinar
)JIJdJy operation then

aggr(f,®) o F(g) = aggr(f 0 9, ®) (13)
Froof. From theorem 4.1, because F' is a functor we have
aggr(f,®) o F(g) = eco F(f)oF(g)
= egoF(foyg)
= aggr(fog,@). 0
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R. TRIMBITAS
5. The importance of aggregation

The aggregation operator first appeard in John Backus’ article [‘3]

. [4] s ¢
pump; in [5] aggr. In [18] appears as fold and is the basic operator for datap, alleg |
ase
and optimization. Its importance is that aggregation axioms and identitieg (1), (10)q
(11

)

(13) can be used for query optimization purpose. Also, the usunal Operators of |
e a.h

algebra ( [17, 16, 1]) can be expressed by aggregation as follows,
P1. Collapse. If we have a data collection type

C = (v, [], [z], ++, aggr)
where 7' is a collection of T-type collections then the collapsing can be expresseq 5
collapse(z) = aggr(id, ++)(z).
P2. Selection. If p is a predicate, we have for strong collections

op(z) = aggr(fp, ++)

where f, = Az.if p(z) then [z] else [].
P3. Map or apply-to-all.

map(f,z) = éggr(f, ++)(z).

Remark 5.1. Map is intimately related to the free functor and adjunction. In fact %

may write

map(f,.) = F(f).
P4. Project. |
projeCtah'--van(x) = map(A{al = 2171, vee gy aAn = xn,.- °. }' .
{ay =y, ... y@n = Tn},T).

P5. Join. We introduce

filtermap(p, f, T) = ap(map(f,x))
We have

juiu(ws,y.s‘, fig,h) = map(, zs)
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ADJUNCTIONS AND DATA COLLECTIONS

where

v = Azfiltermap((A\y. f(z) = g(y)), h(z, Y),ys).

p6. Powerset. If C(T) is the set-type collection over T', then the set of all gets

wver T (T finite) can be expressed by:

power : C(T') = C(C(T))

power([]) = [[]]

power (add(y, X)) = power(X)-++map(h) (power(X))
where h(c) := add(y, C') and add(y, C) = [y]++C, y € T, c € C(T).

The generalization of this construction for other collection types is easy.

Other operations. The following operations may be expressed through aggrega-
tion:
¢ set membership
e € X = aggr(f,V)(z) Where. f=2Az.(z = e);
e set difference
z\y = aggr(f,U)(z) where f = Az.if ~(2z € y) then [] else [];
e set intersection
z\y = aggr(f,U)(z)  where f = \z.if (2 € y) then [z] else [];
¢ quantifiers
(Ve.p(@)(y) = ager(f,A)(y)
(3z.p(z))(y) = ager(f,V)(y)  where f = Az.p(2).

6. Applications

We can fing again classical data collection types taking various target categories

for p functor.

*@mple 6.1. Let A be the categories of algebras with one binary operation. We obtain
t}

le d . .
Ata collectiop type from example 3.2. 0

The next €xamples are on strong data collections.
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le 6.2. If A is the category of algebras with one binary operation having ney
p oo

Exam bra)

lement we obtain the data collection type from example 3.5. 0
X .

Example 6.3. Tf A = Mon, where Mon is the category of monoids we obtain list dss
xa - a

collection types. |

If M € ObT. then F(M) is the free-monoid generated by M (the get, of lists having
M-type elements), and for f € HomT, F(f) applies [ to each element of the list (apply.
to-all or LISP mapcar function). In fact F' is the free-functor, and his right adjoint 7 i

the forgetful functor.
If ¢ is the list [¢1, ..., @] and f: X =Y, where (Y, ®) is a monoid, thep

ager(f, ®)(c) = f(21) @ ... ® f(2n).

The concatenation is the usual list concatenation operation, the empty collection is tp,

empty list, and the single-element collection is the one-element list. O

Example 6.4. If A = CMon, where CMon is the category of commutative monoids, we
obtain the multiset(bag) data collection types. The empty collection is the empty multiset,
and the concatenation is the multiset union (that is, the number of occurrences of an
element is the number of occurrences in the first multiset plus the number of occurrences

in the second).

If z is the multiset [z;, ..., z,] with X-type elements and f : X — Y, where

(Y.®) is a commutative monoid, then

ager(f,®)(z) = f(21)® ... ® f(z,). O

Example 6.5. If A is the category CUSL of upper complete semilattices we obtain set
data collection types. The empty collection is the empty set, the singleton collections ar®
singleton sets, and the concatenation is the usual unijon.

If {z,,... yTn} s a set with X-type elements, f: X — Y, where (Y, V) is an upper
complete semilattice then

e (£,V)(@) = f(z) V...V f(z2) D

Example 6.6. If A is the category of monoids with ope binary idempotent operatio?

then we obtain oset type data collections (lists without duplicates). The empty oot

singleton collection are the same as for ordinary lists, but the definition of concateni"tioIl

seHy=zU(y- z) where y — z is the list of elements in y, but not in x. 0
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ADJUNCTIONS AND DATA COLLECTIONS

ple 6.7. If A is the category of ordered idempotent monoids we obtain sorted

Exam
collections. The concatenation is list merging. A variant of these collection type parame-
trized by a function f whose range has a partial order “<” given byz <y <= f(z) < fy)

and called sorted[f] appear in [10] and [11]. 0

)

Remark 6.8. Some classical aggregation operations for databases, such as count or sum
are exception from the frame of example 6.2. They could be defined as count(z) =
aggr(f,+), where f(y) = 1, and sum(z) = aggr(id, +).

We have

count({2}) = 1 = count({2} U {2}) # count({2}) + count({2}) = 2

sum({2}) = 2 = sum({2} U{2}) # sum({2}) + sum({2}) = 4

For these cases f is not a homomorphism of complete upper semilattices. O

There is another way to define aggregation operators, having theorem 4.1 as start-
ingpoint. If f: T — S, @ : S xS — S is a binary operation and [z, ..., z,|€ F(T)=171

we define
65([$1, ey .'En]) =$1@...@$n.
The definition of aggregation operator is now

ager(f,®): 7 — S, ager(f,®) =eso F(f)

We shall call this operator generalized aggregation operator. In fact, this is the classical
aggregation operator as defined in Functional Programming. This operator will have the
Property (2) or (4) only if f : T — S is a homomorphism of appropriate algebras.

Alternatively, the aggregation operator can be seen as a mapping from a colection

type < 7, [2], ++, aggr > to a binary operation algebra (S, @). It will have the desired

Properties if the category which has the algebra (S, ®) as object is a subcategory of the

Category corresponding to the collection type. This property is called well-definedness and

1t is studieq ip [9, 10, 11, 6], but the way of expression is not categorical. For sum sud

coy . . Thus sum
nt, (N, +) is not an upper complete semilattice,

and count will be well-defined for lists and multisets and ill-defined for set
leads t4 well-

but a commutative monoid.
s. Adjunction

definedness.

; ,___r.n,&
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