
NIV. "BABES-BOLYAI INPORMATICA, Volume I, Number 1, March 1996
STUDIA UNIV

ADJUNCTIONS AND DATA COLLECTIONS
R. TriMBITA^

Dedicated to Professor ^tefan I. Ni�chi

Abstract. We introduce data collections through adjoints. Weak, zero-element and
strong data collection types and aggregation operators are introduced. Ones prove that

adioints lead to data collections. Their properies are studied and we prove some algebraic

Droperties useful to database query optimization. Thus we find again classical colection

types: lists, trees, sets.

1. Introduction

Data collections play a central role in Database Theory. A database programming
language (DBPL) can model application domains most naturally if it has several collection

(bulk) types, e.g., lists, sets trees and so on. The first demonstration that a collection

type could be accommodated satisfactorily in a strongly typed programming language
was Pascal-R [15]. The collection type concept supports two essential activities. First, it
allows regularity in structure to be described. Second, it supports powerful and succinct

notations for computing with such regular structures. The requirements for collection

ata types are summarized and argued about in 2. A type system for collections tends
tO be rich and complex, since constructs must be provided to declare, construct, inspect
aud update instances of each collection type. One needs to control the complexity of such

ypes. We think Category Theory is a possible background to describe regularities, de-

veloping algebra for collecti types and improving efficiency.

P systerns by exploiting operations and properties common to a variety of collection

paper tries to introduce definitions for data collections and study and model

8 4joints. We shall show how data collections can be modelled through ad-
them using

Junctions and how adju " ajunctions lead to collection operators whose algebraic properties are

operties may be used for query

1991 CR ategories and Descriptors. H.2.1 [Database Management!: Logical Design - data models; H.2.3 [Database

studied. These prop
optiinization.

eceived by the editore: October 20, 1996. Mathematics Subject lassification. 18A40, 68P15. Management}: Languag
guages data manipulation languages, query languages.

81

awwwwwLY

R. TRIMBrTA_

2. Basic Notions

In 4] data collections are defined as follows:

urith type pa- Definition 2.1. A data collection is a parametrized abstract data type (uith

rameter T) of type CT) with the following operations:

. A family of data constructors C": ThC(T) with the arity n, for each n

.Functions over data collections of type C(T).

Observers -

(a) selectors: functions from data collections of type C(T) to type T;

(6) predicates over C(T).

The algebra of the data collections, that is the semantics of the data constructors and other

operations, is defined by a set of first-order Horn clause arioms over the data constructors

functions and observers.

We shall use other definitions for data collections, and our approach will be cate

gorical. For notions of Category Theory the reader may consult [7, 8, 14]. Also the paper

12 illustrates how Category Theory notions and constructions can be systematically used

in Computer Science.

Definition 2.2. A weak data collection C is a parametrized abstract data type (u1

type parameter T)

C(T) = << T, (#], +, aggr

where

T is the set of data collections over T;

c] is the singleton (single element) collection;

+T x T T is the concatenation operator of two collections;

aggr is the aggregation operator defined as follows: ff: T + S and

: SxS+S is a binary operation, then aggr(/, ®):r >S (i.e. aggr

S) x T S) has the following properties:

(
aggr(,®(=]) = S(«)

aggr(,)(z++y) = aggr(S,4)(«) D aggr(f, D)(y), ,y ET.

82

ADJUNCTIONS AND DATA COLLECTIONS

an 2.3. A zero-element data collection C is a parametrized abstract data

type (with type parameter T)

C(T) = < T, [}, r), ++, aggr>

where
<T, r], +, aEEr> is a weak data collection;

[is the empty collection and

VrET z+[]=[+z = c. (3)

if f: T S and

:SxS>S is a binary operation with neutral element u, then aggr(f, ®)

aggr is the aggregation operator defined as follows:

TS (i.e. aggr : (T S) xT S) which verifies (1), (2) and

ager(f, ®)0) = u. (4)

Definition 2.4. A strong data collection is a zero-element data collection such that

the concatenation is associative, that is

Vo,y,z ET (+y)++z = r+(y++2). 5)

The definition of strong data collection requires <T, +,]> be a monoid. A

good model for strong collections is the free monoid over T (directly applicable to lists).

The notion of strong collection is similar to monoid collection defined in [9, 10, 11], but

there the approach is not categorical.

emark 2.5. Each strong data collection is also a zero-element data collection; each

2ero-element data collection is also a weak data collection.

the sequel (x1, ... , z,l will denote the finite collection having the elements

Some data collections properties from 4 are expressed using concate

nation:

permutability - a data collection type is permutable if

X+y =y ++x

pucate elimination - a data collection type eliminates duplication it ttis

idempotent, that is
X+x = x

83

R. TRÎMBITAS

iminates null ll value elimination a zero-element data collection type eliminat

values if

x ++l=x.
Remark 2.6. Each zero-element data collection elimines null-values.

3. Data collections through adjunctions

Let T be the category of types (whose morphisms are usual functions), A an

arbitrary category and < F,U,7,6 > an adjunction where U: A > T, F :T +A

are functors such that F U, and 7 and e are the unit and respectively the counit d
the adjunction. Let us suppose A is a category of sets with structure having at least
one binary operation. Let U:A > T be the forgetful functor. It has a left adjoint
F:T+ A. If Te ObT then F(T) is the free-algebra generated by T.

Theorem 3.1. If U: A T is the forgetful functor and F is his left adjoint, then the

adjunction < F,U,7, e > determines a weak data collection.

Proof. If F 1 U then there exist 7: idT »UF (the unit of the adjunction) such
that VX E ObT, YY E ObT, Vf: X UY f# E Homa(F(X), Y) such that the
following diagram commutes

X UF(X)

U)

U(Y)
(sec (8, 14, 13).

For each Te 06T, F(T) is the free-algebra with one binary operatlo 8 by T. We shall take T = UF(T), and the concatenation will be the binary o
operation

erated

over F(T). The singleton collection will be given by the unit of adjuncto
n, that s

Yr E T [r] = r{»).
The aggregation is defined as follows: for f: X U(Y) we have

aggr(f, ¬») = f#.
Since f# E HomA we obtain

S(++y) = s*(7) f*(y)
84

ADJUNCTIONS AND DATA COLLKCTIONs

that is (2).

The commutativity of diagram (6) implies for r EX

(Us*) o nx)(r) = U(T*((=]) = f*(«}) = f(a)

that is (1).

Example 3.2. If A is the category of sets with one binary operation (subject to no

restrictions) and the arrows are such binary algebra homomorphisms we obtain binary

labelled trees.

An ordered binary rooted tree (OBRT) is a binary rooted tree which has an addi-

tional linear order structure (referred to as left/right) on each set of siblings. An X-labelled

OBRT (LOBRT/X) is an OBRT together with a function from the set of terminal nodes

to X. A free algebra F(X) expression has the usual representation as a binary tree. For

example (7y)z is represented in figure 1.

The concatenation of two trees ti and t2 (or of two expressions) is the binary tree

FIGURE 1. Expression

having t as left subtree and ta as right subtree.

f A is a subcategory of the category Mon of monoids we get an analogous of

Theorem 1 for strong collections.

1heorem 3.3. fA is a subcategory of Mon, U: A-T is the forgetful functor and F

B las left adjoint, then the adjunction< F, U, 7,¬ > determines a strong data collection.

Proof. It is a variant of theorem 3.1 proof. The unique morphism f# from diagran

&monoid-homomorphism and for 7' E 0bT, F(T) is the free monoid over T. Since

is a monoid we obtain (3) and (5); the commutativity of (6) implies (2),
and monoid-homomorphism implies (1) and (4).
Theorem 3.4. If Bu is the category of algebras with one binary operation and neutral

<P.U,T ,7,Edetermines a ero-element data collection.

: Bu >T is the forgetful functor and F is his left adjoint, ihen the adjunction

85

R. TRÎMBI�A^

The proof is analogous to that of theorem 3.3.

Example 3.5. Let add to collections from example 3.2 the empty tree (having no node

If z is the empty tree, the concatenation is extended as follows:

24+t = ttz =t

for each tree t.

Let (B,G, u) be an algebra with a binary operation , neutral element u and

f:A B. The aggregation is extended as follows

aggr(f,)z) = u.

4. Algebraic properties of aggregation

Theorem 4.1. Iff: X -+U(Y) then the follouwing identity holds
ager(,) = 6y o F() (7)

Proof. Applying F to (6) we have

Fnx) FUF(X) F(X)

FUS*) (8) F)

FUY)
The naturality of e gives us

FUS FU(Y) FUF(X)-

(9 EF(X EY

F(X)-
f#

that is,

6y o F) = ey o FU(f*) o F(nx) (from(8)
= oe F(x) o F(7x) (from(9))

(F o F, id) 0

Remark 4.2. Theorem 4.1 also holds for strong collections.

86

ADJUNCTIONS AND DATA COLLECTIONS

Proposition
4.3. The following holds

aggr(7, ++) = idp() (10)

Proof. From theorem 4.1 and adjunction we have

aggr(7, ++) = ¬r(r) o F(r) = idpqr). 0

Remark 4.4. The identity (10) also holds for strong collections.

Proposition 4.5. f h E Homa(T, S) twhere T = (T,®) and S = (S, @) are algebras

eith one binary operation, then for each f: A-U(T) we have

ho aggr(f,) = aggr{hof,®) (11)

Proof. From theorem 4.1 we have

aggr(f, ®) = er o FS)

aggr(UhoÍ,8) = es o F{Uh o S)

and

hoero F(f = es o FU(h) o F(S (naturality of s)

= Es o F(U(h) o f) (F functor)

= aggr(Uh of,8) (12)

aggr(Uh o f,8),

since Uh = h. 0.

Proposition 4.7. If g: A > B and f: BC where (C, 9) is an algebra with one

enark 4.6. Formula 11 also holds for zero-element and strong data collections. Rem

binary operation then

(13) aggr(S,®) o F(g) = aggr(f o 9,9)

Proo 00. Fron theorem 4.1, because F is a functor we have

ggr(S,9)o F(g) = ec o F() o F(9)

= ec oF(fog)

aggr(f o g, D). 0

87

R. TRÎMBITAS

5. The importance of aggregation

4 is called
for database querN

), (10),(1),

The aggregation operator first appeard in John Backus' article [31. Im

pump; in (5] aggr. ln |18) appears as told and is the basic operator fo

and optimization. Its importance is that aggregation axioms and identities (71

of relationa
(13) can be used for query optimization purpose. Also, the usual operators o

algebra ([17, 16, 1]) can be expressed by aggregation as follows.

P1. Collapse. If we have a data collection type

C= (r, [. [z], +, aggr)

where r' is a collection of r-type collections then the collapsing can be expressed as

collapse() = aggr(id,+\7).

P2. Selection. If p is a predicate, we have for strong collections

p) = aEgr(Sp, ++)

where fp= Ar.if p(z) then [a] else [].
P3. Map or apply-to-all.

map(f, «) = aggr(f, ++)(7).

Remark 5.1. Map is intimately related to the free functor and adjunction. In fact
may write

nap(f,.) = Ff).

P4. Project.

projecta,1,.. ,ant) = mapP(A{41= T1,... , an = Tny.j
a1 *1, . . . , Gn = tnj, T).

P5. Join. We introduce

filtermaplp. f, r) = a,(map(f, z)
We have

join(rs, ys, f,g, k) = map(b, rs)
88

ADJUNCTIONS AND DATA cOLLECTIONS

where

Ar.filtermap(Ay.fS(r) = g(v), h(r, v), ys).
p6. Powerset. If C(7) is the set-type collection over T, then the set of all sets

Over T (7 finite) can be expressed by:

power C(T) > C(C(T))

power([))= [0]
power(add(y, X)) = power(X)++ map(h) (power (X))

where h(c) = add(s, C) and add(v, C) = [u]++C, y ¬ T, ce C(T).
The generalization of this construction for other collection types is easy.

Other operations. The following operations may be expressed through aggrega-
tion:

set membership

e EX = aggr(f, V)(s) where f = Az.(z = e);

set difference

z\y = aggr(f,U)(z) where f = Az.if-(: E y) then [z] else [];

set intersectiona

z\y= aggr(f,U)(7) where f = Az.if (z ¬ v) then [=] else [];

quantifiers

(a.pr))() = aggr(f,A(U)

(3x.p(r)(u) = aggr(f.v)(u) where f = Az.p(z).
6. Applications

e n hnd again classical data collection types taking various target categories
for F functor.

xample 6.1. Let A be the categ
Exa

tegories of algebras with one binary operation. We tain
he data collection type from example 3.2. D
the

he next examples are on
The strong data collections.

89

R. TRiMBI�A^

ng neutral Example 6.2. If A is the category of algebras with one binary operation ha.

element we obtain the data collection type from example 3.5. 0

data
Example 6.3. If A = Mon, where Mon is the category of monoids we obtain 1:

st

collection types.

(apply-

I M E OBT, then F(M) is the free-monoid generated by M (the set of lists hat.

M-type elements), and for f E HomT, F(S) applies f to each element of the 1.
to-all or LlISP mapcar function). In fact F is the free-functor, and his right adjoint It :.

1aving
ist

is
the forgetful functor.

Ifr is the list l, ... , t,] and f:X ->Y, where (Y, B) is a monoid, then

aggr(f, ®)(=) = f(*i) ® ...f*.).

The concatenation is the usual list concatenation operation, the empty collection is the
empty list, and the single-element collection is the one-element list. 0

Example 6.4. If A= CMon, where CMon is the category of commutative monoids, we

obtain the multiset (bag) data collection types. The empty collection is the empty multiset,
and the concatenation is the multiset union (that is, the number of occurrences of an

element is the number of occurrences in the first multiset plus the number of occurrences

in the second).

Ifr is the multiset (1, ...

, tn with X-type elements and f: X + Y, where
(Y,S) is a commutative monoid, then

aggr(f, 9)() = f(zi)®... ®flz,). D

Example 6.5. If A is the category CUSL of upper complete semilattices we obtain s*

data collection types. The empty collection is the empty set, the singleton collections a singleton sets, and the concatenation is the usual union.
f1 ,n} is a set with X-type elements, f : X +Y, where (Y, V) is an up complete semilattice then

agg(f, V)() = f(zi) V... v f(z.) D

Example 6.6. If A is the category of monoids with one binary idempotent opera
ration,

then we obtain oset type data collections (lists without duplicates). The empy
and

singleton collection are the sane as for ordinary lists, but the definition of concatena
nation

is z+ty = rU(y-z) where y-z is the list of elements in y, but not in x. 0

90

ADJUNCTIONS AND DATA COLLECTIONS

ample 6.7. If A is the category of ordered idempotent monoids we obtain sorted

co ns The concatenation is list merging. A variant of these collection type parame

rined by a function fwhose range has a partial order "S given by z y f(c) < f(u).
and called sorted|f| appear in [10 and [11]. 0

Remark 6.8. Some classical aggregation operations for databases, such as count or sum

are exception from the frame of example 6.2. They could be defined as count() =

aggr(f,+), where S(y) = 1, and sum(z)= aggr(id, +)

We have

count({2}) =1= count({2} u {2}) # count({2}) + count({2}) = 2

sum(12}) =2= sum({2} u{2}) # sum({2}) + sum({2}) = 4

For these cases f is not a homomorphism of complete upper semilattices.

There is another way to define aggregation operators, having theorem 4.1 as start-

ing point. If f: T+ S, :SxS S is a binary operation and |F1, -. , TnE F(T) =T

we define

es(l#1, , nl) = #i ..

The definition of aggregation operator is now

aggr(f,):TS, aggr(S, ®) = es o F(S)

We shall call this operator generalized aggregation operator. In fact, this is the classical

E8egation operator as defined in Functional Programming. This operator will have the

property (2) or (4) only if f: T > S is a homomorphism of appropriate algebras.

ernatively, the aggregation operator can be seen as a mapping from a colection

F], +, aggr> to a binary operation algebra (S, #). It will have the desired

perties if the category which has the algebra (5, e) as object is a subcategory ot the

responding to the collection type. This property is called well-definedness and

aled in [9, 10, 11, 61, but the wav of expression is not categorical. For sum and

(+) is not an upper complete semilattice, but a commutative
monoid. Thus sum

,

will be well-defined for lists and multisets and ill-defined for sets. Adjunction

leads to well-definedness.

91

R. TRÎMBITA^

References

1 S. Abiteboul, R. Hull, V. Vianu - Foundations of Databases, Draft book, 1994.

3/81
21 M. P. Atkinson, P. W. Trinder, D. A. Watt - Bulk Type Constructor, Technical Report. Ptn

1993.

31 John Backus Can programming be liberated from the von Neumann style? A functional
and its algebra of programs, CACM 21(8), pp. 613-641, 1978.

(4] Catriel Beeri, Yoram Kornatzky Algebraic Optimization of Object-Oriented Query Langias. Report 91-6, Hebrew University of Jerusalem, Israel, 1991.
5 Catriel Beeri, Tova Milo Functional and predicative programming in 0ODB's, PODS 99, 19o 1992. 6 P. Buneman, S. Naqvi, V. Tannen, L. Wong - Principles of programming with complex objects and collectin types, TCS no. 1, pp. 1-46, 1995.

Michael Barr, Charles Wells Toposes, Triples and Theories, Springer Verlag, Berlin, Heildelberz Tokyo, 1985.

[S] Michael Barr, Charles Wells - Category Theory for Computing Science, Prentice-Hall, 1990. 9 L. Fegaras A Uniform Calculus for Collection Types, Technical Report No. CS/E 94-030, OGI December, 1994.

[10 L. Fegaras, D. Maier Towards an Effective Calculus for Object-Oriented Query Languages, ACM SIGMOD International Conference on Management of Data, San-Jose, May, 1995. [11 L. Fegaras, D. Maier An Algebraic Framework for Physical OODB Design, 5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995.
[12] Joseph A. Goguen A categorical manifesto, Math. Struct. in Comp. Science, vol. 1, pp. 49-6, 1991.

i

[13] Saunders MacLane Categories for the Working Mathematicians, Springer-Verlag, 1971. 14 Benjamin C. Pierce A Taste of Category Theory for Computer Scientist, Research Report CM CS-88-203, Carnegie-Mellon University, Pittsburgh, 1988.
[15 J. W. Schmidt - Some high level language constructs for data of type relation. ACM Transactio on Database Systems 2(3), pp. 247-261, 1977.
[16) J. D. Ullman Principles of Database Systems, Computer Science Press, 1982. [17 J. D. Ullman - Principles of Database and Knowledge-Base Systems, Computer Science Press 18) Bennet Vance Towards an Object-Oriented Query Algebra, Technical Report CS/E 91-006, Graduate Institute, 1991

988.

Oregon

"BABES-BoLYAl" UNiVERSITY, FacULrY Or MATHEMATIcs AND CoMPUTER SciENCB,
RO

3400 CLUJ-NAPOCA, RoMANIA

E-mail address: tradu@cs.ubbcluj.ro

92

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

