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Abstract. We introduce data collections through adjoints. Weak, zero-element and 
strong data collection types and aggregation operators are introduced. Ones prove that 

adioints lead to data collections. Their properies are studied and we prove some algebraic 

Droperties useful to database query optimization. Thus we find again classical colection 

types: lists, trees, sets. 

1. Introduction 

Data collections play a central role in Database Theory. A database programming 
language (DBPL) can model application domains most naturally if it has several collection 

(bulk) types, e.g., lists, sets trees and so on. The first demonstration that a collection 

type could be accommodated satisfactorily in a strongly typed programming language 
was Pascal-R [15]. The collection type concept supports two essential activities. First, it 
allows regularity in structure to be described. Second, it supports powerful and succinct 

notations for computing with such regular structures. The requirements for collection 

ata types are summarized and argued about in 2. A type system for collections tends 
tO be rich and complex, since constructs must be provided to declare, construct, inspect 
aud update instances of each collection type. One needs to control the complexity of such 

ypes. We think Category Theory is a possible background to describe regularities, de-

veloping algebra for collecti types and improving efficiency.

P systerns by exploiting operations and properties common to a variety of collection 

paper tries to introduce definitions for data collections and study and model 

8 4joints. We shall show how data collections can be modelled through ad- 
them using 

Junctions and how adju " ajunctions lead to collection operators whose algebraic properties are 

operties may be used for query 

1991 CR ategories and Descriptors. H.2.1 [Database Management!: Logical Design - data models; H.2.3 [Database 

studied. These prop 
optiinization. 

eceived by the editore: October 20, 1996. Mathematics Subject lassification. 18A40, 68P15. Management}: Languag
guages data manipulation languages, query languages. 
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2. Basic Notions 

In 4] data collections are defined as follows: 

urith type pa- Definition 2.1. A data collection is a parametrized abstract data type (uith 

rameter T) of type CT) with the following operations: 

. A family of data constructors C": ThC(T) with the arity n, for each n 

.Functions over data collections of type C(T). 

Observers -

(a) selectors: functions from data collections of type C(T) to type T; 

(6) predicates over C(T). 

The algebra of the data collections, that is the semantics of the data constructors and other 

operations, is defined by a set of first-order Horn clause arioms over the data constructors 

functions and observers. 

We shall use other definitions for data collections, and our approach will be cate 

gorical. For notions of Category Theory the reader may consult [7, 8, 14]. Also the paper 

12 illustrates how Category Theory notions and constructions can be systematically used 

in Computer Science. 

Definition 2.2. A weak data collection C is a parametrized abstract data type (u1 

type parameter T) 

C(T) = << T, (#], +, aggr 

where 

T is the set of data collections over T; 

c] is the singleton (single element) collection; 

+T x T T is the concatenation operator of two collections; 

aggr is the aggregation operator defined as follows: ff: T + S and 

: SxS+S is a binary operation, then aggr(/, ®):r >S (i.e. aggr 

S) x T S) has the following properties: 

( 
aggr(,®(=]) = S(«) 

aggr(, )(z++y) = aggr(S,4)(«) D aggr(f, D)(y), ,y ET. 
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an 2.3. A zero-element data collection C is a parametrized abstract data 

type (with type parameter T) 

C(T) = < T, [}, r), ++, aggr> 

where 
<T, r], +, aEEr> is a weak data collection; 

[ is the empty collection and 

VrET z+[]=[+z = c. (3) 

if f: T S and 

:SxS>S is a binary operation with neutral element u, then aggr(f, ®) 

aggr is the aggregation operator defined as follows: 

TS (i.e. aggr : (T S) xT S) which verifies (1), (2) and 

ager(f, ®)0) = u. (4) 

Definition 2.4. A strong data collection is a zero-element data collection such that 

the concatenation is associative, that is 

Vo,y,z ET (+y)++z = r+(y++2). 5) 

The definition of strong data collection requires <T, +, ]> be a monoid. A 

good model for strong collections is the free monoid over T (directly applicable to lists). 

The notion of strong collection is similar to monoid collection defined in [9, 10, 11], but 

there the approach is not categorical. 

emark 2.5. Each strong data collection is also a zero-element data collection; each 

2ero-element data collection is also a weak data collection. 

the sequel (x1, ... , z,l will denote the finite collection having the elements 

Some data collections properties from 4 are expressed using concate 

nation: 

permutability - a data collection type is permutable if 

X+y =y ++x 

pucate elimination - a data collection type eliminates duplication it ttis 

idempotent, that is 
X+x = x 
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iminates null ll value elimination a zero-element data collection type eliminat 

values if 

x ++l=x. 
Remark 2.6. Each zero-element data collection elimines null-values. 

3. Data collections through adjunctions 

Let T be the category of types (whose morphisms are usual functions), A an 

arbitrary category and < F,U,7,6 > an adjunction where U: A > T, F :T +A 

are functors such that F U, and 7 and e are the unit and respectively the counit d 
the adjunction. Let us suppose A is a category of sets with structure having at least 
one binary operation. Let U:A > T be the forgetful functor. It has a left adjoint 
F:T+ A. If Te ObT then F(T) is the free-algebra generated by T. 

Theorem 3.1. If U: A T is the forgetful functor and F is his left adjoint, then the 

adjunction < F,U,7, e > determines a weak data collection. 

Proof. If F 1 U then there exist 7: idT »UF (the unit of the adjunction) such
that VX E ObT, YY E ObT, Vf: X UY f# E Homa(F(X), Y) such that the 
following diagram commutes 

X UF(X) 

U) 

U(Y) 
(sec (8, 14, 13). 

For each Te 06T, F(T) is the free-algebra with one binary operatlo 8 by T. We shall take T = UF(T), and the concatenation will be the binary o 
operation

erated 

over F(T). The singleton collection will be given by the unit of adjuncto 
n, that s 

Yr E T [r] = r{»). 
The aggregation is defined as follows: for f: X U(Y) we have 

aggr(f, ¬») = f#. 
Since f# E HomA we obtain 

S(++y) = s*(7) f*(y) 
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that is (2). 

The commutativity of diagram (6) implies for r EX 

(Us*) o nx)(r) = U(T*((=]) = f*(«}) = f(a) 

that is (1). 

Example 3.2. If A is the category of sets with one binary operation (subject to no 

restrictions) and the arrows are such binary algebra homomorphisms we obtain binary 

labelled trees. 

An ordered binary rooted tree (OBRT) is a binary rooted tree which has an addi-

tional linear order structure (referred to as left/right) on each set of siblings. An X-labelled 

OBRT (LOBRT/X) is an OBRT together with a function from the set of terminal nodes 

to X. A free algebra F(X) expression has the usual representation as a binary tree. For 

example (7y)z is represented in figure 1. 

The concatenation of two trees ti and t2 (or of two expressions) is the binary tree 

FIGURE 1. Expression 

having t as left subtree and ta as right subtree. 

f A is a subcategory of the category Mon of monoids we get an analogous of 

Theorem 1 for strong collections. 

1heorem 3.3. fA is a subcategory of Mon, U: A-T is the forgetful functor and F 

B las left adjoint, then the adjunction< F, U, 7,¬ > determines a strong data collection. 

Proof. It is a variant of theorem 3.1 proof. The unique morphism f# from diagran 

&monoid-homomorphism and for 7' E 0bT, F(T) is the free monoid over T. Since 

is a monoid we obtain (3) and (5); the commutativity of (6) implies (2), 
and monoid-homomorphism implies (1) and (4). 
Theorem 3.4. If Bu is the category of algebras with one binary operation and neutral 

<P.U,T ,7,Edetermines a ero-element data collection. 

: Bu >T is the forgetful functor and F is his left adjoint, ihen the adjunction 
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The proof is analogous to that of theorem 3.3. 

Example 3.5. Let add to collections from example 3.2 the empty tree (having no node 

If z is the empty tree, the concatenation is extended as follows: 

24+t = ttz =t 

for each tree t. 

Let (B,G, u) be an algebra with a binary operation , neutral element u and 

f:A B. The aggregation is extended as follows 

aggr(f, )z) = u. 

4. Algebraic properties of aggregation 

Theorem 4.1. Iff: X -+U(Y) then the follouwing identity holds 
ager(,) = 6y o F() (7) 

Proof. Applying F to (6) we have 

Fnx) FUF(X) F(X) 

FUS*) (8) F) 

FUY) 
The naturality of e gives us 

FUS FU(Y) FUF(X)- 

(9 EF(X EY 

F(X)-
f# 

that is, 

6y o F) = ey o FU(f*) o F(nx) (from(8) 
= oe F(x) o F(7x) (from(9)) 

(F o F, id) 0 

Remark 4.2. Theorem 4.1 also holds for strong collections. 
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Proposition 
4.3. The following holds 

aggr(7, ++) = idp() (10) 

Proof. From theorem 4.1 and adjunction we have 

aggr(7, ++) = ¬r(r) o F(r) = idpqr). 0 

Remark 4.4. The identity (10) also holds for strong collections. 

Proposition 4.5. f h E Homa(T, S) twhere T = (T,®) and S = (S, @) are algebras 

eith one binary operation, then for each f: A-U(T) we have 

ho aggr(f, ) = aggr{hof,®) (11) 

Proof. From theorem 4.1 we have 

aggr(f, ®) = er o FS) 

aggr(UhoÍ,8) = es o F{Uh o S) 

and 

hoero F(f = es o FU(h) o F(S (naturality of s) 

= Es o F(U(h) o f) (F functor) 

= aggr(Uh of,8) (12) 

aggr(Uh o f,8), 

since Uh = h. 0. 

Proposition 4.7. If g: A > B and f: BC where (C, 9) is an algebra with one 

enark 4.6. Formula 11 also holds for zero-element and strong data collections. Rem 

binary operation then 

(13) aggr(S,®) o F(g) = aggr(f o 9,9) 

Proo 00. Fron theorem 4.1, because F is a functor we have 

ggr(S,9)o F(g) = ec o F() o F(9) 

= ec oF(fog) 

aggr(f o g, D). 0 
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5. The importance of aggregation 

4 is called 
for database querN 

), (10),(1), 

The aggregation operator first appeard in John Backus' article [31. Im 

pump; in (5] aggr. ln |18) appears as told and is the basic operator fo 

and optimization. Its importance is that aggregation axioms and identities (71 

of relationa 
(13) can be used for query optimization purpose. Also, the usual operators o 

algebra ( [17, 16, 1]) can be expressed by aggregation as follows. 

P1. Collapse. If we have a data collection type 

C= (r, [. [z], +, aggr) 

where r' is a collection of r-type collections then the collapsing can be expressed as 

collapse( ) = aggr(id,+\7). 

P2. Selection. If p is a predicate, we have for strong collections 

p) = aEgr(Sp, ++) 

where fp= Ar.if p(z) then [a] else []. 
P3. Map or apply-to-all. 

map(f, «) = aggr(f, ++)(7). 

Remark 5.1. Map is intimately related to the free functor and adjunction. In fact 
may write 

nap(f,.) = Ff). 

P4. Project. 

projecta,1,.. ,ant) = mapP(A{41= T1,... , an = Tny.j 
a1 *1, . . . , Gn = tnj, T). 

P5. Join. We introduce 

filtermaplp. f, r) = a,(map(f, z) 
We have 

join(rs, ys, f,g, k) = map(b, rs) 
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where 

Ar.filtermap(Ay.fS(r) = g(v), h(r, v), ys). 
p6. Powerset. If C(7) is the set-type collection over T, then the set of all sets 

Over T (7 finite) can be expressed by: 

power C(T) > C(C(T)) 

power([))= [0] 
power(add(y, X)) = power(X)++ map(h) (power (X)) 

where h(c) = add(s, C) and add(v, C) = [u]++C, y ¬ T, ce C(T). 
The generalization of this construction for other collection types is easy. 

Other operations. The following operations may be expressed through aggrega- 
tion: 

set membership 

e EX = aggr(f, V)(s) where f = Az.(z = e); 

set difference 

z\y = aggr(f,U)(z) where f = Az.if-(: E y) then [z] else []; 

set intersectiona 

z\y= aggr(f,U)(7) where f = Az.if (z ¬ v) then [=] else []; 

quantifiers 

(a.pr))() = aggr(f,A(U) 

(3x.p(r)(u) = aggr(f.v)(u) where f = Az.p(z). 
6. Applications 

e n hnd again classical data collection types taking various target categories 
for F functor. 

xample 6.1. Let A be the categ 
Exa 

tegories of algebras with one binary operation. We tain 
he data collection type from example 3.2. D 
the 

he next examples are on 
The strong data collections. 
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ng neutral Example 6.2. If A is the category of algebras with one binary operation ha. 

element we obtain the data collection type from example 3.5. 0 

data 
Example 6.3. If A = Mon, where Mon is the category of monoids we obtain 1: 

st 

collection types. 

(apply- 

I M E OBT, then F(M) is the free-monoid generated by M (the set of lists hat. 

M-type elements), and for f E HomT, F(S) applies f to each element of the 1. 
to-all or LlISP mapcar function). In fact F is the free-functor, and his right adjoint It :. 

1aving 
ist 

is 
the forgetful functor. 

Ifr is the list l, ... , t,] and f:X ->Y, where (Y, B) is a monoid, then 

aggr(f, ®)(=) = f(*i) ® ...f*.). 

The concatenation is the usual list concatenation operation, the empty collection is the 
empty list, and the single-element collection is the one-element list. 0 

Example 6.4. If A= CMon, where CMon is the category of commutative monoids, we 

obtain the multiset (bag) data collection types. The empty collection is the empty multiset, 
and the concatenation is the multiset union (that is, the number of occurrences of an 

element is the number of occurrences in the first multiset plus the number of occurrences 

in the second). 

Ifr is the multiset (1, ... 

, tn with X-type elements and f: X + Y, where 
(Y,S) is a commutative monoid, then 

aggr(f, 9)() = f(zi)®... ®flz,). D 

Example 6.5. If A is the category CUSL of upper complete semilattices we obtain s* 

data collection types. The empty collection is the empty set, the singleton collections a singleton sets, and the concatenation is the usual union. 
f1 ,n} is a set with X-type elements, f : X +Y, where (Y, V) is an up complete semilattice then 

agg(f, V)() = f(zi) V... v f(z.) D 

Example 6.6. If A is the category of monoids with one binary idempotent opera 
ration,

then we obtain oset type data collections (lists without duplicates). The empy 
and 

singleton collection are the sane as for ordinary lists, but the definition of concatena 
nation 

is z+ty = rU(y-z) where y-z is the list of elements in y, but not in x. 0 
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ample 6.7. If A is the category of ordered idempotent monoids we obtain sorted 

co ns The concatenation is list merging. A variant of these collection type parame 

rined by a function fwhose range has a partial order "S given by z y f(c) < f(u). 
and called sorted|f| appear in [10 and [11]. 0 

Remark 6.8. Some classical aggregation operations for databases, such as count or sum 

are exception from the frame of example 6.2. They could be defined as count() = 

aggr(f,+), where S(y) = 1, and sum(z)= aggr(id, +) 

We have 

count({2}) =1= count({2} u {2}) # count({2}) + count({2}) = 2 

sum(12}) =2= sum({2} u{2}) # sum({2}) + sum({2}) = 4 

For these cases f is not a homomorphism of complete upper semilattices. 

There is another way to define aggregation operators, having theorem 4.1 as start- 

ing point. If f: T+ S, :SxS S is a binary operation and |F1, -. , TnE F(T) =T 

we define 

es(l#1, , nl) = #i .. 

The definition of aggregation operator is now 

aggr(f, ):TS, aggr(S, ®) = es o F(S) 

We shall call this operator generalized aggregation operator. In fact, this is the classical 

E8egation operator as defined in Functional Programming. This operator will have the 

property (2) or (4) only if f: T > S is a homomorphism of appropriate algebras. 

ernatively, the aggregation operator can be seen as a mapping from a colection 

F], +, aggr> to a binary operation algebra (S, #). It will have the desired 

perties if the category which has the algebra (5, e) as object is a subcategory ot the 

responding to the collection type. This property is called well-definedness and 

aled in [9, 10, 11, 61, but the wav of expression is not categorical. For sum and 

(+) is not an upper complete semilattice, but a commutative 
monoid. Thus sum 

, 

will be well-defined for lists and multisets and ill-defined for sets. Adjunction 

leads to well-definedness. 
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