
Volume I, Number1, March 1990 
STUDIA 

UNIV. 
"BABE�-BOLYAI INFORMATICA, 

COl OMPILER FOR AN ALGEBRAIC SPECIFICATION LANGUAGE 

D. nozGA, D. CHIOREAN, AND I. OBER 

Abstract. This paper presents an algebrac specification language called uFOOPS, the 

maiu features of a compiler that we constructed for translating the juFOOPS algebraic 

eneciications in C++ and Eiffel and the conclusions resulted using this language and 

compiler in specifying some applications. The paper is structured in four sections.

The first section mentions the problem leading to our idea: the join of formal 

and heuristic object-oriented analysis and design methods. For this end to be reached 

we should start with the automatic code generation from algebraic specifieations. 

In the second section, named The specification language uFOOPS, we describe 

our specification language. We have chosen to mention both the main FOOPS concepts 

retained in our language and the restrictions that we imposed over the specifications 

in order to be accepted by our compiler. We relate our implementation with the one 

mentioned in j8. 

The third section, named The Compiler, consists of two parts. The first one 

mentions the semantic checking performed by the compiler. We give extra information 

only for the checkings that modify the standard. The second one presents what exactly 

is generated from the specifications, whith an example (the specification of lists and their 

translation in C++). 
In the last section we present the conclusions drawn from using the compiler: 

the quality of the generated code, the extent in which the language can be used for 

specifying real applications. We also mention two different problems that we tryed and 

succeded to solve using our language (the monitorisation of a Home Heating System and 

a clasic backtracking algorithm), and the future work directions. 

eceived by the editors: September 29, 1996. 

10 Eematics Subject Classification. 68Q45, 68Q52, 68Q60, 68Q65, 68N20. 
1991 CR 

Progranming ores und Descriptors. D.1.1 [Programing Techniques]: Applicative (Functional) Programmingi .l. 

ect-oriented Programming; D.2.4 (Software Engineering): Program Verification - assertion checkers 

rectness proofs, validation, 

specification techniques. .3.1 |Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Frograms 

57 



D. BOZGA, D. CHIOREAN, 
AND I. OBER 

1. Introduction 

t in- 
The development of certain object-oriented analysis and design methods that 

tegrate formal techniques into heuristic methods enjoys an increasing attention from 

Each of these two kinds of methods has its ad vantages and disadvantages, TH. 

iles 

research community nowadays. 

The 

diagrams resulted from applying heuristic methods are self-evident and intuitive, whil. 

in 
the formal specifications offer support for rigorous description and behavioral checking in 

an algebraic framework. One of the problems still unsolved consists in combining these 

two methods in order to obtain a maximum benefit. 

Automated code generation and behavioral properties checking are two fields where 

formal methods are with no doubt superior, and the chances that they will be integrated 

in heuristic methods are good. 

In the following sections we will present the choices that we made and the results 

that we achieved in constructing a code generator for an algebraic specification language. 

For the beginning our purpose was to define or find a language as simple as it ca be without 

loosing its power of expression, and which uses concepts that have a direct mapping in 

Object-Oriented Languages (00L) 

2. The specification language uFOOPS 

In defining the specification language our aims were to allowa natural expression 

of the information obtained during the analysis of a problem as well as to offer support 

for formalreasoning and automated code generation. After studying a large set of existen 

specification languages, we decided to go for a subset of FOOPS (Functional and Objec 

Oriented Programming System) called uFOOPS that partially satisfies our goals. 

FOOPS is a very high level object-oriented specification language with an exe 

cutable subset. It has Abstract Data Types (ADTs), classes, objects, overloading, ly 

Tmorphism, inheritance and many other facilities non-existent in nowadays programmins 
r languages such as paranetrised nodules, module interconnection, mixfix syntax for ope 

ators. FOOPS was developed as an extension of OBJ, a functional specification language. 

it It is the result of unifying Functional and Object-Oriented Programming (oOP), and d 

was first described in [5]. A conplete description of the language can be found in 8|. 

58 



A COMPILER FOR AN ALGEBRAIC SPECIPICATION LANGUAGE 

we will present some of the concepts used by FOOPS 
lowing paragraphs we 

ur language 
and the 

moFOOPS type system makes two important distinctions. On the one hand data 

and the restrictions that we imposed over FOOPS specifications. 
and by 

c Data are characterized by a 8tate that cannot be damaged. Numbers and re not objects. Data. 
are 

etance data elements. Objects have an internal state that may evolve with colors 
are for instance 

e inst ance a car or a CRT 18 an object, when these two concepts are merged, as 

irogramming languages, it is likely to run into confusions. As a consequence in 
in m 

nOOPS data elements are collected in sorts and objects in classes. An ADT in FOOPS 

e formed by a sort and some functions associated to it. Functions may take objects or 

data as arguments and return an object or a data element 

On the other hand classes are not modules. Object-Oriented Programming Lan- 

Lages (00L) usually consider the syntactic structure for defining a class and its asso 

ciated attributes and methods as the main programming unit. This is not the case with 

FOOPS, where the module is the main programming unit, allowing the programmer to 

define together the related classes, sorts and operations. 

Having got the distinction between sorts and classes we will need to make a dif- 

ference between the two levels of a specification: the functional and the object level. At 

each level there exist two kinds of modules: the ones that encapsulate executable code 

and the others that declare properties. The former are named modules, the latter are 

named theories (object or functional). The compiler described in this paper takes a 

uFOOPS specification and translate it in C++ or Eiffel. Theories are used for check 

ing the behavior of the described entities and for a highly flexible mechanism of module 

parametrisation, and they were not included in our purposes for the moment. 

The functional module is the main programming unit at the functional level 

Encapsulates executable code. A functional module defines one or more ADIs, 

ns1sting of data sets and operations defined using them. A data set is called a sort ana 

operations are called functions. FOOPS allows only functions in prefix notation 

notation would increase too much the difficulty of the syntax analysis process and 

erate problems at translation time due to the lack of correspondence in usua 

e absence of mixfix notation does not affect the power of expression of jukO0Ps. 

59 



D. BOZGA, 
D. 

CHIOREAN, 
AND I. OBER 

s are term 

The result generated by a 
function is described by axioms. Axiom 

axiom at 

equalities that may or may 
not be 

conditioned by a 
Boolean valued term. An . 

this level has the following 
form: 

elax <Term> = 
<Term> [if <Term>] 

by 
Following is the functional module that describes BOOLEAN values l1sed 1 

uFOOPS: var x: Boolean. 

*** The description of the behavior fnmod BOOLEAN is 
***BOOLEAN sort declaration ax Not(True()) = False() 

ax Not(False()) = "True() 

ax And(True(),x) =x. 

ax And(False(),x) = False() 

ax Or(True(),x) = True(). 

ax Or(False().x)= x. 

sort Boolean. 

** The functions defined for this sort 

fn True:->Boolean. 

fn False: ->Boolean. 

fn Not: Boolean -> Boolean. 

fn And: Boolean Boolean -> Boolean. 

fn Or: Boolean Boolean -> Boolean 

*** A BOOLEAN variable 

endf 

REMARK: From the point of view of the code generation process, functional mod- 

ules are only used to specify basic types, that are usually predefined in 00Ls. They 

are hard to implement automatedly in an 00L because of this tight connection to the 

predefined types. Thus, for sorts and functions there will have to be written manual 

implementations in the target language. Our compiler will build only the declarations for 

these entities, the actual code that would have had to be deduced from the axioms being 

ignored. Having in mind that we will use sorts only for basic types, we renounced to tne 

possibility of declaring inheritance between sorts. 
The object module is the main programming unit at the object level thae 

capsulates executable code. An object module may define one or more classes, which a 

potential collections of objects. The attributes and methods associated to a class descrio be 

the internal structure and the behavior of the objects of that class. An object module ma" 

as well contain descriptions of ADTs similar to those described above, at the fune 
ional 

modules. 

The properties of the attributes and methods are specified in terms of ioms too. 

The axioms may be conditional or unconditional and the terms involved may co 
references to functions, methods, attributes and variables. 

REMARK: Our compiler uses object level specifications in order to obtain a 
ctual

code for classes, attributes and methods in typed OOLs. Object level entities ha 
60 



natural 

correspondent 
in 00Ls 

and the signature of the methods, restrictions imposed by the standard FOOPS and the 

A COMPILER FOR AN ALGEBRAIC SPECIFICATION LANGUAGE 

00Ls and we were able to obtain efficient code for them. Of 
:1l exist some restrictions at this level concerning the forms of the axioms 

course, there still. 

Oxford 
implementation [8) too. 

Another aspect worth to be mentioned is the possibility to import modules (obiect 

nall in other modules. By using these mechanisms we can obtain module hier- functional) in other. 

hies. module importation being called module inheritance by the authors of FOOPS. 

3. The compiler 

In the following sections we will present some of the aspects considered to be 

relevant, concerning the semantic checking and the code generation (in C+4+ or Eiffel) in 

our compiler. We will use as an example the specifications for lists. 

3.1. Semantic Checking. After the syntactic analysis of the specifications, the compiler 

does some semantic validity checking concerning the issues mentioned below. We will 

describe only the changes made with respect to standard FOOPS. 

1. Module importation. A module can import other modules both at the func 

tional and the object level. Although F0OPS allows three kinds of module 

importation (protecting, extending and using), #F00PS offers support only for 

using. The other two possibilities impose restrictions over the use of the im- 

ported module, which are not hard to check but have no correspondent in usual 

O0Ls. 

2. Inheritance relationship. FOOPS allows inheritance for both classes and 

Sorts. uFOOPS offers inheritance only for classes, for sorts being considered 

unimportant. The language does not allow direct repeated inheritance. 

3. Variable declarations. 

perations signatures. We do not impose any restriction over thenames 
4. 

Orhe operations at compiling time. However, the names will not change 

"he generated code, so they should not conflict with predefined or library 

s in the target language, nor should they conflict among 
themselves. 

Ledefinitions of attributes and metho ds. For an attribute or a method, 

Indicates that that operation is redefined if it is the same one as the 

Oattribute or method name. 
Redefinitions must obey the covariance 

61 



D. BOZGA, D. CHIOREAN, AND I. OBER 

rule for parameters' type. However, when translating in C++, the n 

type change will not reflect in the generated code because of the lack of au 

rameters 
support 

for this in the target language. 

6. Type of the terms. 

are not in one 
7. Axioms. At axiom checking stage we get rid of the axioms that are not : 

y 
of the recognized forms (see next section). These forms are those accepted . 

the Oxford implementation, and they proved to be sufficient for describing the 

behavior of objects appearing in a great variety of applications. 

3.2. The code generation process. We will present in the next paragraphs what ex 
actly is generated from the object level specifications, with examples for the specification 
of lists. 

Besides the sorts INTEGER and BOOLEAN we will need the specifications for 
the classes LIST and OBJECT, shown below. The specifications are not quite identical to 
those well known by the FO0PS community (see for instance the axioms for AddHead), but the changes are small and justified. 
omod OBJECT is 

***IsEmpty 
ax IsEmpty(L)=empty(L). 

***GetHead 

class Object. 

endo 

ax GetHead(L)=head(L). 
***GetTail 

ax GetTail(L)=tail(L). 

*GetCount 

omod LIST is 

using OBJECT. 
using INTEGER. 
using BOOLEAN. 
subclass List < Object. 

cax GetCount (L)=Zero() 

if IsEmpty(L). 
ax GetCount (L)= 

Succ(GetCount (tail(L)) ** AddHead 

ax empty(AddHead(L,O))=False 0 

ax head(AddHead (L,O))=0. 

ax tail(AddHead(L,O))=L. 

*AddTail- 

List -> Object. 

List ->List. 
at empty: List -> Boolean 

at head 

at tail 

default:(True()]. at IsEmpty: List -> Boolean. 
at GetHead: List -> Object.
at GetTail: List -> List. 
at GetCount List -> Integer. me AddHead List Object -> List. me Add'Tail: List Object -> List. me RemoveHead: List ->List. 

cax AddTail (L, O)=AddHead(L,0) if IsEmpty(L). 

ax AddTail(L,O)=AddTail (tail(L),0) 
* RemoveHead- 

me Remove'Tail: List -> List. 
me RemoveAll: List -> List. 
var L List. 
var O : 0bject. 
var I Integer. 

cax head(RemoveHead (L))= 

head(tail(L)) 
if Not(lsEmpty(L)). 

cax tail(RemoveHead(L))= 

62 



A COMPILER POR AN ALGEBRAIC SPECIFICATION LANGUAGE 
tail(tail(L)) 

cax RemoveTail(L)= 
if Not(IsEmpty(L). 

cax empty(RemoveBlead(L.))= 
empty(tail(L)) 

if Not (1sEmpty(L)). 

RemoveTail(tail(L)) if And(Not(1s Empty(L)), 

Not(lsEmpty(tail(L)). RemoveAll- 
***RemoveTail Cax Remove Al(L)=RemoveHead(L); 

cax Remove Tail(L)=RemoveHead(L) 
if And (Not (IsEmpty(L), 

IsEmpty(tail (L)). 
RemoveAll(L) if Not(1sEmpty(L). 

endo 

991. The modules. "The implementation of modules can be viewed at least from two 

different perspectives 

.We may consider the module as a unit for structuring the specifications, which 

reflects only in a small measure in the generated code. This strate adopted 
for dealing with modules when generating C++ code. We used modules only 

to structure the code in files. Thus the sorts, classes and operations specified in 

one module will be declared and implemented in one file. 

We may as well consider the module as a unit for structuring the specifications 

that reflects in the generated code. The modules will be implemented by classes 

the import relationship will be implemented by the class inheritance. This 

strategy was adopted for the Eiffel code generation. 

.2.2. The Types. As we mentioned above, we did not implement the sorts and the func- 

ions, but only generated declarations for them. However, there still were some language 

dependent choices to make: 

ln C++ the sorts are automatedly implemented by the type int (which does 

mean that one cannot modify that by hand) in the file corresponding to the 

module which declared the sort. 

n Eiftel the sorts are 
implemented by classes without features that inherit the 

Class corresponding to the module in which sort was 
declared. 

Classes are implemented by classes in the target language. The memDers 

he 
inheritance at the specification 

level is implemented by inheritance in the 

age. There exist the following 
language-dependent 

differences: 

res of these classes will be the attributes and the methods described in tne sperr 

target language 63 



D. 
BOZGA, 

D. 
CHIOREAN, 

AND I. OBER 

In C++ the class 
declaration 

resides in the declaration file of bf he module in 
calculated 

which the class was 
defined. The 

implementation of the methods a 

attributes 
are in the 

implementation 
file of the module. 

ch 

In Eiffel a class inherits the class 
corresponding 

to the module in whic 
Was 

e Objects (ETO 

defined, in order to be able to use the 
functions and Entry Time Obiert. 

to use its 

declared in the module. Every parent 
class is inherited twice in order 

creation feature. 

outes, 

3.2.3. The operations. We will discuss the four kinds of operations (functions, attribute 

methods and ETOs) separately as each of them raises specific problems. 

Function declaration does not raise problems. For each function we build a func. 

tion declaration with the same name and types for parameters (C++). Special cases are 

the languages that do not have a concept of function (is Eiffel for instance). In these cases 

functions are considered features in the class corresponding to the module in which they 

were declared. 

Stored attributes are implemented by fields (instance variables) in their classes. 

Their default values (specified by the default clause) are considered when generating 

code for the constructor (creation feature) of the class. 

Derived attributes are implemented by query methods (features) in their clases, 

they return a value that depends on the state of the object but not modify that state. 

Methods are implemented by methods in the target language that mouy 

state of the object upon which they are called. They can directly modify the value 
of 

the attributes or call other methods, depending on the type of the axioms that de 
cribe 

their behavior (Direct Method Axioms/ Indirect Method Axioms). In order to 
satisty 

the semantics of the specifications, we decided to include two features for eac 
ethod 

when generating Eiffel code, one for implementation which does the job and 
ur 

the 
ns 

receptor) object, and another one for interface, which calls the former one a 
does not 

return anything. The operations for which we generate actual code (not sigua 

ures) are 

constructors, derived attributes, methods and ETOs. 

Constructors are generated based on the default values of the storea a 

For each attribute that has a default value a line is generated in the constructo 

that attribute. The creation feature in Eiffel is named make. 

onstructor to initia 

64 



A COMPILER FOR AN ALGEBRAIC SPECIFICATIoN LANGUAGE 
for derived attributes is obtained using the list of axioms attached to te. In the most general case that list may contain some conditional axioms 

each 

followed or not by an unconditional axiom (the list is made like this during the axiom processing th that follows semantic checking). For instance, if the attribute is defined by the 
following axioms (the order is important): 

cax attr(..)= <Term.1> 

if <Cond.1>. 
cax attr(...) = <Term n> 

if <Cond.n>. 

ax attr(...) = <Term.n+1>. 

then the generated code looks like this: 

if Cond1 then if Cond n then 
return Term.; 

return Term n; 

return Term.n+1; 

The code for the methods specified by DMAs will contain a list of assign- 
ments of values to attributes. For each attribute we have a list of axioms that describe 
the effect of applying the method over that describe the effect of applying the method 
Over that attribute in certain conditions. For instance, for an attribute and a method we 

Tmay have a list of axioms of the following form: 

cax at(me(...)) = <Tern.1> 

if <Cond1>. 
cax at(me(...))= <Term n> 

if <Cond n>. 

ax at(me(.)) = <Term.n+1> 

Then the generated code will look like this: 

if Cond 1 then at:= Termn; 
at Term1; else 

at:= Term_n+1; 
elseif Cond n then 

T code for the method will contain such a sequence for each attribute that has 

c. At the beginning of the method we make a copy of the object because 

we might 

a value spe 

he old values of the attributes after they were modified. This copy Is 

deallocated if it has not been used. 
ne code for the methods specified by IMAs will contain a sequence of calls 

ot other methods if the axioms are: 

65 



D. BOZGA, D. CHIOREAN, AND I. OBER 

<Termnl>; <Term.n.2>. cax meth(...)= 
<Term.1-1>;<Term.12>;.. if <Cond.n>. 

ax meth(... ) = 
Term n+1.1>; <Term.n+1.2 

if <Cond.1>. 

cax meth(...) = 

the generated code will be: 

Termn2; if Cond.1 then 

Term.11: 

return 
Term nt1-1; 
Term nt1-2; 

Term12: 

. 

return 

if Cond.n then return; 
Term n.1; 

ETOs are implemented like the functions, but they always return the same result. 
The first time we call an ETO an object is created, initialized according to the DMAsd 
the ETO and then returned. The next calls to the ETO will return the same object. 

For the lists, the C-++ code generated by the compiler is presented in Appendix 
4. Conclusions and future work 

This paper presented a compiling technique for translating a class of algebrae specifications in two typed OOLs (C++ and Eiffel). This techniques has been imple mented in a compiler for uFOOPS with versions for Windows, DOS and UNIX (PosIk} The compiler has been used to translate the example mentioned in the previous sec
on as well as other examples, some of them mentioned below. As we mentioned from the beginning, our idea was to reach to those aspects om the formal and heuristic techniques that may lead to a worthy combined approach. considered first the code generation process because it's well known the fact that withou We 

arigorous description of the behavior, the generated code is mostly signatures. 
The code generated by our compiler is eficient and is obtained in a 

time. Due to its readability it can be easily refined by hand when wanted. The examp 
presented above does not lead to any conclusions about the usawe cs 

cient and is obtained in a ver ery short 

mple 

applications. It was chosen because it is well known and the code is easy to underst 
We used uFOOPS to specify a Home Heating System. For this example we 

apiler in real 

erstand. 
results obtained from the analysis as they were presented in [21. Our 

used the [2]. Our conclusion was 'as that 66 



COMPILER FOR AN ALGEBRAIC SPECIPICATiON LANGUAGE 

nning between the entities in the heuristic model's diagrams and some of the ere is a mapping 
betwec 

there 

ulated by uFOOPS, and the translation from diagrams to specification is 
oncepts manipulated 

natural. 

1sed the language and the compiler to specity problems that contain a lower 

eof declaratives, for instance some classic algorithns. The implementation of a 

acktracking for the Queens Problem was not a hard work. 

of the directions towards which we intend to lead our work is the possibility to 

nerate specifications from the dingrams in heuristic models. We also intend to compare erate specifications from 

the results obtained this way with the results obtained by using other hybrid methods 

(like Syntropy) 
The uses that we can find for our compiler give us reasons to extend it in at 

least two directions that were neglected till now: paramctrisation and specification of 

concurrency. 

References 

R. Breu, Algebraic Specifications in Object-Oriented Programming Environments, Springer Veriag,

1992. 

2) G. Booch, Object Oriented Design with Applications, The Benjamin / Cummings Publishing Com- 

pany Inc., 1991. 

183 L.M.G. Fejs, H.B.M. Jonkers, Formal Specifcation and Design, Cambridge University Press, 1992. 

14 N.E. Pucs, Specifications Are (Preferably) Erecutable, Software Engineering Journal, Sepiember 1992. 

15 J. Goguen, J. Mesenguer, Unihyng Functional, Object-0riented and Relational Pragrumming with 

Logical Semantics, in B. Shriver and P. Wegner editors, Research Directions in Object-Oriented 

Programming, M.I.T. Press, 1987, pp.417 - 477 

9 K. Lano, H. Haughton, Object-Oriented Specification Case Studies, Prentice Hall International, 1994. 

B. Meyer, Eiffel, The Language, Prentice Hall International, 1992. 

panoti, A. Socorro, Introducing FOOPS, Technical Report, Oxford University, Research Com 
puting Laboratory 1992. 

. Droustrup, The Design and Evolution of C+t, Addison-Wesley, 1994. 

10) P. "Turlier, La comp 
Conse National des Arts et Metiers, Grenoble 1993. 

4 compilation des types abstraits algebriques du langage LOTOS8, These de doctorat, 

67 



D. BOZGA, D. CHIOREAN, AND I. OBER 

Appendix 

return (List*)0; } 

Integer List::GetCount(){
if ((this)->IsEmpty()

return::7Zero(); 

/ LIST mnodule 
interface "/ 

#ifndef LIST.h. 

#define LIST.h. 

return ((this)->tail)- >GetCount #incude "OBJECT.N" 

#include "BOOLEAN.h 
#inchde "INTEGER.h" 

classes * 

return (Integer)0; } 

yoid List:AddHead(Object" pl){ 
List tmp=new List; 
memepy(tmp,this,sizeof(List); 
empty=:False(); 
head=pl; tail=tmp;} 

void List::AddTail(Object* pl){ 
if ((this)-> IsEnpty()){ 

(this)->AddHead(pl); 

class List; 

clas List: public Objot { 
protected: 

Objet head 
List tail: Boolean empty; public: 

List(): 
virtual Boolean IsEmpty(): 
virtual Object" GetHead(); 
virtual List* Get Tail(); 
virtual Integer GetCount (); 
virtual void AddHead(Object* pl); 
virtual void AddTail(Object* pl); 
virtual void RemoveHead(); 

virtual void Remove Tail(0 
virtual void RemoveAl(); 

return;} 
(this)-> tail)->AddTail(pl);} 

void List:RemoveHead(O{ 
List* tmp=new List; 

memcpy(tmp,this,sizeof(List)); 
if (:Not((tmp)->IsEmpty ())) 

head=(tmp)->tail)->head; 
if (::Not((tmp)->IsEmpty())) 

tail=(tmp)->tail)->tail; 
if (::Not((tmp)->IsEmpty ())) 

empty=((tmp)->tail)->empty; 
delete tmpP} 

/* functions */ 

#endif 
* LIST module implementation */ 

include stdio.h> void List::RemoveTail(){ 
#include <memory.h>> if (:And(:Not ((this)->IsEmpty (0), 

(this)->tail)->IsEmpty0){ 
(this)->RemoveHead(); 
return;} 

if (::And(:Not ((this)->lsEmpty(), 
2Not{((this)->tail)->lsEmpty()} 

((this)->tail)->Remove'Tail(); 
return;} } 

#include "LIST.h" 

List:List(){ 
head=NULL; tail=NULL; 
empty=:True();} 

Boolean List:1sEmpty()0{ 
return (this)->empty 

return (Boolean )0;} 

Object List::GetHead() 
return (this)->head; 

return (Object")0;} 
List List:GetTail(){ 

return (this)->tail; 

void List:RemoveAll0{ 
if (::Not(this)->lsEmpty (0)){ 

(this)->RemoveHead(); 
(this)->RemoveAll(); 
return; } 

"BABES-B0LYAI" UNIVERSITY, REsEARCH LABORATORY ON COMPUTER 
POCA | 

ROMANIA 

E-mail address: {dorel, chiorean, iulian}Ocs.ubbcluj.ro 

68 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

