,.BABEs—BOLYA[", INFORMATICA, Volume I, Number 1, March 1996

sTUDlA UNIV.

A COMPILER FOR AN ALGEBRAIC SPECIFICATION LANGUAGE

D. BOZGA, D. CHIOREAN, AND 1. ORER

Abstract. This paper presents an algebraic specification language called pFOOPS, the
ain features of a compiler that we constructed for translating the uFOOPS algebraic
sm\'iﬁx‘alvmns in C++ and Eiffel and the conclusions resulted using this language and
compiler in specifying some applications. The paper is structured in four sections.

The first section mentions the problem leading to our idea: the join of formal
and heuristic object-oriented analysis and design methods. For this end to be reached
we should start with the automatic code generation from algebraic specifications.

In the second section, named The specification language puFOOPS, we describe
our specification language. We have chosen to- mention both the main FOOPS concepts
retained in our language and the restrictions that we imposed over the specifications
in order to be accepted by our compiler. We relate our implementation with the one
mentioned in [§]. | i

The third section, named The Compiler, consists of two parts. The first one
mentions the semantic checking performed by the compiler. We give extra information
only for the checkings that modify the standard. The second one presents what exactly
is generated from the specifications, whith an example (the specification of lists and their
translation in C++).

In the last section we present the conclusions drawn from using the compiler:
the quality of the generated code, the extent in which the language can be used for
specifying real applications. We also mention two different problems that we tryed and

succeded to solve using our language (the monitorisation of a Home Heating System and

a clasic backtracking algorithm), and the future work directions.

—_—
Mece
leceived by the editors: September 29, 1996.

1{

1:21 t:iutht‘-:matwc Subject Classification. 68Q46, 68Q52, 68Q60, 68Q68, 68N'.N- . unctional) Programming; D.1.5

[Pro CR Categories and Descriptors. D.1.1 [Programming Techniques]: Applicative (Function®
Eramn g): Program Verification =

COrrect peg, oning about Programs

. ’ ‘) assertion checkers,
18 Techniques]: Object-oriented Programming; D.2.4 [Software Engineertt
. lproofs, validation; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reas
®Cificatio techniques. |

57

D. BOZGA, D. CHIOREAN, AND 1. OBER

1. Introduction

cortain Ob_iec1,~01~icnted analysis and design methods that j;_

The development of
tegrate formal techniques into heuristic methods enjoys an Increasing attention from the

research community nowadays.

Each of these two kinds of metl 4 its advantages and disadvantages. T},

wods ha

ms resulted from applying heuristic methods are gself-evident and intuitive, whiles

specifications offer support for rigorous de

amework. One of the problems still unsolved

diagra
scription and behavioral checking ip

the formal
consists in combining these

an algebraic fr
¢ to obtain a maximum benefit.

ion and behavioral properties checking are two fields where

and the chances that they will be integrated

two methods in orde
Automated code generat

formal methods are with no doubt superior,

in heuristic methods are good.

In the following sections we will present the choices that we made and the results

that we achieved in constructing a code generator for an algebraic specification language.

For the beginning our purpose was to define or find a language as simple as it ca be without

loosing its power of expression, and which uses concepts that have a direct mapping in

Object-Oriented Languages (OOL).

2. The specification language yFOOPS

In defining the specification language our aims were to allow a natural expression
of the information obtained during the analysis of a problem as well as to offer support
for formalreasoning and automated code generation. After studying a large set of existent
specification languages, we decided to go for a subset of FOOPS (Functional and Object-
Oriented Programming System) called uFOOPS that partially satisfies our goals.

FOOPS is a very high level object-oriented specification language with an ex¢
cutable subset. It has Abstract Data Types (ADTs), classes, objects, overloading, poly-
morphism, inheritance and many other facilities non-existent in nowadays progl‘amming
languages such as parametrised modules, module interconnection, mixfix syntax for oper
ators. FOOPS was developed as an extension of OBJ; a functional specification language:
It is the result of unifying Functional and Object-Oriented Programming (OOP), and‘it

was first described in [5]. A complete description of the language can be found in 8]- In

58

A COMPILER FOR AN ALGEBRAIC SPECIFICATION LANGUA
GE

. following paragraphs we will present some of the concepts used by FOOPS and by
. anguage and the restrictions that we imposed over FOOPS specifications.

The FOOPS type system makes two important distinctions. Op the one hand data
oot objects. Data are characterized by a state that cannot be damaged. Numbers and

Jlors are for instance data elements. Objects have an internal state that may evolve with
¢ S i | ve wi

ime, for {nstance a car or a CRT is an object.
h)

) many programming languages, it is likely to run into confusions. As a consequence i
" 8€quence 1n

When these two concepts are merged, as
~dy

FOOPS data elements are collected in sorts and objects in classes. An ADT in FOOPS
.« formed by a sort and some functions associated to it. Functions may take objects or
Jata as arguments and return an object or a data element.

On the other hand classes are not modules. Object-Oriented Programming Lan-
guages (OOL) usually consider the syntactic structure for defining a class and its asso-
cated attributes and methods as the main programming unit. This is not the case with
POOPS, where the module is the main programming unit, allowing the programmer to
define together the related classes, sorts and operations.

Having got the distinction between sorts and classes we will need to make a dif-
terence between the two levels of a specification: the functional and the object level. At
each level there exist two kinds of modules: the ones that encapsulate executable code
and the others that declare properties. The former are named modules, the latter are
named theories (object or functional). The compiler described in this paper takes a
uFOOPS specification and translate it in C++ or Eiffel. Theories are used for check-
ing the behavior of the described entities and for a highly flexible mechanism of module
parametrisation, and they were not included in our purposes for the moment.

The functional module is the main programming unit at the functional level
that encapsulates executable code. A functional module defines one or more ADTs,
consisting of data sets and operations defined using them. A data set is called a sort and
the operations are called functions. pFOOPS allows only functions in prefix notation.
Mixfix notation would increase too much the difficulty of the syntax analysis process and
"ould generate problems at translation time due to the lack of correspondence in usual

' ol FOOPS.
OOLs. The absence of mixfix notation does not affect the power of expression of 4 FOO

59

D. BOZGA, D. CHIOREAN, AND L OBER

ated by 2 function 18 described by axioms. Axioms are tery,
er

_The result gen .
| not be conditione

d by a Boolean valued term.. An axiq
a ' M a
s that may or may

the following form:
(if <Term>]

equalitie

this level has

[cJax <Term> = <Term> | |
Je that describes BOOLEAN values used b

Following 18 the functional modt

yFOOPS:
: Boolean.
fmod BOOLEAN is Va:' x : Boo ez'm .
xx* BOOLEAN sort declaration #¥* The description of the behavior
sort Boolean. ax Not(True()) = False().
s+* The functions defined for this sort ax Not(False()) = True().
fo True : -> Boolean. ax And(True(),x) = X.
fn False : -> Boolean. ax And(False(),x) = False().
ax Or(True(),x) = True().

fn Not : Boolean -> Boolean.

fn And : Boolean Boolean -> Boolean.
fn Or : Boolean Boolean -> Boolean
xx+ A BOOLEAN variable

ax Or(False(),x) = x.
endf

ss, functional mod-

REMARK: From the point of view of the code generatioﬁ proce
They

ecify basic types, that are usually predefined in OOLs.
o an OOL because of this tight connection to the

have to be written manual

ules are only used to sp
are hard to implement automatedly i
predefined types. Thus, for sorts and functions there will
implementations in the target language. ,_QurA compiler will build only the declarations for
these entities, the actual code that would have had to be deduced from the axioms being
ignored. Having in mind Fhat we}:yi:l‘l use sorts only for ba,sic’ types, we renouﬁced to the
possibility of declaring inheritance between sorts. |

The object module is the main programming unit at the object Jevel that e

capsulates .
apsulates executable code. An object module may define one or more classes, which are

tentiz ; - ,
potential collections of objects. The attributes and methods associated to a class describe

the internal .
rnal structure and the behavior of the objects of that class. An object module m&

as well contain descripti Te imi
descriptions of ADTs similar to those described above, at the function?

modules.

The properties of the attri
P f the attributes and methods are specified in terms of axioms 0%

,
The axioms mae it
nay be conditione T
tional or unconditional and the terms involved may Contaiﬂ

references to functions, methods, attributes and var bl
s and variables

REMARK: Our compil s obi
ompiler uses object level specifications in order to obtain aCtual

code for classes, attributes and 1
J nethods in t
yped OOLs. Obj " a
. ject level entities have

- 2

60

A COMPILER FOR AN ALGEBRAIC SPECIFICATION LANGU
AGE

Qe orrespondent in OOLs and we were able to obtain efficient code for th of
em.

pat!
there still exist some restrictions at this level concerning the forms of th
o e axioms

courses
and the 8!

oxfor d 1mp
Another aspect worth to be mentioned is the possibility to import modules (

gnature of the methods, restrictions imposed by the standard FOOPS and th
and the

Jementation [8] too.

object

functlonal) in other modules. By using these mechanisms we can obtain module hie
r_

archies, module importation being called module inheritance by the authors of FOOPS.

3. The compiler

In the followmg sections we will present some of the aspects considered to be
relevant, concerning the semantic checking and the code generatlon (in C++ or Eiffel) in

our compiler. We will use as an example the specifications for lists.

31. Semantic Checking. After the syntactic analysis of the specifications, the compiler
does some semantic validity checking concerning the issues mentioned below. We will

describe only the changes made with respect to standard FOOPS.

1. Module importation. A module can import other modules both at the func-
tional and the object level. Although FOOPS allows three kinds of module
importation (protecting, extending and using), pFOOPS offers support only for
using. The other two possibilities impose restrictions over the use of the im-
ported module, which are not hard to check but have no correspondent in usual
OOLs.

9. Inheritance relationship. FOOPS allows inheritance for

sorts. uFOOPS offers inheritance only for classes, for sorts bein

s not allow direct repeated mhentance

both c]las.ses and

g considered

unimportant. The language doe

3. Variable declarations.

. . feti the names
4. Operations signatures. We do not impose any restriction Over

S at com ng t me Howyever the na] t ha.n €
i ene h h t ﬂ 1 1 Te 0. llbl‘a.l‘ y
: _lB g I‘ated >code, SO t ey S OUld not con lCt W]th P deﬁned roiit

. . elves.
Names in the target language, nor should they conflict among thems

For an attribute or @ method,

5. Redefinitions of attributes and methods. the
if it 1 e one as

the name indicates that that operation is redefined if 1t 18 the sam '

ust obey the covariance

ancestor attribute or method name. Redefinitions m
61

e el

o 1--;»‘

i .) ‘

* type. However, when translating in C++4, the Paramete,,
eters’ type. , |
rule for param Il not reflect in the generated code because of the lack of SUppoy
ill not reflect ,
type change w1
for this in the target language.

6. Type of the terms.

£ th gnized forms (see next section). These forms are those accepted 1,
ot the reco ’ : ‘ . 1.
the Oxford implementation, and they proved to be sufficient for descnbmg the

ing i i ications.
behavior of objects appearing in a great variety of appli

3.2. The code generation process. We will present in the next paragraphs what ex-
J. 4. . y

actly is generated from the object level specifications, with examples for the specificatio
of lists.

Besides the sorts INTEGER and BOOLEAN we will need the specifications for
the classes LIST and OBJECT,

shown below. The specifications are not quite identical to
those well known by

the FOOPS community (see for instance the axioms for AddHead)
but the changes are smail and Justified.

omod OBJECT is

¥** IsEmpty —
class Object. ax IsEmpty(L):empty(L).
endo ¥¥¥ GetHead —
omod LIST is ©ax GetHead(L):head(L).
using OBJECT. *** GetTail —
using INTEGER. ax GetTail(L):ta.il(L).
using BOOLEAN.

subclass List < Object.

at head : List -> Object.

at tail : List -> List.

at empty - List -> Boolean
[default:(’l}ue())].

at IsEmpty : List -> Boolean

at GetHead : Ligt -> Object,

at GetTail : List -> List,

at GetCount : [igt -> Integer,

me AddHead . [,igt Ob;

me AddTaj) -

List Object -> List,
me R;:rmfveHead: List -> Ligg.

me RemoveTqi- List -> Ligt
me RemoveA)) -
var L : gt
var O : Object,
var I : Integer,

List -~ List.

62

JECt -> Ligt.

*** GetCount —
cax GetCount(L):Zero()
if IsEmpty(L).
ax GetCount(L)=

Succ(GetCount(tail(L)))-
¥4% AddHead —

ax empty(AddHead(L,0))=False().
ax head(AddHead(L,0))=0.
ax tail(AddHead(L,0))=L.

*** AddTail —
cax AddTail(L,0)=AddHead(L,0)
if IsEmpty(L).

ax AddTail(L,0)=AddTail(tail(L),0)
RemoveHead

* ¥k

cax hea.d(RemoveHe&d(L))=
head(tail(L))

if Not(lsEmpty(L)).

cax tail(RemoveHead(L)):

A COMPILE
R POR AN ALGEBRAIC SPECIFICATION
LANG

tail(tail(L)) UAGE
if Not(IsEmpty(L)). cax RemoveTsi] (L=
cax empty(RemoveHead(L))= R£m°V°Tall(tm|
L
empt)’(tail(L)) if And(Not(IsEmpty L)) ()
i t(IsSEmpty(L)). Not(IsE
i (r P y()) W RemoveA|| ,_(’ mpty(tall())))

s+* RemoveTail —

cax RemoveTail(L)=RemoveHead(L) cax RQmOVPA"(L) RPmoveHea,d(L);
if And(Not(IsEmpty(L)), o RemoveAll(1,)
IsEmpty(tail(L))). sido (sEmpty(L)).

3.9.1. The modules. The implementation of modules can be viewed at least f
= rom two

Jifferent perspectives:

o We may-consider the module as a unit for structuring the specifications, which
reflects only in a small measure in the generated code. This strategy was adopted
for dealing with modules when generating C++ code. We used modules only
to structure the code in files. Thus the sorts, classes and operations specified in
one module will be declared and implemented in one file.

e We may as well consider the module as a unit for structuring the specifications
that reflects in the generated code. The modules will be implemented by classes,
the import relationship will be implemented by the class inheritance. This

strategy was adopted for the Eiffel code generation.

3.2.2. The Types. As we mentioned above, we did not implement the sorts and the func-

tions, but only generated declarations for them. However, there still were some language-

dependent choices to make:
(which does

o the

mented by the type int

e In C++ the sorts are automatedly imple |
) in the file corresponding t

not mean that one cannot modify that by hand

the sort. . .
module which declared the ¢ features that inherit the

o In Eiffel the sorts are implernented by classes WlthO

ule in which sort was declared.

class corresponding to the mod
et language: The members

es in the targ)
y ol hods described in the specr

in the

The classes are implemented b

(fea't“feS) of these classes will be the attr

ﬁcaLtio.ns. The inheritance at the speciﬁcatio

ass declaration resides in the declaration file of the ody
e

o In C++ the cl .
which the class was defined. The im

os are in the im

plementation of the methods and cg], 1
u ate

4

plcmentation file of the module.

attribut .
e class corresponding to the module in which ;;
Wag

o In Eiffel a class inherits th
defined, in orde

declared in the mod

« to be able to use the functions and Entry Time Objects (ET(,
4 S)

lass is inherited twice in order to y
8e |

ule. Every parent ¢ |
3

creation feature.

perations. We will discuss the four kinds of operations (functions, attributes,

3.2.3. Theo
methods and ETOs) separately as each of them raises specific problems.

Function declaration does not raise problém
e name and types for parameters (C++). Special cases ar

the languages that do not have a concept of function (is Eiffel for instance). In these cases

s. For each function we build a func-

tion declaration with the sam
s corresponding to the module in which they

functions are considered features in the clas

were declared.
Stored attributes are implemented by fields (i
Their default values (specified by the default clause) are considered when generating

nstance variables) in their classes.

code for the constructor (creation feature) of the class.
Derived attributes are implemented by query methods (features) in their classes

they return a value that depends on the state of the object'but not modify that state:
ify the

ues of

Methods are implemented by methods in the target language that mod
state of the object upon which they are called. They can directly modify the val
the attributes or call other methods, depending on the type of the axioms that descri®
a,tiSfy

hod
the

their behavior (Direct Method Axioms / Indirect Method Axioms). In order to 38
the semanti L \
e semantics of the specifications, we decided to include two features for each met

when ge i i :
generating Eiffel code, one for implementation which does the job and returr®

(recept 3
, ptor) object, and another one for interface, which calls the former one and does not

return anythi T : f
ything. The operations for which we generate actual code (not signatures) are

constructors, derived attributes, methods and ETO
s
Constructo ‘ i
For each attrib rs are generated based on the default values of the stored attr!
1 allr e P . R T
ibute that has a default value a line is generated in the constructor t0 initmllze

a

64

>

A COMPILER FOR AN ALGEBRAIGC SPECIFICATION Langy,
GE

Code for derived attributes is obtained using the list

of axioms attached to
h attribute. In the most general case that list, may contain go
eaC 1mn s

me conditiona) axioms

d or not by an unconditional axiom (the

list, i .
followe 18 made

like thig during the axiom

cessing that follows semantic checking). Fo
proCess

T insl,a.n(:c, if the attribute ig defiried by the
lowing axioms (the order is important): ’

fol

cax attr(...) = <Term_1>

cax attr(...)
if <Cond_1>.

= <Term_n>
if <Cond n>

ax attr(...) = <Termn+]>.

then the generated code looks like this:

if Cond_1 then if Cond_n then

return Term_1; return Term_n;

return Termn+1;

The code for the methods specified by DMAs will contain a list of assign-

ments of values to attributes. For each attribute we have a list of axioms that describe

1

the effect of applying the method over that describe the effect of applying the method
over that attribute in certain conditions. For instance, for an attribute and a method we

may have a list of axioms of the following form:

cax at(me(...)) = <Term_1> cax at(me(...)) = <Termn>
if <Cond_1>. if <Cond n>.
ax at(me(...)) = <Term+1>.

Then the generated code will look like this:

if Cond_1 then at:= Term_n;

at := Term_1; else
at := Termn+1;

elseif Cond_n then

i that has
The code for the method will contain such a sequence for each attribute

a v ject because
* Value specified. At the beginning of the method we make a copy of the objec

* Inj . . ‘fied. This copy is
"¢ might need the old values of the attributes after they were modifie

de; " ok
a“w‘dted if it has not been used.

The code for the methods specified by IMAs wil

I'methods if the axioms are:

| contain a sequence of calls

of othe

65

D. BOZGA, D. CHIOREAN, AND I. OBER

cax meth(...) = <Term_n_1>; <Ter

<Term.1_1>;<Term.1.2>; .. - if <Cond_n>.
if <Cond_1>. ax meth(...) =

R SNE

<Term_n+1_l>; <Termm+]
2.

cax meth()

the generated code will be:

if Cond.1 then Term n_2;
Term_1.1;
Term_1_2; return;
Termn+1_1;
return Term_n+1_2;
if Cond_n then return;
Termn_1;

ETOs are implemented like the functions, but they always return the same result,
The first time we call an ETO an object is created, initialized according to the DMAs of
the ETO and then returned. The next calls to the ETO will return the same object.

For the lists, the C4++ code generated by the compiler is presented in Appendix.

-

4. Conclusions and future work

As we mentioned from the beginning
)

our idea was tq om
the formal and heuristjc techniques that May lead to , w t:each to those aspects frw
orthy combined approach. W¢

considered first the code generation Process hecays it’
e
It’s wel] knowp the fact that withou!

a rigorous descri ption of the behavior, the ge

Nerated code
€18 mogt) sl
) 1
N Y signatures.

The code generated by our compil

T ag
applications. It was chosen because 8¢ of the compiler in real

code
For this
e presented iy, [2].

1t 18 wel] known and the

We used pFOOPS to specify a Home Heating System. 'S easy ¢, understand
results obtained from the analysis as they we “Xamp|e we used the
Our co

n -
" “lusjop was that

A COMPILER FOR AN ALGEBRAIC SPECIFICATION LANGUAGE

pere 18 & mapping between the entities in the heuristic model’s diagrams and some of th
th e
ncepts ma,nipulated by pFOOPS, and the translation from diagrams to specification i
¢ is

natur&‘-
We used the language and the compiler to specify problems that contain a |
8 that c a lower

ves, for instance some classic algorithms. The implementat; ¢
ntation of a

jegree of declarati

M(kt.rad\'mg for the Queens Problem was not a hard work,

One of the directions towards which we intend to lead our work is the possibility t
> po L0
conerate specifications from the diagrams in heuristic models. We also intend to compare

the results obtained this way Yvit;h the results obtained by using other hybrid methods
like Syntropy)-
The uses that we can find for our compiler give us reasons to extend it in at

least two directions that were neglected till now: paramctrisation and specification of

concurrency.

References

1] R. Breu, Algebraic Specifications in Object-Oriented Programming Environments, Springer Verlag,
1992.

2] G. Booch, Object Oriented Design with Applications, The Benjamin / Cummings Publishing Com-
pany Inc., 1991.

3] LM.G. Fejs, H.B.M. Jonkers, Formal Specification and Design, Cambridge University Press, 1992.

4] N.E. Fucs, Specifications Are (Preferably) Ezecutable, Software Engineering Journal, September 1992.

5] J. Goguen, J. Mesenguel:',' Unifying Functional, Object-Oriented and Relational Programming with
Logical Semantics, in B. Shriver and P. Wegner editors, Research Directions in Object-Oriented
Programming, M.I.T. Press, 1987, pp.417 - 477.

6] K. Lano, H. Haughton, Object- Oriented Specification Case Studies, Prentice Hall International, 1994.

7B, Meyer, Eiffel, The Language, Prentice Hall International, 1992.

#L Rapanotii, A. Socorro, Introducing FOOPS, Technical Report, Oxford University, Research Com-

. Puting Laboratory 1999.

]:; }: :::ust’ up, The Design and Evolution of C++, Addison-Wesley, 1994, o

ier, La compilation des types abstraits algebriques du langage LOTOS, These de doctorat,

Co .
"Servatoire National des Arts et Metiers, Grenoble 1993.

67

D. BOZ

i+ LIST lnmiulfinttjrhm‘ .
Hifndef LIST-h-

#define I IST.h. .
#include ~ORJFCT h')
*BOOLEAN h
“INTEGER b’

#in.‘hldt‘
ﬁm\'hhi"
* olasses ’

class Last;
pnNh‘ Object {

class Last
m\\tt\‘red
Object® head: '
I xs;' {ail. Boolean empty, public:
List():
virtual Boolean IsEmpty();
virtual Object® GetHead();
virtual List* GetTail();
virtual Integer GetCount();
virtual void AddHead(Object* pl);
virtual void AddTail(Object* pl);
virtual void RemoveHead();
virtua! void RemoveTail();
virtual void RemoveAll();
* functions */
#Fendif
* LIST module implementation */
Finclude <stdio.h>
#include <memory.h>
#Finclude "LIST.h”
List::List(}{
head=NULL; tail=NULL;
empty=::True(); }
Boolean List::IsEmpty(){
return (this)->empty;
' return (BOOlea.n)O;}
Object” List::GetHead(){
return (tbis)->hea,d;
- returg (Ob.)":Ct*)();}
List* List::Get Tail(){

return (this)-> taj.

“BABEQ-B()LYM"
RoMani4

68

GA, D. CHIOREAN, AND L. OBER

U NIVERSITY, REgg,

mail ad '
addregs: {dorel,chiorean,iulian}@ca ubbcluj
. cluj.ro

Appendix

return (List*)0; }
Integer List::GetCount(){
il ((this)->IsEmpty())
return ::Zero();
return :Succ(((this) >Hail)
return (Integer)0;)
void List::AddHead(Object * pl)f
List* tmp=new List;
memcpy (tmp,this sizeof(List)).
empty==::False();
head=p1; tail=tmp;}
void List::AddTail(Object* p1){
if ((this)->IsEmpty()){
(this)->AddHead (p1)
return;}
((this)->tail)->AddTail(p1);}
void List::RemoveHead(){
List* tmp=new List;
memcpy (tmp,this,sizeof(List));
if (::Not((tmp)->IsEmpty()))
head=((tmp)->tail)->head;
if (=Not((tmp)->IsEmpty()))
7 tail=((tmp)->tail)->tail:
if (::Not((tmp)->IsEmpty()))
empty=((tmp)->tail)->empty:
delete tmp;}
void List::RemoveTail(){
if (::And(::Not((this)->IsEmpty()),
((this)->tail)->IsEmpty())){
(this)->RemoveHead();
return;} '
- if (::And(::Not((this)->IsEmpty()),
::Not(((this)->tail)->IsEmpty()))
((this)->tail)->RemoveTail();
return;} }
void List::RemoveAll(){
~if (::Not((this)->IsEmpty())){
(this)->RemoveHead();
(this)->RemoveAll();
return; }

‘)Gf:t(,'mlnt(“-

)

|’

Mt
_NAPOCY |
ARCH LABORATORY 0N COMPUTER SCIENCE, CLU ‘

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

