UDIA UNIV. «“BABES-BOLYAI", INFORMATICA, VOlumeII, Number 1, March 1996
ST

COMPILING DEFINITE CLAUSE GRAMMARS
D. TATAR

Abstract. The original motivation for Chomsky’s phrase structure grammar was the
description of natural languages (NL). The most frequently used of them, CFG’s, are
not in general regarded as adequate for all the aspects that occurs in NI, processing.
A generalisation of CFG’s, definite clause grammars (DCG) is better: in this paper we
introduce some methods of the association of a DCG to a CFG and the connections

between the queries addressed to first and the language generated by the second.

1. Introduction

It is very well known how a CFG can describe a subset of a NL, as in the following

example
Example 1.1. Sahple grammar 1.

G = (In, I, S, P) |
In - {sentence,verb, noun — phrase, article, adjective, noun, preposition},
It = {'give’, the', o', best’;' last' de finition', notion’,' of'},
S = sentence, | |
P = {sentence — verb,noun — phrase,
noun — phrd.se — article, adjective, noun,
noun — phrase — article, adjective, noun, preposition, noun — phrase
verb —' give’
article —' o

article —' the'

Received by the editors: September 21, 1996.

1991 Mathematics Subject Classification. 68N17, 68S05.
1991 CR Categories and Descriptors. D.1.6 [Programming Techniques): Logic programming; F.4.1 [Mathematical Logic

and p, .
Ormal Languages): Mathematical Logic; 1.2.7 [Artificial Intelligence]: Natural Language Processing.

45

D. TATAR

adjective —' best'
adjective —' last’
noun —' definition’
noun —' notion’
preposition —'of'}

fy that the string:

'qive', the' best',! definition', of'/ the', last') notion’
ce of CFG in this sample.

is a legal senten . '
e other hand, regard a Horn clause in a definite program;

Let us, on th

h:—ayaz, " ,0n

or

h < aj,az,--" ,an

We read the implication h < aj,as, - ,a, as 2 production rule : h — @03, .0 |

which is interpreted as “h is well-formed if 7 aj,az, - ,an 1S well-formed and sucha |

production rule corresponds to each Horn clause.
A first apparent difference between a production rule and a clause is the order in

which the element of the right-hand part of the production rule: the order of elements 0

the body of a clause is immaterial, due to the commutativity of the conjunction operatio™

In fact, the precise order of elements in the body of a clause is pushed in the precise order

of elements of a list.
1 : hem
We will define a first type of DCG associated with a CFG, and we will call the

“definite clause grammar of first type” (DCG-FT).

as zn sa’npzt’

D ﬂ . . v
efinition 1.2, et ¢ = (In,I7,5,P) a CFG for a sequence of NL, o £l
where In is a set of syntactic categories and Ir is a set of words terminal A

associated 1 i
ed with G is o definite Program P, defined as follows: o
Ul
* for eqc stermi . ith one 'Y
S ch non-termingl x in Iy there exists a predicate px with ©

such that])X(Y) succeeds iff Yisa list of syntactic category X.

. . . e
* for eacl, production yyle X - X, Xo--- X, there exists @ Horn claus
’ n

Px(NIYa] - Yo)) =y, (V) -+ pxa (Vo)
46

it

COMPILING DEFINITE CLAUSE GRAMMARS

o for each production rule X — t,t € It there exists a Horn clause px ([t]).

In this condition, the following theorem is proved.

Theorem 1.3. Let G = (INaITv S’ P) be a CFG. A word w = Wi, Wz, , Wy € L(G)}

where w; € It i=1,-,m, iff
ps([wr, wa," -+, wa])

wcceeds in DCG-FT. associated with G as in above definition.

)

Proof. We will prove by induction on the length of the deduction a more general
result: |
For VX, X = *w,ws,- - ,wn , Where w; € It 4 = 1, ,n, iff px([w1, wy,
. ,wy]) succeeds in DCG-FT, associated with G as in above definition.
If the length of the deduction is 1, then it is X — t, and by definition px([t])
succeds. Let us suppose that VX , X = *wi,wz, -, Wn ; is a deductlon of length

k + 1.This deduction is of the form
X = X1, Xq+ Xy = %Wy, - ,Wn
Then, there exist the lists Ly, L2, " » Lm such that:
1.[wy, wa, -+ ,Wa] = [L1|La| - - - | L]

and
2.X; = x[;,1=1,--+,m
are the deductions of length < k. By induction assumption py;(L;) succeds, i = 1,...,m-

Since for the rule

X—)Xl,Xz"'Xm

there exists a Horn clause : px([YllYgl---IYm]) s —px, (Y1), - , DX (Yon) and px;(Li)

succeds, { = 1,... m, then that px([La]-- - | Lyn]) succeds too.

As [wy,wg, - -+ ,w,] = [L1]L2] - -|Lm], that means that px ([w1, -
roceed by induction on the length n of the
Let us

. wy]) succeds.

For the converse implication, we will p

fgument list, If n = 1 than px([w]) succeeds and, by above definition, X — wi-

SUppose that

pX({whw?, S ’wﬂ])

47

D. TATAR

Accordingly with the above definition, there exists a Horn clause
ccor

px([yrln/’?‘ c Ym]) ¢ (Yl)’ Tt ’pXm(Ym)

succeeds.

is obtained by concatenation of an instantiation of the |ist [Y1|

) lym]

and 01, W] .
' | jati (L) succeeds, 1 =
s instantiation. As px,(Li) s i=1,... ,mand the eag,

Let [L1]- -~ |Lm] be th

{ L.is <n, by induction assumption we can say that X; = *Li i=1,... m
Ol Ly 1S v

A<¥4Vlw~J@JMnXameT~Xm¢*h,“imzm“.wﬂ
As X = Xi. .

Example 1.4. The DCG-FT associated with the sample grammar 1 is the following:

domains
lista=symbol¥
predicates
sentence(lista)
verb(lista)
noun_phi(lista)
noun_ph2(lista)
article(lista)
adjective(lista)
noun(lista)
prep(lista)
clauses
sentence([VE|NP]) :-verb([VE]) ,noun_ph1 (NP).
sentence([VEINP]) :-verb([VE]) ,noun_ph2(NP).
noun_ph1([AR,AD,NO]) :-article([AR]),

adjective([AD]),

noun([NO]) .
noun-Ph2([AR,AD,NO,PPINP]):—article([AR]),

adjective([AD]),

noun([NO]),

prep([PP]),

noun_phi (NP) .
verb([give]) .

article([the])_

48

COMPILING DEFINITE CLAUSE GRAMMARS

adject jve([best]).
adj ective([last]).
noun ([definition]).
noun([notionl).
prep([of]).

If the goal addressed to this DCG is : sentence(X) ,then we will obtain: X —
give, the best, de finition, of, the,last,notion | and others 19 solutions. In the set of
solution we find the following: [give,the,best,notionaOf,the,last,definitian], which is,
surely, not semantically correct. In this point another tool that is introduced by DCG
can be useful, namely the “ procedure calls”. [3] These are some relations between the
arguments of symbols from Iy. The translation of this condition is easily realized by

a DP,where the relational operators are permitted. Another generalisation realised by

a DCG, apart from CFG, is the possibility of realisation of the number and the person

agreement.

Example 1.5. Sample grammar 2.

sentence — pronoun,verb, article, noun
pronoun —' I'
pronoun —' you'
pronoun —' he’
pronoun —' we’
pronoun —' you'
pronoun —' they'
article »' o'
noun —' teach.erv’
noun —' teachers'

verb —' am’

verb —' are’
verb —' 18’

verb —=' are’

In this CFG grammar we can obtain the following incorrect sentence: .
' ’y .
we, 18’/ the' teachers’.

49

D. TATAR

Let us transform CF production rules as:

X.Y) = pronoun(X, Y),verb(X,Y),article, noun(X).
pronoun(1,1) =" I’

sentence(

pronoun(1,2) —=' you'
pronoun(1,3) —' he’
pronoun(2,1) —' we'
pronoun(2,2) —' you'
pronoun(2,3) —' they’
| article —»' d'
noun(1) —' teacher’
noun(2) — teachers’
verb(1,1) = am’
verb(1,2) —' are’
verb(1,3) =’ s’
verb(2,1) =/ are’
verb(2,2) —' are’
verd(2,3) —=' are’
In this DCG grammar, the sentence as above cannot be obtained. For example, we can

obtain the following correct sentence:
sentence(1,1) — pronoun(1,1), verd(1, 1),article,noun(1) = *'I' am’, a') teacher’

A rewriting of a word in this DCG grammar is obtained by a double process: &
application of the relation = x as in the usual definition and a untfication process: Ths

is a common fact with the unification grammar as in [1).

The DCG-FT obtained as in the above procedure is the following:
domains

lista=symbolx
Predicates
sentence(integer,integer,lista)
pronoun(integer,integer,lista)
verb(integer,integer,lista)

noun(int eger,lista)

50

R Dy e U R e

COMPILING DEFINITE CLAUSE GRAMMARS

article(liSta)

Clauses
ce(X,Y, [Pn,V,Ar,N]) :-pronoun(X,Y, [Pn]),

verb(X,Y,[V]),
article([Ar]),
noun(X, [N]).

sent en

pronoun(l ,1,01).
pronoun(1,2, [youl) .
pronoun(1,3, (hel).
pronoun(2,1, [wel).
pronoun(2,2, [youl).
pronoun(2,3, [they]) .
article([al).
noun(1, [teacher]).
noun(2, [teachers]).
verb(1,1,[am]).
verb(1,2, [are]).
verb(1,3, [is]).
verd(2,1, [are]).
verb(2,2, [are]).
verd(2,3, [are]) .

The goal: sentence(1,1,X) addressed to this DCG-FT obtains,

rrr
I'!am'! ' teacher].

X

2. Obtaining the parse tree

If we want to obtain the syntactic tree (the parse tree) of a sentence,we must

modify the rules of association of DCG to a CFG.

Let us consider the following sentence in the Sample grammar 1:
'give' ! the', best', de finition',' of', the', last') notion’

The above sentence can be obtained by the concatenation of all the leaves from

the pars
Parse tree, from left to right. This tree can also be represented by means of the-belpw

51

D. TATAR

which suggests better the process of generation of a word:

construction,
sentence(v(’give’), np(art('the’), adj("best’), "('definitionr)
prep('of’); np(art('the’), adj('last’),n("notion’)))) |
We will call such a tree an annotated tree. It is obtained hy reading i
’ e tr

dOWllq Slld\ that ’ ‘)(l‘l on 1y ! ’ ’ AL IX, §X| ' -9X;. .,
'17 Afe

i , . "
) ‘e a0 Y g annotated with . \
syntactic categornies of X1, A2, y Xny 1 ith ’X("’Xp " 8X,).

A DCG-FT which obtains t

he syntactic trees is defined as follows.

o1 Let G = (I I, . P) @ CFG for a sequence of NL. 4 DCc.pr
3900,
the syntactic tree is a definite program P defined as follows:

Definitio

ated with G for
e for each non-terminal X in Iy which occurs in a production rule X — ¥, ..

X, and which is of the syntactic category Sx, there ezists a predicate
pX(SX(Vla° e ’Vﬂ))’ [Vll" t 7Vr:])

such that px(Y, Z) succeeds iff Y is of the syntactic category of px and Z ¢
list of the syntactic categories of its descendents.

o for each production rule X = X1, Xo -+ X there exists a Horn clause:
px (SX(VI "/2’ e V")7 [Vll? V2'7 T VnJ) "'pX1<Vl []) o van(Vn- 'Wn‘\'

o for each production rule X — t,t € Iy there exists a Horn clause

pPx (Sx(t)) [t])

In this case, the following theorem is proved.

Theorem 2.2. Let G = (In,I1, S, P) be a CFG . A word w = WL, W» RS hj‘a:
where w; € Iy ;i = 1,...,n, iff ps(A,[w,ws, , Wa)) succeeds " peG-F T
syntactic tree , associated with G as in the above deﬁnit'ion,with A being the annt’
tree of w.

obtaite”

The DCG-FT for the syntactic tree, for CFG in Sample grammar =

in the above procedure, is the following:
domains
dom=v (symbol) ;art (symbol) ;adj(symbol) :no (symbol) ;

np(dom,dom,dom) ;sn(dom,dom) ;

52
\

COMPILING DEFINITE CLAUSE GRAMMARS

npc(dom,dom,dom,dom,dom);p(symbol)
lists=symbol*
predicates
sentencet (dom,lists)
verbt (dom,lists)
noun_pht1(dom,lists)
noun_pht2(dom,lists)
articlet(dom,lists)
adjectivet(dom,lists)
nount (dom,lists)
prept (dom,lists)
clauses ‘ o LI ERATOR A SN
sentencet(sn(VE,NP),[VIN]):-verbt(VE,[V]),noun_phtl(NP,N).
sentencet(sn(VE,NP),[VIN]):-verbt(VE,[V]),noun_pht2(NP,N).
noun_pht1(npc(AR,AD,NO,PP,NP);[Art,Adj,Nn,Prepleh]):—
articlet (AR, [Art]),
adjectivet (AD, [Adj]),
nount (NO, [Nn]),
prept (PP, [Prep]),
noun_pht2(NP,Nph) .
noun_pht2(np(AR,AD,NO), [Art,Adj,N]) :-articlet (AR, [Art]),
adjectivet (AD, [Adj]),
nount (NO, [N]).
verbt(v(give), [give]) .
articlet (art(the), [thel).
adjectivet(adj(best), [best]).
adjectivet (adj(last), [last]).
Bount (no(definition), [definition]) .
ount (no(notion), [notion]).

Prept(p(of), [of]).

For the goal: sentence(X,Y) this program obtains 20 solutions, in which Y is a
Correct, sentence, and X is the annotated syntactic tree associated with it.

53

D. TATAR

3. Definite clause grammar of second type

Another sort of DCG associated with a CI'(i, which can descrih,.
: 3 o a synt
of a sentence, if it is correct, is the DCG of the second type (DCG-ST) bt Yntactic e
Hained fr
below procedure. TOm t}

Definition 3.1. Let G = (In, I7,S,P) a CFG . A DCG-

ST associated with (]

I lg
nite program P defined as follows: @ def.

o for each non-terminal X in Iy there ezists a predicate px with tyy 4
Gument,

such that px (Y, Z) succeeds iff Y' is a list whose head is of the syntactic cqt, |
{)on |

X, and whose tail is the list Z.

o for each production rule X — X,,X,--- X, there ezists a Horn clause:

pX(Y’ Z) : _pX1(Y7 Yl), Tt s PXp (Y;l—?s Kt—l),pxn(}fn—la Z)

o for each production rule X — t,t € It there exists a Horn clause

px(Y,Z): =Y = [t|Z]).
The following theorem can be proved.

Theorem 3.2. Let G = (I, I, S, P) be a CFG. A word w = Wy, W, -+ Wn
where w; € It i=1,--- ,n, iff

PS([wl,wz,"' ,wn],[])

succeeds in DCG-ST, associated with G as in the above definition.

. . mple B¢
In the following we will build the DCG-ST associated with the saimp

54

) e L(C) |

COMPILING DEFINITE CLAUSE GRAMMARS

Example 3.3. Sample grammar 3.

sentence — subject, verb, complement

sentence — article,noun
complement — adjective
article — ['the’]
noun — ['work’]
noun — ['child']
adjective = ['nice’]
adjective — ['sage’]

verb — ['is]

lista=symbol*

predicates

sentence(lista,lista)

subject (lista,lista)

verb(lista,lista)

complement (lista,lista)

article(lista,lista)

adjective(lista,lista)

noun(lista,lista)

clauses

sentence(Y,Z) :-subject(Y,Y1),
verb(Y1,Y2),
complement (Y2,Z).

subject (Y,Z):-article(Y,Y1) ,noun(¥1,Z).

complement(Y,Z):-adjective(Y,Z).

article(Y,Zz):-Y=[thelZ].

noun(Y,Zz):-Y=[work|Z] .

noun(Y,z):-Y=[child|Z] .

verb(Y,z):-y=[is|Z].

adjective(Y,z):-Y=[nicelZ] .

If the goal is: sentence(Y,[]), then the solution is: ¥ = [the' child') is', nice']

55

D. TATAR

References
value logic and the theory of grammar, CSLI, 1988.

(1] M. Johnson, Attribute-
as [ormal languages, Studia Universitas “Babes-Bo]
yai”

(2] D. Tatar, Logic grammars

XXXIX (1994), pp- 75-82.
(3] A. Thayse (ed), From standard logic to logic programming, John Wiley & Sons, 1988

“BABr-;s-BOLYM”

3400 CLUI-NAPOCA, ROMANIA
E-mail address: dtatar@cs. ubbcluJ ro

Mathemayie,

UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER §
R SCIEN
CE, RO.

36

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

