STUDIA UNIV. «BABES-BOLYAT", INFORMATICA, Volume I, Number 1, March 1996

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

M. PAPATHOMAS AND V.-M. SCUTURICI

Abstract. In this paper we propose an active object model that aims at a more compre-

hensive approach in integrating concurrent programming and object-oriented features

The model incorporates a num

tures of abstract states, state predicate

ber of previously proposed features with the novel fea-
s and state notification. We have started using

prototype for. the development of multimedia programming environment based on

: the
A prototype of the model has been imp

active objects.
n this paper is based on this implementation.

lemented in Python and the

presentation i

1. Introduction

ivity in the past few years concentrated on the design of

Substantial research act
y and object-oriented features with the

and models for integrating concurrenc
ntial for software reuse in the develop
on the problem of combining inheritance

rough inheritance syn-

languages
- tention to enhance the pote
t of the work in the area has focused

articularly specifying and reusing th
Currently, this is a widely

ment of concurrent sys-

tems. Mos

with concurrency and more p
n constraints on the invocation of ob
] solutions have been proposed. H
re recent and less research has add

chronizatio jects’ methods.
recognised problem and severa

s this problem in isolation. Mo
cution of a set of objects and of s
few languages supporting

nce has been gained

owever, most proposed
solutions addres ressed

the issue of coordinating the exe
ns separately from objects.
ble and relatively little experie

pecifying and reusing

coordination patter Furthermore,

the proposed features are widely availa

from their use.
ore comprehensive

ct model that aims at am
oriented features. Th
atures of abstract

In this paper we propose an active obje
e model

approach in integrating concurrent programming and object-
tures with the novel fe

incorporates a number of previously proposed fea

e ——
Received by the editors: Septe

1991 Mathematics Subject Classification. 68Q
1991 CR Categories and Descriptors. D.1.5 [Programming Techniques

mi . .
ing Techniques]: Concurrent Programming; D-2.6 [Software Engeneering]: Program

Buagesg): 3
ges): Language Classifications — object-oriented languages; D.3.3 [Programming Lang
H.5.1 [Information Interfaces and Presentation]:

mber 12, 1996.
10, 68Q9S0. -]
Bt): Objectforiented Programming; D.1.3 [Program
ming Environments; D.3.2 [Progrsmmlng Lan-
ages): Language Constructs and Features

u
tormation Systems-

Multimedia In

- Cone
urrent programming structures;

19

M PAPATHOMAS AND V.-M. SCUTURICI

o Support for <elf-contained objects that can be reused across applications,
o Reuse of methods through class inheritance.

e Reuse of synchronization constraints.

o Composition of active object behaviours.

e Object coordination.

A prototype of the model has been implemented in Python and the presentation i

this paper is based on this implementation. Python is freely available on a large numbe:

of systems. This will allows us to make our prototype widely available and gain more

experience with the use of its concurrent object-oriented features in the development of

applications.

2. The Object Model

Objects are active entities that resemble server processes that accept requests from
other object, they can delay requests and process them in an order that is most suitable
to them. Requests are processed by threads that execute quasi-concurrently within az

object. Threads may also be created spontaneously at the creation of an ob ject.

The main aim in the design of this object model is to enhance the potential for
reuse in concurrent object-oriented systems by integrating support for all the reuse issues
discussed in section 2. For doing so, the model incorporates a number of message passin:

(.. t N - . N
catures that are combined with thread scheduling in such a way that allows objects
schedule the processing of requests and replies in a self-

are int, d h contained way. These featurcs
integrated with t |
Seation ot he novel concepts of abstract states, state predicates and state not!
ation. The use of the)

o0 f these features avoids the problems caused by the use of inherital®
n COOPLs, Supports new ways to g

pecify and inherit active object behaviours and alsC
tion.

provides support, for object coording,
The 2]
model is geperal enough go

guages,

e cury llt, v .()[.B 1 t 2 [)l'th““
I I» N o1 . I h
€ ers .

lin i] > ~
: 1 8 a € D US 7

n this Paper are based on the Python implemCﬂ/
20

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

Object Mangger Htate notification pmiacel

NotFicaton maurete

Threade ”:\i\\‘ /

NotFication server
Gtate Pudicates

Ohjpet Bigte Hoeaton Clor
FIGURE 1. Conceptual view of the object execution model

5.1. Language-Independent Description. Figure 1 shows a conceptual view of object
execution in our model. Each object is associated with an object manager that controls
the actions that are executed by its object. The object manager is a conceptual entity
that makes it easier to describe the behaviour of objects in our model.

The object manager instructs its object to carry out a number of actions such
as to start or resume a thread that executes some methods of the object. The object
executes the code of a method until the occurrence of an event, such as the completion or
suspension of a method. The occurrence of such an event activates the object manager
which decides what should be the next action to be executed by its object. The object
can thus be either executing some thread or it may be waiting for the object manager to

instruct it what it should to do next. In the latter case, we will say that the object is at

a stable state.

The execution of an object can be seen as a graph where nodes represent stable

states and edges are associated with tuples of the form (a,e) where a is the action that

the object was instructed to execute in the previous stable state and e is the event that

stopped the execution of a and made the object to move into the next stable state.

Apart from events that are generated from the execution of its object, the object

"Manager may also be activated by external events that are generated by other object 10

Program. The events that trigger the execution of the object manager are:

In this case the object

* A method invocation request is received at the object.
thread

manager creates a new thread for running the method. If there is no

already active within the object and if the object is at a state where 1t can

execute the request method, the object manager runs the newly created thread.

21

MA RICI
M PAPATHOMAS AND V-M. SCUTU

, . In this case the object manage,
.on of its method.
etes the execution

0 be SUSP ended until the occurrence of an event. In this case
o be suspenac

o A thread compl

o A thread requests

er removes the thread from the queue of threads that are ready
the object manager 1 §

it picks another thread, if any, for execution. Th'ere a,rehseverilll ttypes of evwnf
a thread may wait for. For instance, it may Wa'.t for ¢ e‘ reply 1o a request .ﬁ,
has issued to anothet object or it may wait until the obJect.reaches a certair
state. These events will be discussed later in conjunction with the constructs
generate them.

e The occurrence of an external event of interest to- one of its threads. This any
event awaited by some of the object’s threads that is not generated by actions
that are executed within the object. This can be for instance: the arrival of
the reply to a request a thread has made to another object or the arrival of &
state notification event (to be discussed later). In this case, the object manager
removes the thread from the list of waiting threads and depending on whether
or not the thread can be run immediately it resumes the execution of the thread.

e The receipt of a state notification request. This is a request by another object
manager asking the object manager to generate a notification event when its
object reaches a certain state. The object manager stores the request in a queuc
of notifications requests and when its object reaches the request state sends @

notification event. State notification is a novel feature of our model that will be
discussed in detail later.

In many of the situation discussed above, the object manager needs : nformatior

about the object’s state. In our model, however, the object manager does not s€€ N
access th i : . v
e object state directly. The concept of abstract state is used to represent proP

erties of interest wi . e
) with respect to the object’s state at a level of abstraction that hide:
implementation details, | '

St \C 2 '
ate predicales provide the mapping from abstract states t© the

In order’
the object man \ er to find out whether the object is at an abstract state
anager goes)
goes through a state predicate. Abstract states and state predicat(’*

concrete object state,

are discussed in detail next. |
e Tt o - Figure 1 shows a conceptual view of object execution in o
ng the interactions of the object comp ts of
B onents of model.
22 :

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

211 Abstract States and State Predicates. An ahstract state represents some aspect of

he real state of execution of an object at a level of abstraction that hides implementation

e state of execution is taken here in a broad sense. It may comprise not only

Jetails. Th
(he values of the object’s instance variables but also the messages that are suspended at
(he object interface, the state of execution of the object’s threads, etc.

At cach stable state in the object’s execution graph, the object’s manager decides
what action will be executed next based on abstract states. In our model abstract states
od to constrains the execution of the possible actions. This is accomplished by

arc us
allowing the programmer to constrain the acceptance of methods and to express the
suspension or resumption of threads using abstract states. The linguistic constructs that
are provided for doing so are discussed in the remaining of the document.

State predicates provide an interpretation for abstract states. They are used to
tell whether or not a property that is represented by an abstract state holds a concrete
state. The m'a.ﬁping from abstract states to concrete states provided by state predicates
may differ for different classes and thus supports polymorphism for abstract states.

A state predicate can be defined as a function P from CS X Asp to {true, false},

where CS is the set of concrete object states and Asp is a subset of the set of the object’s

abstract states AS. The following are some important properties of state predicates:

e A set of abstract states may be true at one object state.
e An object may be associated with a set of state predicates and each predicate
is associated to a subset of the object’s abstract states.

o The subsets of abstract states associated with different state predicates of an
object are disjoint.

From a practical point of view, state predicates are objects that encapsulate the
y the abstract

ed by

information necessary to determine whether or not the property described b
state is true at a certain stable state in the execution of the object. They are defin

the programmer and used by the object manager to evaluate the conditions that constraint

the execution of the object’s actions.

21.2. State Notification. State notification allows active objects to monitor and synchro-

Mze with state changes, expressed in terms of abstract states, occurt ing in other objects.

State notification is a protocol provided by object managers that allows a thread in one

23

e

M. PAPATHOMAS AND V-M. SCUTURICI

bject to synchronize ‘t's execution with state changes expressed in terms of abstrac
object t

states of another object.

Figure 1 shows a conceptual view of the architecture used to support state notifi.

cation. The figure shows two active objects A and B. B’s object manager has made a sta:.

. . ’ :
notification request to A’s object manager. Following this, A’s object manager has cre.

ated a local notification server object that represents the notification request. The objec:

manager maintains a list of notification server objects (notification requests); each time
the object state changes it goes through the list and activates each notification server,
The notification server evaluates its associated abstract state expression by invoking the
appropriate state predicate(s) and informs the notification client if appropriate. When
the notification client 1s informed, it requests its object manager to take the appropriate
action; for instance, schedule a suspended method for execution.

State notification may be asynchronous or synchronous. In the asynchronous case.
when the object is at stable state, its object manager services all notification requests
and then proceeds with the normal execution of the object’s methods. The synchronous
variant allows the object that requested the otification and the notifying objects to be
synchronized in a way similar to "rendez-vous”. This variant guarantees, by postponing
the execution of the notifying object’s methods, that the notified object will get the chance
to invoke methods of the notifying object while it is still at the requested state.

Together with abstract states, state notification may be used to describe abstractl)
as a sequence of abstract state changes, practically any activity encapsulated within ar

active object. Also, note that this is a general architecture and can thus be instantiated

with different implementations of notification clients and servers. For example suppor

for real-time noti i :
) otification can be provided by specifying a time-out at the notification client
and /or by requesting a bound on the notification delay

2.2. Linguistic Support.

2.2.1. Abstract State -
s. In the implementation of our object model in Python. abstrac!

states are represented as

.
. . tuples that contain at least one element. This firs mandator.‘
element is a string that re - °)

presents th 2
and (ull’,) are used to repr e name of an abstract state. For example; ("empt -
esent the abstract states of the bounded buffer. AP’ from

the first mandator i
y strin o
g element that represents the state name, a tuple that rePfeSenﬁ
, a tuple

an abstract state may c :
0 .)
Y contamn an arbitrary number f iti is ca*
oA of additional elements. In this

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

.hie abstract state name may be used to represented a family of abstract states that are
further qualified by the additional elements. The semantics of these additional elements
< defined by the state predicate responsible for the abstract state. For instance, a set of
abstract states (‘contains’,n), where n is a natural number, may be used to represent the
states where a container object contains exactly n elements. In the buffer example it is
the functions empty and full that are implicitly defined as state predicates for the states

«ith the same name. Later we will see other ways for defining state predicates explicitly.

)2.2. State Predicates. State predicates are objects that are associated with an object

‘
Loekdodae

and are responsible for determining whether or not the associated object is at a given
abstract state. An object may have a set of state predicates and each state predicate is
associated with a disjoint subset of the set of abstract states defined for the object. When
the object manager needs to determine if an object is at an abstract state, it calls the
state predicate that is responsible for that particular abstract state.

If no state predicate is specified explicitly for an abstract state the object should
have a method with the same name as the state that is used to determine whether or not
the property associated with is abstract state is true.

State predicates may be associated with an object statically or dynamically. It is
also possible for a state predicate to be shared among several objects. This feature can
be used as it will be shown in section 4.4.1 to support object coordination.

In a class definition, the variable state_predicates is used to associate abstract states
to state predicates. This variable should be set to a dictionary, entries of this dictionary
should have as key a state predicate class and as value a list abstract states. For abstract
“lates that are not associated explicitly with a state predicate in the state_predicates

variable, a method with the same name as the abstract state should be provided for

allowing to determine wheéther or not the object is at the associated state.
The method newPred supported by all active objects may be used to associate a
late predicate to an object instance at run-time. This method takes as arguments a state

Predicate object and a list of the associated abstract states. The object should not define

the
e any of these states already.
In order to be able to operate with the object manager, state predicates should
d
“ine 2 method evalState that takes as argument a tuple that represents an abstract

St . 4
ate and the object for which it is neededto find out if it is at the specified state. This
25

M. PAPATHOMAS AND V-M. SCUTURICI

\dicate that the object 18 not at the requested state or 5

method should return None to 1l

value different to None otherwise.

In order t

not its associated object is at a requested abstra

o determine whether or |
formation about its object. It’s part of i,

state, the state predicate has to get some 11 | .
S nature of this information and it’s th,

(o state clearly the

redicate
¢ that defines the active object class that uses a particuly;

definition of the state P

responsibility of the programme

class makes available the information required b

state predicate to make sure that its

the state predicate to determine whether or not the object is at a given state.

2.92.3. Activation Conditions. Activation conditions are used to constrain method invocy.

tions and more generally the execution of the object’s threads.
ract states, that has.to be true in order to run

They associate method:

with a condition, expressed in terms of abst
a thread that executes the associated method. Activation conditions may be associated to
an object either statically, in it’s class definition, or dynamically to a particular instance
at run-time.

In the definition of a class, the variable conditions is used to specify activatior
conditions. This variable should be set to a dictionary having as keys objects that des
ignate a set of methods the acceptance of which is constrained by the condition, and a-

values, boolean functions that specify the conditions. The following types of objects may
be used as keys:

o A string: in this case the string is the name of the method that is constrained
by the condition.

e A list of strings: the strings have to be method names and in this case al.

methods in the list are constrained by the condition

e A function: t i
won: the function has to evaluate to a list of strings designating objec!

methods. S :
uch functions are evaluated at the creation of the active object clas:

to determine th
— e actual set of methods that is constrained by the condition. The
) Inay use in it .
e t}y :be In its evaluation variables defined by the object that contal
DI method na e
mes as well as predefined functions that return such lists. 0

instance, the function
iction alilMethods may be used to i |
of the object. itk

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

ing on whether or not the object is at a state that matches it’s argument. Abstract

depeﬂd
state Speciﬁcations and the matching depend on the state predicate that is associated with

a particular state.

Activation conditions may be associated with an instance at run-time by calling the

method addCondition. This method is provided by the object manager and is supported

by all active objects.

5.9.4. Synchronization Actions. The programmer can define a number of actions to be
executed when certain events, such as the receipt of a request or the completion of a
hod execution, take place during the execution of the object. In these actions the

mer may use variables espec1ally defined for this purpose to keep track of the

met

program
occurrence of such events. These variables may then be used in the definition state

predicates. This mecha.ilism in combination with abstract states and state predicates,

may be used to specify synchronization based on synchronization counters.

Some of these actions could be included directly in the code of object. However,

this approach has several disadvantages. Most importantly, one can not anticipate all

the information that will be needed by state predicates to be defined in subclasses when

writing the methods of a class the first time. If more information is needed for defining the

state predicates in a subclass, it will be necessary to redefine the methods inherited from
the class. In addition, the code of the object’s me

would mix computations that have to carried out by the met

thods would become more complex as it

hod as well as computations

that are used to keep track of such events.

Such a feature has been presented in previous proposals
ith methods and are executed before and

[25][15]. In these, pre-

actions and post-actions can be associated w

after the execution of their asédciated methods. A more detailed discussion of the ben-

Our proposal extends these

efits of a such feature may be found in these references.
e flexibility for the

Previous proposals by the inclusion of further actions and provides mor

specification and inheritance of actions.
In addition to pre-actions and post-actions

when a method invocation request is received by an ob

xecuted

ted

we introduce actions that are €

ject, actions that are execu

When the execution of a method is suspended and resumed.

Synchronization actions are associated with methods by the deﬁnition'of the dic-
nd_actions, resume_actions and receipt-actions.

tionar; . .
Naries pre_action, post-actions, suspe
27

PATHOMAS AND V.-M. §CUTURICI

cthod names Or functions that evaluag,
> to

M. PA

e either Jists of m

he dictionary ar m
es in the dictionar

mes. The valu

n the execution of

The keys in
lists of method na

y specify the actions associated wit
1

i methods.
these various events

o s‘wchrorlt'Zd"“’"- Thread Creation. In addition to thre,,.
jon 1 v

d Creat - . .
9.2.5. Threa requests, 1t 18 possible for objects to |,

te method invocation

X

¢ created whe

ber of threads that ar
ier and with the threads that execute met},,

execute quasi—com*nrrently with each otl

a num

The execution of these threads is constrained in the same way as 1},

invocation requests.
threads that execute requests.

The variable activities is used in the definition of a class to specify the list of
methods that are to be executed by threads created sponta.neously at the creation of ar

instance of the class. If the object’s class defines a method with the name Activity, this

‘< also executed in new thread at the creation of the object. The execution of such threa:
\n constrained by activation conditions in the same way that threads that execute methoc
invocation requests are. In the definition of a class it is possible to specify whether or 1o
+he activities of parent classes are inherited.

Synchronizing threads with abstract states of the object. A thread may suspend I':
execution until the object reaches a specified state by calling the method suspendUntil!
providing as argument an abstract state expression that specifies the requested state
This feature is particularly interesting when combined with the execution of backgrour:
threads. Such a thread may loop waiting for the object to reach some state where It

AR e ‘)a‘ kgl’ un
Th g 1€

artive ob) 1 i i
object behaviours is shown in the examples in section 4

Synchronizati ;
ynehronization with requests sent to other objects. The method sendAndSus”

pend may be used to ;

o e :s}ue & request to another object and suspend the calling s
“Piy 18 returned by the called ob;

. ' Ject. This allows th i . o

1 a bz e call to do so!

. 0 a background thread or -

object processes ity request,

ll‘}lis f(.a't\lr . .
i adiemts he concurrent ¢ provides some flexibility for reply scheduli

other actions

possibly accept other request while the called

: Programmj
monitor calls, '!ng problems known as remote delays and nest¢
Asynchroy |
wous Stuate .
other obiect ate Nul«]u-u!wu_ An ob;)
P . : ec " all”
Ject reaches a state 1}, atisfies b J R o be et :
5 an abstrac . 7
28 L state expression has to first issue

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

notjﬁcation request to the source object. The request returns an object that represents
the notification event. This object may then be used to suspend a thread until the event
occurs.

A notification request to an aclive object is made by calling the method noti-
fyRequest() or the method atState(). This method takes as argnment an abstract
state expression and returns an object that represents the notification event. The method
suspendUntil() and waitUntil() take as argument an object representing a notification
ovent and suspend the calling thread until the event occurs. With the former, while the
calling thread is suspended other threads in the object may be scheduled for execution.
I'he execution of the suspended thread is resumed sometime after the event has occured
and when there are no other active threads within the object. With the latter, no other
threads may be scheduled while the thread waits for the event. In this case the thread is
resumed immediately after the event occurrence.

It is also possible to wait for a combination of notification events. This is accom-
plished by the method suspendUntilComplexEvent. This method takes two argu-
ments. The first argument is a dictionary that has keys strings used to tag the events and
as values notification event object returned from calls to notifyRequest. The second
argument may be one of the strings ’Any’ or All’. In the first case, the complex event
occurs when any of the notification events occurs. In the second case, the thread waits
until all events have occured. The metl}od returns the tag of the last event. This is useful

in the case of ’Any’ to determine which among a set of mutually exclusive events has

occured.

Synchronous Notification. The syncBlock method allows the execution of a block
of code in synch with one or more objects at a given state. For instance, the code below

specifies that the code following 'do’: will be executed when the object, anObject, 1s at
the state: aState, The local variable theObject is bound to the object when the block of

ode following 'do’: is executed.

telf. SyncBlock(
{"with’: {’theObject’: (anObject, (’aState’,)),},
'do’: ‘‘theObject . aMethod()’’
7)

Once the object, anObject has reached the request state it will not accept any

more calls at its interface. Method calls are only accepted through a privileged interface

that jg only known in the syncBlock code and is bound to a variable local to the block

29

PAPAT“OMAS AND V.-M. §CUTURICI

After the code block is executed the priyi legeq

M

Another feature of the p

cthods are interpret

rivileged interface used in the syncBlock is that activatj,,

od as assertions. That is, it is an error if the activay;
1‘;‘

nditions for m . he
co f cthod is not catisfied whwn a method is called through this interfac.
condition for & met :

Th son for interpreting activation conditions as agsertions is that it does |,
e reas crpre

ke sense t0 suspend a method call within a syncBlock statement. As the object v
make SCUS haint
not accept any other calls on its ordinary interface its state may not change but o],

through calls executed within the syncBlock.

996. Message Parsing Features. Issuing Requests. Active object’s methods may be i1
voked using the ordinary Python method invocation syntax which has in our model the
<emantics of a remote procedure call. However, the model provides other constructs a-

lowing more flexibility in structuring object interactions. The message passing features

provided are the following:

e Remote procedure call: this is supported by the ordinary method call syntax of
Python. The calling object is blocked until the calling object replies
Asynchronous method call: this is supported by the method send which, takes

as argument a dictionary that represents the message to be sent. The field of

this dictionary are explained below.

I\"on-blocking remote procedure call: this is supported by the method send And-
Suspen.d that takes as argument a dictionary representing a message. The differ
Tfﬂ@f with remote procedure call is that while the thread that issues the reques
1 suspended other threads may run in the object. The suspended thread is

resumed after the
reply has been received, there is no other active thread in "

object and the obiect :

> obje
| 2Ject Ja at a state where the m th : . o
can be rup, ethod associated with threa

The non-blockj : .
ocking designation assigned to this feature should

understood wit}
1 Te 2C .
e e8pect to the object. The calling thread itself is blocked

' mary that | . o

8 used to represent the message to b t by the Send an

. e sent by the Send a*
ing fields:
L the ob e A .
. key. N object which the message is t
‘Y. as rl“g 8 5.. . . Sell
o pecifyng (he Name of the |

B8 a tuple with the ¢ method to be called

b(:DdA x' >
) 1e 0 Oow

L targu

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

sLep

nmning J —— ALop
[3

resume stopped

E1K31¢]

FIGURE 2. State diagram for the behavior of objects of class activity

o replyTo: this field is optional. Its value may be set to None. In either case, if
it is present, the message is send asynchronously. In the case where it’s set to a
reply‘ destination object other than None, the reply to the request is delivered
to the caller associated with this reply destination.

3. Examples

3.1. Combining Behavioural Patterns through inheritance. Previous proposal for
combining concurrency features with class inheritance, considered that, in order to be
able to reuse methods in subclasses through inheritance, methods should not contain
any synchronisation code. With the features provided in our model it is possible to use
inheritance for reusing methods that contain synchronisation code. In this section we
show, not only, that is not a problem but that in addition, this possibility also enhances
reuse by allowing the definition and reuse of mixins that define behavioral patterns.

We define a set of abstract classes and mixins that specify and allow the reuse of
the behavior of objects that representing continous activities.

A Basic Activity

The most general such behaviour is defined by the class Activity. The behavior
of instances of this class is shown abstractly in the state diagram in Figure 3. Objects
of class Activity may be at the states idle, running, paused and stopped. When first
created, they are at the state idle where they can accept the method start and move at
the state running. While they are in the state running they continously execute their
Method stepaction. This method should be redefined by subclasses and it corresponds
to the actions to be executed by the activity at each step. At the state running objects

accept calls to their pause and stop methods. The execution of the pause method moves

31

M. PAPATHOMAS AND V.-M. SCUTURICI

-{QJ of o)

arare /,,4 g W ’

7 ‘ areyp
L idle] ranere resane \

| |
) el

— atoe

FIGURE 3. Behavior of an activity that ends

the object to the state paused where the execution of their activity is ceased temporaril,
From the paused state an object may accept a resume method call and move back 1,
the running state where it resumes the execution its activity. At the states running anc
paused, an object may accept a call to stop which moves the object into the stoppec
state. After moving to this state the object will not accept any further requests. Moving
to ihis state triggers the execution of internal actions for freeing the resources used b
the object.

Activities that Terminate after a Number of Steps. The class ActivityWithEnd
refines the behavior of basic activities to specify the behavior of activities that terminate
after a finite number of steps. The behavior of such an activity is illustrated by the state

~diagram in Figure'Q. The state diagram includes a new state ended where an instance
of ActivityWithEnd may move into after executing the last step of activity. Note thar
the state ended is different than the stopped state. Consider for instance an object
encapsulating the playback of a video c.lip. The activity ends after the last frame of the
clip fas been displayed by stepaction. However, the window éhowing the last frame may
remain visible on the display. However, if the object moves into the stopped state, the
window showing the last frame disapears.

The definition of the class ActivityWithEnd is shown in Figure 4. This class car
be inherited by a class that also inherits Activity to obtain the behavior of an activit)
that ends after a finitenumber of steps. |

This class defines two instance variables length and step. Length stores the numbet
of steps of the activity and step stores the number of steps that were executed so far by
the activity. The post-actions associated with stepaction. is used by the state predicate

to determined if the object is at the state ended. This function compares the number of

32

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

fass simpleActivity(ActiveObjectSupport):
c

pethods = [’pause’, ’start’, ’stop’, ’'resume’, ’'stepaction’]
states = [’idle’,’running’, ’paused’, ’stopped’]
= : (lambda o: o.atState((’idle’,)),),

conditions = {’start’
'stepaction’ : (lambda o: o.atState((’running’,)),)}

state_predicates = {enum_states: [’'idle’,’running’, ’'paused’, ’stopped’]}
enum_states_afuncs = {’idle’: ’isIdle’, ’running’ : ’isRunning’,
‘paused’ : ’'isPaused’,’stopped’ : ’isStopped’}
method_call_opt = [’stepaction’]
def __init__(self, stepDelay = 2):
gelf.step = 0, self.running = 0, self.idle = 1, self.paused = 0
gelf.active = 0, self.stopped = 0, self.steptime = stepDelay
def isldle(self,state): return self.idle
def isRunning(self,state): return self.running
def isPaused(self,state): return self.paused
def isStopped(self,state): return self.stopped
def Activity(self):
#self.run = self.interface.notifyRequest((’running’,))
while not self.isStopped(1):
self.step = self.step + 1
self.sendAndSuspend({ ’target’ : self.interface,
'key’ : ’stepaction’, ’args’ : (})
def stepaction(self):
print “executing step: %d ... \n" % self.step
time.sleep(self.steptime) ,
def pause(self): self.running = 0, self.paused = 1
def start(self): self.active = i, self.running = 1
def resume(self): self.running = 1, self.paused = 0
def stop(): self.running = 0, self.active = 0
class ActivityWithEnd(SimpleActivity):
length = 10, states = [’ended’]
state_predicates = { enum_states : [’ended’]}
enum_states_afuncs = {’ended’: ’isEnded’}
conditions = {’stepaction’: (lambda o: not o.atState((’ended’,)), ’and’)}
def isEnded(self,state): return self.step >= self.length
class loopingActivity(ActivityWithEnd):
loop = 0, states = [’looping’]
state_predicates = { enum_states : [’'looping’]}
enum_states_afuncs = {’looping’: ’inloop’}
conditions = {’stepaction’: (lambda o: not o.atState((’ended’,))
or o.atState((’looping’,)),’and’)}
methods = [’looptoggle’]
def isEnded(self,state): return self.step >= self.length
def inloop(self,state): return self.loop
def looptoggle(self): self.loop = not self.loop

FIGURE 4. Continous activity with an end. Definition of a continous ac-
tivity. Looping activity.

Sleps executed by the activity to the number of steps of the activity and returns true if

they are equal.
This class defines a new activation condition that is combined with inherited ac-

“ation conditions to constrain the execution of the method step action. This condition

33

M. PAPATHOMAS AND V.-M. SCUTURICI

that the activity will not execute any more steps after it has reached its end - |,
ensures \

executed its total number of its steps.

Activities that loop. The class loopingActivity can be combined V'Vith the previo,
classes to specify the behavior of activities that can loop. This class introduces a y¢,,
abstract state looping and two new methods looptoggle and reset. The method looptogy .
may be accepted at any abstract state of the object other than stopped and moves t},
objects from the abstract state looping to the abstract state not looping. This methq
does not affect the other abstract states of the object. If during its execution an objec:
moves to a state corresponding to the abstract state ended and looping, the reset method
is executed and the object moves to the state running where it starts executing its activit,
from the beginning. The reset method has to be defined in subclasses and it should include
the actions needed for restarting. the activity. For instance, if the object plays a video clip
that is stored in a file, the reset action moves the file pointer to the beginning so that it
stepaction method will redisplay the video frames from the beginning of the video clip.

Figure 4 shows the definition of the class loopingActivity. This class defines the
function looping that is used to move into and out of this state. The method ResetAndEnc
is executed by a thread created spontaneously at the creation of the object - this is specifiec
by the definition of the activity variable. This thread waits until the object at a stat:
where the abstract states looping and ended are true simultaneously. Then, it calls reset
to execute the actions that will allow the activity to restart executing from the beginning
The post-action associated with reset sets the value of step to zero.

This has the effect that the abstract state ended is no longer true so that the
method stepaction that was constrained, in activityWithEnd, by a condition starting

that the object should not be at this state, may again be accepted.

3.2. Object coordination.

3.2.1. Associating Audioeffects to Playback of a Video Clip. In this example we use stal

notification and the dinamijc definition of abstract states and state predicates to associal:
some audio effects to the play back a video clip.

In this example an mstance of a videoPlayer class reads video frames from a fil¢

and displays them in a window on the screen. An instance of an AudioEffectManager clas*
associates dynamically with the

videoPlayer object a state predicate and a set of abstrac!
states that "annotate” the vide

o clip. The AudioEffectManager uses state notification t¢
34

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

- Reached Invoke \

/’ 2 //
/ ¢ onTheGround slant <
VideoPlayer state \
Audiok Tect
/)

FiGURE 5. Adding audio effects to video

M) ATOM Ed iter
Fos ER Obisct Connection Opfions View Help l
AY
conm '
{paasivaC onection)
Object) ot n oemc
(passivePort) (pussivePort) | (ocinedXVitso)
28507 &
signel
foutSigaiPort)
conm2
{signeiConnection)
signaiHandier
Port) conrd 1 -
(pess heCounaction)
Objact1 out n
lW 1

FIGURE 6. The Active Object Model Editor: Teapot example

wait for the occurrence of a visual event and activates an audioEffect object that plays
the associated sound.

In this particular example the video shows a teapot that jumps, does a looping
in the air and falls on the ground. A state predicate of class flight VideoAnnotations 1s
associated with the videoPlayer object and defines the abstract states: inTheAir, onThe-
Ground and highest. These states are associated with visual events in the playback of
the video-clip. For instance, the videoPlayer object is at the abstract state onTheGround
when it displays the video frames where the teapot is on the ground. In the example,
?he AUdioEﬂ‘ectManager uses state notification to wait for the event that the videoPlayer
* @t the abstract state onTheGround to generate an impact sound. Figure 5 shows the
Program structure used for the example,

The state predicate, flightVideoAnnotation, that is used in this example to define

absty . . :
act states that are associated with visual events is shown in Figure 7. The association

35

M. PAPATHOMAS AND V.-M. SCUTURICI

class flightVideoAnnotationli
obj = None
functs = {
‘highest’:
»inTheAir’: (lambda x:
}
def __init__(self, object):
self.obj = object
def evalState(self, state, obj):
return self.functs[state[0]](obj)
class AudioEffectManager(ActiveObjectSupport):
def __init__(self, video, state, audioEffect):
self.state = state, self.video = video
self.audioEffect = audioEffect
self.video.newPred(flightVideoAnnotations,
[’highest’, ’onTheAir’, 'onTheGround’],))
self.fall = self.video.notifyRequest((’onTheGround’,))
def activity(self):
while not self.atState((’stopped’,)):
self.suspendUntil(self.fall), self.audioEffec.start()

(lambda x: x.frame == 13),
{ < x.frame < 26)

FIGURE 7

between the abstract states and visual events in the video clip is made by using to¢
instance variable step of the videoPlayer that provides information about the frame that ':
displayed. The class defines three functions that establish the relationsheep between vide:
frames and abstract states. A state predicate class such as videoflightVideoAnnotation:
may in fact be generated automatically by a tool that allows a user go view a video an:
associate interactively frames with abstract states.

The class AudioEffectManager is shown in figure. At its creation an AudioE!
fectManager object is acquitainted to a videoPlayer object and an AudioEffect object.
using the newPred method, it associates dynamically with the VideoPlayer object the
state predicate flightVideoAnnotation that defines the abstract states associated with the
visual events of interest. Then, it requests by calling the method notifyRequest, to be
notified when the videoPlayer object is at the abstract state onTheGround. The call to
notifyRequest returns an object representing the notification event. After initialization
the activity method of the AudioEffectManager is executed in a new thread. In this
method the event object, returned by the call to notifyRequest, is used in the call to
the suspendUntil method to suspend the execution of the method until the videoPlayer
object reaches the abstract state ontheGround. When the state is reached the thread is

resumed and it invokes the AudioEffect’s start method to playback the audio effect.

36

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

the example simple, the association of abstract states to audio effects is

To keep
done statically in the code of the AudioEkffectManager class that allows the association
of Jifferent audio eftects to several abstract states of the videoPlayer. Furthemore, the

association of audio effects to abstract states can be specified in a list that is passed to

the i\udJoEﬂectMana.ger at initialization rather than having it hard-wired in the code of

(he class in the example.

4+ Conclusion

We have presented an active object model that combines concurrency and object-
oriented features. The model integrates concurrency and ob_]ect -oriented features in such
a way that alleviates several known problems for taking advantage of the software reuse
potential of object-oriented features in the development of concurrent software. In addi-
tion. the model provides support for novel ways to combine concurrent object behaviors.

The model introduces the novel features of abstract states, state predicates and
<tate notification that can be used to synchronize the actions of a single objects as well
as coordinate the execution of sets of objects. This done in a way that is compatible with
polymorphism and inheritance and provide novel ways to support reuse by combining
active object behaviours.

The proposed model has been implemented as an extension to the programming
language Python. We have started using the prototype for the development of multimedia
programming environment based on qctive objects and have had very positive experiences.
The implementation of the model in language that is freely available on different platforms

this will allow us and other researchers to gain more experience with the model by using

't for developing concurrent software and further refine the model’s features.

References

1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, Abstracting Object Interactions Us-

ing Composition Filters, Proceedings of the ECOOP 93 Workshop on Object-Based Distributed

Proge- i
[*ogramming, ed. R. Guerraoui, O. Nierstrasz, M. Riveill.
dp . .
IP. America, Inheritance and Subtyping in a Parallel Object-Oriented Language, Proceedings of the
E >
COOP 87, ed. J. Bezivin, J-M. Hullot, P. Cointe and H. Lieberman.

B] C. Atki e
le. Atkinson, S. Goldsack, A. di Maio, R. Bayan, Object-Oriented Concurrency and Distribution n
D
RAGOON. 300P, March/April 1991.
37

M. PAPATHOMAS AND V.-M. SCUTURICI

[4] C. Atkinson, Object-Oriented Reuse, Concurrency and Distribution, Addfson-“.’eele).v/ ACM Prey,
1991Lodewijk Bergmans, “Composing Concurrent Objects”, Ph. D. Thesis, University of Twente,
1994. ‘ . .

[5] T. Bloom, Evaluation Syncronization Mechanisms, in 7th International ACM Symposium on Oper
ating Systems Principles, 1977.

[6] D. Caromel, Concurrency and Reusability: From Sequential to Parallel, J.OOP, ?ept./()ct. 1990.

[7] S. Frolund, /nheritance of Synchronization Constraints in Concurrent Object-Oriented ngmmm,n,/
Languages, Proceedings ECOOP 92, ed. O. Lehrmann Madsen.

[8] S. Frolund, G. Agha, A language Framework for Multi-Object Coordination, Proceedings EC(();
'93.

[9] S. Matsuoka, K. Taura, A. Yonezawa, Highly Efficient and Encapsulated Re-use of Synchronisati.
Code in Concurrent Object-Oriented Languages, Proceedings OOPSLA ’93.

[10] B. Meyer, Systematic Concurrent Object-Oriented Programming, Communications of the ACM, Sep:
1993.

[11] C. Neusius, Synchronisation Actions, Proceedings of ECOOP ’91, July 1991.

[12] M. Papathomas, D. Konstantas, Integrating Concurrency and Object-Oriented Programming:
Evaluation of Hybrid, in Object Management, ed. D. Tsichritzis, Centre Universitaire d’Informatiqu-
Untversity of Geneva, 1990.

(13] M. Papathomas, Language Design Rationale and Semantic Framework for Concurrent Object-
Oriented Programming, Ph. D. Thezis, University of Geneva, 1992.

(14] M. Papathomas, G. S. Blair, G. Coulson, A model for Acéit)e Object Coordination and ils use |
Dastributed Multimedia Applications, ECOOP ’94 Workshop on Coordination Models and Languag:
for Parallelism and Distribution, Bologna, Italy, July 1994.

{15) M. Papathomas, Concurrency in Object-Oriented Programming Languages, in Object-Oriented So'"
ware Composition, Prentice Hall, O. Nierstrasz and D. Tsichritzis eds.

[16] A. Yonezawa, E. Shibayama, T. Takada, Y. Honda, Modelling and Programming in an Objec
Orented Concurrent Language ABCL/1

» in Object-Oriented Concurrent Programming, ed.
Tokoro, MIT Press, 1987. |

LSR-IMAG GRENOBLE, FRANCE

“BABES-BOLYAI”

UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, hH!¢
3400 CLui-NarocCA, ROMANIA

E-mail address: Bcuty@cs.ubbcluj.ro

38

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

