
NIV.
"BABE^-BOLYAI",

ORMATICA, Volume I, Number 1, March 1996
STUDIA UNIV.

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

M. PAPATHOMAS AND V.-M. scUTURICI

Abstract. In this paper we propose an active object model that aims at a more compre-

hensive approach in integrating concurrent progranming and object-oriented features.

The model incorporates a number of previously proposed features with the novel fea-

tures of abstract states, state predicates and state notification. We have started using

the prototype for the development of multimedia programming environment based on

active objects. A prototype of the model has been implemented in Python and the

presentation in this paper is based on this implementation.

1. Introduction

Substantial research activity in the past few years
concentrated on the design of

languages and models for integrating concurrency and object-oriented features with the

intention to enhance the potential for software reuse in the development of concurrent sys-

tems. Most of the work in the area has focused on the problem of combining inheritance

with concurrency and more particularly specifying and reusing through inheritance syn-

chronization constraints on the invocation of objects' methods. Currently, this is a widely

recognised problem and several solutions have been proposed. However, most proposed

solutions address this problem in isolation. More recent and less research has addressed

the issue of coordinating the execution of a set of objects and of specifying and reusing

coordination patterns separately from objects. Furthermore, few languages supporting

the proposed features are widely available and relatively little experience has been gained

from their use.

In this paper we propose an active object model that aims at a more
comprehensive

Pc n integrating
concurrent programming and object-oriented

features. The model

porates a number of previously proposed features with the novel features of abstract

Received by the editors: September 12, 1996.

991 Mathematics Subject Classification. 68Q10, 68Q90.

r
Categories and Descriptors. D.1.5 [Programming Techniques]:

Object-oriented
Programming;

D.l.3|Frogram-

ue
Concurrent Programming; D.2.6 [Software

Engeneering):
Programming

Environments;
D.3.2 .Programming La

guag

ing

Con sge
Claasifications

- object-oriented languages; D.3.3 [Programming
Languages]:

Language
Constructs

and Feafures

Cond
*8annung structures;

H.5.1 [Information
Interfaces and Present ation]:

Multimedia
Information

System8.

19

M.
PAPATHOMAS

AND V-M.
SCUTURICI

states, state predicates
and state notificafio7n.

The model has been designed fn ..

amming:
addre

simultaneously the following reuse aspects in concurrent object-oriented Dragna

.Support for self-contained objects that can be reused across applicatione

. Reuse of methods through class inheritance.

Reuse of synchronization
constraints.

Composition of active object behaviours.

Object coordination.

A prototype of the model has been implemented in Python and the presentation in

this paper is based on this implementation. Python is freely available on a large nunber

of systems. This will allows us to make our prototype widely available and gain more

experience with the use of its concurrent object-oriented features in the development of

applications.

2. The Object Model

Objects are active entities that resemble server processes that accept requests from

other object, they can delay requests and process them in an order that is most suitable

to them. Requests are processed by threads that execute quasi-concurrently within an

object. Threads may also be created spontaneously at the creation of an object.

The main aim in the design of this object model is to enhance the potential t0
reuse in concurrent object-oriented systems by integrating support for all the reuse l55
discussed in section 2. For doing so, the model incorporates a number of message pas* ssing

features that are combined with thread scheduling in such a way that allows objec
to

5chedule the processing of requests and replies in a self-contained way. These feau
are integrated with the novel concepts of abstract states, state predicates and sta fication. "The use of these features avoids the problems caused by the use of inhe

itance

in COOPls, supports new ways to specify and inherit active object behaviours a
so

provides upport for object coordination.
The model is general enough so that it may be incorporated in a variety o guages. T'he current version is implemented as an extension to the language PyE

The linguistic constructs and examples used in this paper are based on the Python i tation.

20

AN ACTIVE OBIECT MODEL FOR MULTIMEDIA PRESENTATIONS

Obpct Mange Gute noticathn pmtocel
NotFka en waqurete

The

NosMeaten sener

Se Pedlcal

ct Ge NetRa tion Clh

FiGURE 1. Conceptual view of the object execution model

2.1. Language-Independent Description. Figure 1 shows a conceptual view of object

execution in our model. Each object is associated with an object manager that controls

the actions that are executed by its object. The object manager is a conceptual entity

that makes it easier to describe the behaviour of objects in our model.

The object manager instructs its object to carry out a number of actions such

as to start or resume a thread that executes some methods of the object. The object

executes the code of a method until the occurrence of an event, such as the completion or

suspension of a method. The occurrence of such an event activates the object manager

which decides what should be the next action to be executed by its object. The object

can thus be either executing some thread or it may be waiting for the object manager to

instruct it what it should to do next. In the latter case, we will say that the object is at

a stable state.

The execution of an object can be seen as a graph where nodes represent stable

States and edges are associated with tuples of the form (a,e) where a is the action that

ODect was instructed to execute in the previous stable state and e is the event that

opped the execution of a and made the object to move into the next stable state.

Inana er may also be activated by external events that are generated by other object in
part frorn events that are generated from the execution of its object, the object

ran. The events that trigger the execution of the object manager are

Amethod invocation request is received at the object. In this case the object

1anager creates a new thread for running the method. If there is no thread

diready active within the object and if the object is at a state where it can

execute the request method, the object manager runs the newly created thread.

21

M.
PAPATHOMAS

AND V-M.
ScUTURICI

manager

A thread completes the erecution of its method. In this case the object man

A thread requests to be suspended
until the

occurTence of an event. In this s

ready

chooses another waiting thread, if any, for execution.

case

the object manager
removes

the thread from the queue of threads that are re

to run and inserts it in a queue of threads that are waiting for an event, Then

ents

1En

it picks another thread, if any, for execution. There are several types of event

1t

a thread may wait for. For instance, it may wait for the reply to a request i

has issued to another object or it may wait until the object reaches a certain

state. These events will be discussed later in conjunction with the constructs

generate them.

The occurrence of an ezternal event of interest to one of its, threads. This any

event awaited by some of the object's threads that is not generated by actions

that are executed within the object. This can be for instance: the arrival of

the reply to a request a thread has made to another object or the arrival of a

state notification event (to be discussed later). In this case, the object manager

removes the thread from the list of waiting threads and depending on whether

or not the thread can be run immediately it resumes the execution of the thread.

The receipt of a state notifcation request. This is a request by another object

manager asking the object manager to generate a notification event when its

object reaches a certain state. The object manager stores the request în a queue

of notifications requests and when its object reaches the request state sends a

notification event. State notification is a novel feature of our model that will be

discussed in detail later.

In many of the situation discussed above, the object manager needs informatio
about the object's state. In our model, however, the object manager does not Sec

or

access the object state directly. The concept of abstract state is used to represent Pi
erties of interest with respect to the object's state at a level of abstraction that n

iides

implementation details, State predicates provide the mapping from abstract states the

concrete object state. In order to find out whether the object is at an abstract
the object manager goes through a state predicate. Abstract states and state preu are discussed in detail next. Figure 1 shows a conceptual view of object executio

icates

model illustrating the interactions of the object components of model.

our

22

AN ACTIVE OBJECT MODEL. FOR MULTIMEDIA PRESENTATIONS

all. Abstract States and Stale Pedicates. An abstract state represents some aspect of

eal state of execution of an object at a level of abstraction that hides implementation

ails, The state of execution 18 taken here in a broad sense. It may comprise not only

alues of the object's instance variables but also the messages that are suspended at
the

the object interface, the state of execution of the object's threads, etc.

At each stable state in the object's execution graph, the object's manager decides

wha action will be executed next based on abstract states. In our model abstract states

are used to constrains the execution of the possible actions. This is accomplished by

allowing the programmer to constrain the acceptance of methods and to express the

suspension or resumption of threads using abstract states. The linguistic constructs that

are provided for doing so are discussed in the remaining of the document.

State predicates provide an interpretation for abstract states. They are used to

tell whether or not a property that is represented by an abstract state holds a concrete

state. The mapping from abstract states to concrete states provided by state predicates

may difer for different classes and thus supports polymorphism for abstract states.

A state predicate can be defined as a function P from CS X Asp to {true, false},

where CS is the set of concrete object states and Asp is a subset of the set of the object's

abstract states AS. The following are some important properties of state predicates:

A set of abstract states may be true at one object state.

An object may be associated with a set of state predicates and each predicate

is associated to a subset of the object's abstract states.

The subsets of abstract states associated with different state predicates of an

object are disjoint.

From a practical point of view, state predicates are objects that encapsulate the

n1ormation necessary to determine whether or not the property described by the abstract

state is true at a certain stable state in the execution of the object. They are dehned by

e programmer and used by the object manager to evaluate the conditions that constrant

the execution of the object's actions.

2 State Notification. State notification allows active objects to monitor and synchrTo

WIh
ni state changes, expressed in terms of abstract states, occurring in other objects.

Oiication is a protocol provided by object managers that allows a thread in one S
23

M.
PAPATHOMAS

AND V-M.
SCUTURICI

object to synchronize it's execution with state changes
expressed in terms of ahct

states of another object.

Figure 1 shows a conceptual
view of the

architecture used to support state nate

cation. The figure shows two active objects A and B. B's object manager has made a es..

cre

notification request to A's object manager.
Following this, A's object manager has

ect

ated a local notification server object that represents the notification request. The obiec:

manager
maintains a list of notification server objects (notitication requests); each time

the object state changes it goes through the list and activates each notification server
ne

The notification server
evaluates its associated abstract state expression by invoking the

appropriate state predicate(s) and informs the notification client if appropriate. When

the notification client is informed, it requests its object manager to take the appropriate

action; for instance, schedule a suspended method for execution.

State notification may be asynchronous or synchronous. In the asynchronous case.

when the object is at stable state, its object manager services all notification requests

and then proceeds with the normal execution of the object's methods. The synchronous

variant allows the object that requested the notification and the notifying objects to be

synchronized in a way similar to "rendez-vous". This variant guarantees, by postponing

the execution of the notifying object's methods, that the notified object will get the chance

to invoke methods of the notifying object while it is still at the requested state.

Together with abstract states, state notification may be used to describe abstract.

as a sequence of abstract state changes, practically any activity encapsulated within an

active object. Also, note that this is a general architecture and can thus be instantiateu

with different implementations of notification clients and servers. For example, suppo

for real-time notification can be provided by specifying a time- out at the notification c
client

and/or by requesting a bound on the notification delay.

2.2. Linguistic Support.

2.2.1. Abstract States. In the implementation of our object model in Python, a
stract

states are represented as tuples that contain at least one element. This first manda
element is a string that represents the name of an abstract state. For exampies

ator

and (full',) are used to represent the abstract states of the bounded buffer. ^pe
the first mandatory string element that represents the state name, a tuple that

from

an abstract state may contain an arbitrary number of additional elementS.

sents

case

24

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

the abstract state name may be used to represented a family of abstract states that are

is defined by the state predicate responsible for the abstract state, For instance, a set of

shstract states ('contains',n), where n is a natural number, may be used to represent the

states where a container object contains exactly n elements. In the buffer example it is

the functions'empty and full that are implicitly defined as state predicates for the states

further qualified by the additional elements. The semantics of these additional elements

with the same name. Later we will see other ways for defining state predicates explicitly.

2.2.2. State Predicates. State predicates are objects that are associated with an object

and are responsible for determining whether or not the associated object is at a given

abstract state. An object may have a set of state predicates and each state predicate is

associated with a disjoint subset of the set of abstract states defined for the object. When

the object manager needs to determine if an object is at an abstract state, it calls the

state predicate that is responsible for that particular abstract state.

If no state predicate is specified explicitly for an abstract state the object should

have a method with the same name as the state that is used to determine whether or not

the property associated with is abstract state is true.

State predicates may be associated with an object statically or dynamically. It is

also possible for a state predicate to be shared among several objects. This feature can

be used as it will be shown in section 4.4.1 to support object coordination.

In a class definition, the variable state predicates is used to associate abstract states

to state predicates. This variable should be set to a dictionary, entries of this dictionary

should have as key a state predicate class and as value a list abstract states. For abstract

des that are not associated explicitly with a state predicate in the state-predicates

Variable, a method with the same name as the abstract state should be provided 1or

OWng to determine whether or not the object is at the associated state.

he method newPred supported by all active objects may be used to associate a

Predicate to an object instance at run-time. This method takes as arguments a state

Cate object and a list of the associated abstract states. The object should not deine

hese any of these states already.
Order to be able to operate with the object manager, state predicates should

dein
In

method evalState that takes as argument a tuple that represents an abstract

state
dthe object for which it is needed to find out if it is at the specified state. This

25

M.
PAPATHOMAS

AND
V-M. SCUTURIC

ate or a

method should return None to indicate that the object is not at the requested stata

In order to determine
whether or not its associated object is at a requested abstra

the

act value different to None
otherwise.

state, the state predicäte has to get some
information about its object. It's part of s

definition of the state predicate to state clearly the nature of this information and it's t

ar

responsibility of the programmer
that defines the active object class that uses a particuls.

state predicate to make sure that its class makes available the information required b

the state predicate to determine whether or not the object is at a given state.

2.2.3. Activation Conditions. Activation conditions are used to constrain method invoca

tions and more generally the execution of the object's threads. They associate methods

with a condition, expressed in terms of abstract states, that has to be true in order to run

a thread that executes the associated method. Activation conditions may be associated to

an object either statically, in it's class definition, or dynamically to a particular instance

at run-time.

In the definition of a class, the variable conditions is used to specify activation

conditions. This variable should be set to a dictionary having as keys objects that des-

ignate a set of methods the acceptance of which is constrained by the condition, and as

values, boolean functions that specify the conditions. The following types of objects may

be used as keys:

A string: in this case the string is the name of the method that is constrained

by the condition.

A list of strings: the strings have to be method names and in this case a.

methods in the list are constrained by the condition.

A function: the function has to evaluate to a list of strings designating objec
methods. Such functions are evaluated at the creation of the active object clas
to determine the actual set of methods that is constrained by the condition. he

function nay use in its evaluation variables defined by the object that conta
lists of method names as well as predefined functions that return such lisTS. Fo
instance, the function allMethods may be used to return the list of all mebu hod
of the object.

Conditions are boolean functions that may use the predefined function a
tate

that takes as argunent an abstract state specification and returns the values true fals
26

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

Janending on whether or not the object is at a state that matches it's argument. Abstract

state specifications and the matching depend on the state predicate that is associated with

a particular state.

Activation conditions may be associated with an instance at run-time by calling the

thod addCondition. This method is provided by the object manager and is supported

by all active objects.

2.2.4. Synchronization Actions. The programmer can define a number of actions to be

executed when certain events, such as the receipt of a request or the completion of a

method execution, take place during the execution of the object. In these actions the

programmer may use variables especially defined for this purpose to keep track of the

occurrence of such events. These variables may then be used in the definition state

predicates. This mechanism in combination with abstract states and state predicates,

may be used to specify synchronization based on synchronization counters.

Some of these actions could be included directly in the code of object. However,

this approach has several disadvantages. Most importantly, one can not anticipate all

the information that will be needed by state predicates to be defined in subclasses when

writing the methods of a class the first time. If more information is needed for defining the

state predicates in a subclass, it will be necessary to redefine the methods inherited from

the class. In addition, the code of the object's methods would become more complex as it

would mix computations that have to carried out by the method as well as computations

that are used to keep track of such events.

Such a feature has been presented in previous proposals (25][15). In these, pre-

actions and post-actions can be associated with methods and are executed before and

alter the execution of their associated methods. A more detailed discussion of the ben-

1s of a such feature may be found in these references. Our proposal extends these

PEvious proposals by the inclusion of further actions and provides more flexibility for the

8pecification and inheritance of actions.

in addition to pre-actions and post-actions we introduce actions that are executed

whe the execution of a method is suspended and resurned.

method invocation request is received by an object, actions that are executed

Dynchronization actions are associated with methods by the definition of the dic-

S

pre_action, post.actions, suspend_actions, resume actions and receipt actions.
ti

27

M.
PAPATHOMAS

AND
V-M. SCUTURIC

The keys in the dictionary
are either lists of method

names or functions that as

lists of method names.
The values in the dictionary

specify the actions associat.
evaluate to

with

these various events in the
execution of methods.

that are
created to execute

method
invocation requests, it is possible for obiecta .

may
a number of threads that are created when an object is instantiated. These thres.

hod

2.2.5. Thread Creation and Symchronization.
Thread

Crealion. In addition to L

ave

execute quasi-concurrently
with each other and with the threads that execute me.

invocation requests. The execution of these threads is constrained in the same way as t.

threads that execute requests.

The variable activities is used in the definition of a class to specify the list of

methods that are to be executed by threads created spontaneously at the creation of an

instance of the class. lf the object's class defines a method with the name Activity, this

is also executed in new thread at the creation of the object. The execution of such threads

in constrained by activation conditions in the same way that threads that execute method

invocation requests are. In the definition of a class it is possible to specify whether or not

the activities of parent classes are inherited.

Symchronizing threads with abstract states of the object. A thread may suspend its

execution until the object reaches a specified state by calling the method suspendUntill

providing as argument an abstract state expression that specifies the requested state

This feature is particularly interesting when combined with the execution of background

threads. Such a thread may loop waiting for the object to reach some state where t

executes some barkground actions. The use of these features for defining and reusing

ative object behaviours is shown in the examples in section 4.

Synchronization with requests sent to other objects. The method sendAndsu
pend nay be used o issue a request to another object and suspend the calling tn until a reply is returned by the called object. This allows the calling object to a other actions in a background thread or possibly accept other request while object processes its request. This feature provides some flexibility for reply se

called

and addresses the concurrent programming problems known as remote delay*

ling

monitor calls.
nested

Asynchronous Stute Notification. An obiect that wants to be notified w other object reaches a state that satisfies an abstract state expression has to

an

28

a

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PReSENTATIONS

notification request to the source object. The request returns an object that represents

the notification event. This object may then be used to suspend a thread until the event

occurs.

A notification request to an active object is made by calling the method noti-

vRequest () or the met hod atState(). This method takes as argument an abstract

state expression and returns an object that represents the notification event. The method

suspendUntil() and waitUntil() take as argunent an object representing a notification

event and suspend the calling thread until the event occurs. With the former, while the

calling thread is suspended other threads in the object may be scheduled for execution.

The execution of the suspended thread is resumed sometime after the event has occured

and when there are no other active threads within the object. With the latter, no other

threads may be scheduled while the thread waits for the event. In this case the thread is

resumed immediately after the event occurrence.

It is also possible to wait for a combination of notification events. This is accom-

plished by the method suspendUntil ComplexEvent. This method takes two argu-

ments. The first argument is a dictionary that has keys strings used to tag the events and

as values notification event object returned from calls to notifyRequest. The second

argument may be one of the strings 'Any' or 'All". In the first case, the complex event

OCcurs when any of the notification events occurs. In the second case, the thread waits

until all events have occured. The method returns the tag of the last event. This is useful

in the case of 'Any' to determine which among a set of mutually exclusive events has

occured.

Synchronous Notification. The syncBlock method allows the execution of a block

of code in synch with one or more objects at a given state. For instance, the code below

specifies that the code following 'do': will be executed when the object, anObject, is at

he state: aState. The local variable theObject is bound to the object when the block of

ode following 'do': is executed.

Belf.SyncBlock(
with': ' theObject: (an0bject, ('aState',)),t,
do' theObject.aMethod()'

Inore Calls at its interface. Method calls are only accepted through a privileged interface

Once the object, anObject has reached the request state it will not accept any

18 only known in the syncBlock code and is bound to a variable local to the block

29

- the variable
the0bject in the example.

After the code block is executed +h.

interface is discarded and messages
are again

accepted at the ordinary object intert.

ncBlock is that activatio

M.
PAPATHOMAS

AND
V-M.

SUTURICI

the privileged

ace.

Another feature of the privileged
interface used in the syncBlock is that .

vation
conditions for methods are interpreted as

assertions. That is, it is an error if the aed:.

condition for a method is not satisfied whwn a method 1s called through this interf.

The reason for interpreting
activation

conditions as assertions is that it do

will

make sense to suspend a method call within a syncBlock
statement. As the obinc

only

cc

not accept any other calls on its ordinary interface its state may not change but

through calls executed within the syncBlock.

2.2.6. Message Parsing Features. Issuing Requests. Active object's methods may be in.

voked using the ordinary Python method invocation syntax which has in our model the

semantics of a remote procedure call. However, the model provides other constructs al

lowing more fiexibility in structuring object interactions. The message passing features

provided are the following:

Remote procedure call: this is supported by the ordinary method call syntax of

Python. The calling object is blocked until the calling object replies
Asynchronous method call: this is supported by the method send which, takes

as argumernt a dictionary that represents the message to be sent. The field o

this dictionary are explained below.

Non-blocking remote procedure call: this is supported by the method sendAnd

Suspend that takes as argument a dictionary representing a message. The ane

ence with remote procedure call is that while the thread that issues the reques
is suspended other threads may run in the object. The suspended thread
resurned after the reply has been received, there is no other active thread u the

object and the object ia at a state where the method associated with tnre
a

can be run. The non-blocking designation assigned to this feature shou
be

understood with respect to the object. The calling thread itself is blockeu The dictionary that is used to represent the message to be sent by the > sendAndSuspend method contains the following fields:

an

target: the object to which the message is sent key: a string specifyng the name of the method to be called args: a tuple with the arguments to be passed to the method 30

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

slep

ninning
3-a^

pause
idle resume stopped

paused

FIGURE 2. State diagram for the behavior of objects of class activity

replyTo: this field is optional. Its value may be set to None. In either case, if

it is present, the message is send asynchronously. In the case where it's set to a

reply destination object other than None, the reply to the request is delivered

to the caller associated with this reply destination.

3. Examples

3.1. Combining Behavioural Patterns through inheritance. Previous proposal for

combining concurrency features with class inheritance, considered that, in order to be

able to reuse methods in subclasses through inheritance, methods should not contain

any synchronisation code. With the features provided in our model it is possible to use

inheritance for reusing methods that contain synchronisation code. In this section we

show, not only, that is not a problem but that in addition, this possibility also enhances

reuse by allowing the definition and reuse of mixins that define behavioral patterns.

We define a set of abstract classes and mixins that specify and allow the reuse of

the behavior of objects that representing continous activities

A Basic Activity

The most general such behaviour is defined by the class Activity. The behavior

o instances of this class is shown abstractly in the state diagram in Figure 3. Objects

oClass Activity may be at the states idle, running, paused and stopped. When first

cated, they are at the state idle where they can accept the method start and move at

e state running. While they are in the state running they continously execute their

ethod stepaction. This method should be redefined by subclasses and it corresponds

o the actions to be executed by the activity at each step. At the state running objects

pt calls to their pause and stop methods. The execution of the pause method moves

31

M. PAPATHOMAS AND V-M. sCUTURICI

atep

niming cndcd

idle

stopped
At.o

FIGURE 3. Behavior of an activity that ends

the object to the state paused where the execution of their activity is ceased temporarily,

From the paused state an object may accept a resume method call and move back to

the running state where it resumes the execution its activity. At the states running and

paused, an object may accept a call to stop which moves the object into the stopper

state. After moving to this state the object will not accept any further requests. Moving

to ihis state triggers the execution of internal actions for freeing the resources used by

the object.

Activities that Terminate after a Number of Steps. The class ActivityWithEnd

refines the behavior of basic activities to specify the behavior of activities that terminate

after a finite number of steps. The behavior of such an activity is illustrated by the state

diagram in Figure 2. The state diagram includes a new state ended where an instance

of ActivityWith End may move into after executing the last step of activity. Note that

the state ended is different than the stopped state. Consider for instance an object

encapsulating the playback of a video clip. The activity ends after the last frame of the

clip fas been displayed by stepaction. However, the window showing the last frame may

remain visible on the display. However, if the object moves into the stopped state, the

window showing the last frame disapears.
The definition of the class ActivityWithEnd is shown in Figure 4. This class can

be inherited by a class that also inherits Activity to obtain the behavior of an activity

that ends after a finitenumber of steps.

This class defines two instance variables length and step. Length stores the number

of steps of the activity and step stores the number of steps that were executed so far by

the activity. The post-actions asociated with stepaction is used by the state predicate

to determined if the object is at the state ended. This function compares the number or

32

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATiONS

class SimpleActivity (Active0bjectSupport):

methods = I'pause', 'start', 'stop', 'resume
states I'idle', 'Tunning', 'paused', 'stopped]
nditions = {'start': (l ambda o: o.atStatte(('idle',)),),

'stepaction']

stepaction'(lambda o: o.atState(('running',)),)}
state-pred i cates (enum_states: l 'idle', 'running', 'paused', 'stopped]}
anum_states_afuncs {'idle': 'isTdle', 'running':'isRunning ',

'paused':'isPaused', 'stopped': 'isStopped'}
method call_opt = 'stepaction']
definit.-(self, stepDelay = 2):

self.step = 0, self.running = 0, selt.idle = 1, self.paused = 0

self. active = 0, self.stopped = 0, self.steptime = stepDelay

def isIdle(self , 8tate) : return self.idle

def iskunning(self, state): return self.running
def isPaused (self , state) : return self.paused
def isStopped (self,state): return selt.stopped
def Activity(self):

#self.run = self.interface.notifyRequest (('running',))

while not self.isStopped (1) :
self.step = self.step + 11

self.sendAndSuspend ({ 'target': self. interface,
'key stepaction* , 'args' : (0)

def stepaction (self):
print "executing step: %d ... \n" % self.step
time.sleep (self . stept ime)

def pause(self) : self.running = 0, self.paused = 1

def start(self): self.active = 1, self.running = 1

def resume (self) : self.running = 1, self.paused = 0

def stop(): self.running = 0, self.acttive = 0

class ActivityWithEnd (SimpleActivity):
length = 10, states = ['ended']

state-predicates { enum_states: ['ended']}
enun_states afuncs = {'ended': 'isEnded'}

conditions = {'stepaction' : (1lambda o: not o.atState(('ended',)), 'and')}
def isEnded (self, state) : return self. step >= self.length

class loopingActivity (ActivityWithEnd):
loop = 0, states = ['looping']

state predicates { enum_states: ['looping']
enum_states_afuncs = {'looping': 'inloop'}

conditions = {'stepaction': (lambda o: not o.atState ((' ended' ,))

or o.atState(('l0oping',)), 'and")}
methods = ['looptoggle']

def isEnded (self , state) : return self.step >= self.length

1ef inloop(self, state) : return self. loop
aef l0optoggle (self) : self. loop = not self.loop

FiGURE 4. Continous activity with an end. Definition of a continous ac-

tivity. Looping activity.

Bleps executed by the activity to the number of steps of the activity and returns true if

they are equal.
This class defines a new activation condition that is combined with inherited ac-

Vation conditions to constrain the execution of the method step action. This condition tiva

33

M. PAPATHOMAS AND V-M. sCUTURICI

has
ensures that the activity will not cxecute any more steps after it has reached its end- h.

executed its total number of its steps.

Activities that loop. The class loopingActivity can be combined with the previons

classes to specify the behavior of activities that can loop. This class introduces a

abstract state looping and two new methods looptoggle and reset. The method looptogg
new

may be accepted at any abstract state of the object other than stopped and moves the

objects from the abstract state looping to the abstract state not looping. This method

does not affect the other abstract states of the object. If during its execution an objec:

moves to a state corresponding to the abstract state ended and looping, the reset method

is executed and the object moves to the state running where it starts executing its activity

from the beginning. The reset method has to be defined in subclasses and it should include

the actions needed for restarting the activity. For instance, if the object plays a video clip

that is stored in a file, the reset action moves the file pointer to the beginning so that its

stepaction method will redisplay the video frames from the beginning of the video clip.

Figure 4 shows the definition of the class loopingActivity. This class defines the

function looping that is used to move into and out of this state. The method ResetAndEnd

is executed by a thread created spontaneously at the creation of the object - this is specified

by the definition of the activity variable. This thread waits until the object at a state

where the abstract states looping and ended are true simultaneously. Then, it calls reset

to execute the actions that will allow the activity to restart executing from the beginning
The post-action associated with reset sets the value of step to zero.

This has the effect that the abstract state ended is no longer true so that the

method stepaction that was constrained, in activityWithEnd, by a condition startin
that the object should not be at this state, may again be accepted.
3.2. Object coordination.

3.2.1. Ass0ciating A udioeffects to Playback of a Video Clip. In this example we use sta notification and the dinamic definition of abstract states and state predicates to assocla
some audio effects to the play back a video clip.

In this example an instance of a videoPlayer class reads video frames from a
and displays them in a window on the screen. An instance of an AudioEffect Manager cla associates dynamically with the videoPlayer object a state predicate and a set of abstra states that "annotate" the video clip. The AudioEfectManager uses state notification
34

AN ACTIVE OBJECT MODEL FOR MULTIMEDIA PRESENTATIONS

Andiol:f

Mmager

Renched mvoke
slan onl heGond

state VideoPlayer
AndioE Mect

FIGURE 5. Adding audio effects to video

ATOM Eder
F Ed Oct Connectbn Oplbra Vb

con
Meconncib

eport (pvePon)

sontornection)

natHandilr
(hslgnalandierPo) DonT

(p ecoencto
Obect

psive0A udioo
1E1
f ATOM Edto

Dass MexAUGDE pa ePo) psePort

N

FIGURE 6. The Active Object Model Editor: Teapot example

wait for the occurrence of a visual event and activates an audioEffect object that plays

the associated sound.

In this particular example the video shows a teapot that jumps, does a looping

in the air and falls on the ground. A state predicate of class flight VideoAnnotations is

a8sociated with the videoPlayer object and defines the abstract states: inTheAir, on'lThe

OUnd and highest. These states are associated with visual events in the playback of

the video-clip. For instance, the videoPlayer object is at the abstract state on Theliround

when it displays the video frames where the teapot is on the ground. In the example,

he AudioEffectManager uses state notißication to wait for the event that the videoPlayer

8 at the abstract state on'TheGround to generate an impact sound. Figure 5 shoOws the

program structure used for the example.
The state predicate, flight VideoAnnotation, that is used in this example to define

SEract states that are associated with visual events is shown in Figure 7. The association

35

M. PAPATHOMAS AND V.-M. SCUTURICI

class flightVideoAnnotations:

obj None

functs = {

highest': (lambda x: x.frame == 13),

inTheAir': (lambda x: 1 < x.frame < 26)

definit-(self , object):
self.obj = object

def evalState (self, state, obj):
return self . functs [state [O] (obj)

class AudioBffectNanager (Active0bjectSupport):
def-init-(self, video, state, audioBtfect):

self.state = state, self.video = video

self.audioBffect = audioEffect

self.video.newPred (tiightVideoAnnot at ions,
'highest', 'onTheAir', ' onTheGround'],))

self.fall self.video .notifyRequest (('onTheGround',))
def activity (self)

while not self.atState((' stopped,)):
self.suspendUnt il(self .fal1), self. audi oEffec.start ()D

FIGURE7

between the abstract states and visual events in the video clip is made by using the

instance variable step of the videoPlayer that provides information about the frame that is

displayed. The class defines three functions that establish the relationsheep between videe

frames and abstract states. A state predicate class such as videoflight VideoAnnotations
may in fact be generated automatically by a tool that allows a user go view a video and

associate interactively frames with abstract states.

The class AudioEffectManager is shown in figure. At its creation an AudioE
fectManager object is acquitainted to a videoPlayer object and an AudioEffect object.

using the newPred method, it associates dynamically with the VideoPlayer object the

state predicate flight VideoAnnotation that defines the abstract states associaled with the

visual events of interest. Then, it requests by caling the method notify Request, to be

notified when the videoPlayer object is at the abstract state onTheGround. The call to

notifyRequest returns an object representing the notification event. After initialization

the activity method of the AudioEffectManager is executed in a new thread. In this

method the event object, returned by the call to notify Request, is used in the call to

the suspendUntil method to suspend the execution of the method until the videoPlayer

object reaches the abstract state ontheGround. When the state is reached the thread is

resumed and it invokes the AudioEfect's start method to playback the audio effect.

36

AN ACTIVE OBJECT MODBL FOR MULTIMBDIA PRESBNTATIONS

To keep the example simple, the association of abstract states to audio effects is

catically in the code of the AudioEifect Manager class that allows the association

fdifferent audio ettects to several abstract states of the videoPlayer. Furthemore, the
of different

audio effect

ociation of audio effects to abstract states can be specified in a list that is passed to

the AudioEfectManager at initialization rather than having it hard-wired in the code of

the class in the example.

4. Conclusion

We have presented an active object model that combines concurrency and object

oriented features. The model integrates concurrency and object-oriented features in such

a way that alleviates several known problems for taking advantage of the software reuse

potential of object-oriented features in the development of concurrent software. In addi-

tion, the model provides support for novel ways to combine concurrent object behaviors.

The model introduces the novel features of abstract states, state predicates and

state notification that can be used to synchronize the actions of a single objects as well

as coordinate the execution of sets of objects. This done ina way that is compatible with

polymorphism and inheritance and provide novel ways to support reuse by combining

active object behaviours.

The proposed model has been implemented as an extension to the programming

language Python. We have started using the prototype for the development of multimedia

programming environment based on active objects and have had very positive experiences.

The inplementation of the model in language that is freely available on different platforms

WIll allow us and other researchers to gain more experience with the model by using

1or developing concurrent software and further refine the model's features.

References
) M. AKS1t, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, Abstracting Object Interactions U

Onpos1lion Filter8, Proceedings of the ECOOP 93 Workshop on Object-Based Distributed

Togranming, ed. R. Guerraoui, 0. Nierstrasz, M. Riveill.

erica, Inheritance and Subtyping in a Parallel Object-Oriented Language, Proceedings of the

OP87, ed. J. Bezivin, J-M. Hullot, P. Cointe and H. Liebernan.

nson, S. Goldsack, A. di Maio, R. Bayan, Object-Oriented Concurrency and Distribution in

DRAGOON. JOOP, March/April 1991.

37

M. PAPATHOMAS AND V-M. SCUTURICI

Press, 4 C. Atkinson, Object-Oriented Reuse, Concurrency and Distribution, Addison-Wesley/ACM P

ente 1991 Lodewijk Bergmans, "Composing Concurrent Objects", Ph. D. Thesis, University of Twent.

1994.

Oper- [5] T. Bloom, Evaluation Synconization Mechanisms, in 7th International ACM Symposium on O

ating Systems Principles, 1977.

[6] D. Caromel, Concurrency and Reusability: From Sequential to Parallel, JOOP, Sept./Oct. 1990

nming (7] S. Frolund, Inheritance of Synchronization Conatraints in Concurrent Object-Oriented Programmine

Languages, Proceedings ECOOP 92, ed. O. Lehrmann Madsen.

[8 S. Frolund, G. Agha, A language Pramework for Multi-Object Coordinalion, Proceedings ECOOP

93.

[9 S. Matsuoka, K. Taura, A. Yonezawa, Highly Ffficient and Encapsulated Re-use of Synchronisation

Code in Concurrent Object-Oriented Languages, Proceedings OOPSLA '93.

[10 B. Meyer, Systematic Concurrent Object-Oriented Programming, Communications of the ACM, Sept

1993
[11] C. Neusius, Synchronisation Actions, Proceedings of ECOOP 91, July 1991

[12] M. Papathomas, D. Konstantas, Integrating Concurrency and Object-Oriented Programming: An

Evaluation of Hybrid, in Object Management, ed. D. Tsichritzis, Centre Universitaire d'Informatique

University of Geneva, 1990.

13] M. Papathomas, Language Design Rationale and Semantic Framework for Concurrent Object.

Oriented Programming, Ph. D. Thezis, University of Geneva, 1992.

14 M. Papathomas, G. S. Blair, G. Coulson, A model for Active Object Coordination and üs ue jur

Distributed Multimedia Applications, ECOOP 94 Workshop on Coordination Models and Languages

for Parallelism and Distribution, Bologna, Italy, July 1994.

[15) M. Papathomas, Concurreney in Object-Oriented Programming Languages, in Object-Oriented Sol"

ware Composition, Prentice Hall, O. Nierstrasz and D. Tsichritzis eds.

[16 A. Yonezawa, E. Shibayama, T. Takada, Y. Honda, Modelling and Programming in an Objec
Oriented Concurrent Language ABCL/1, in Object-Oriented Concurrent Programming, ed.

Tokoro, MIT Press, 1987.

LSR-IMAG GrENOBLE, FRANCE

"BABES-BoLYAI" UNIVERsITY, FacuLTY OF MATHeMATICS AND CoMPUTER SCIENCB, R
3400 CLuJ-NAPoCA, RoMaNIA

E-mail address: scuty@cs. ubbcluj.ro

38

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

