UDIA UNIV. «BABES-BOLYAI", INFORMATICA, Volume I, Number 1, March 1996
ST

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

B. PARV

Abstract. This paper presents an implementation of the Poisson Symbolic Processor
by using the Computer Algebra System Maple and object-oriented facilities introduced
by version 1.0 of Gauss package. An hierarchy of abstract classes (called categories in
Gauss) is defined; each class represents an entity which is used to construct a Poisson
expression (which is the partial sum of a Poisson series): monomial part, trigonometric
part, term, expression. From each category there is derived at least one ”concrete” class
(called domain in Gauss). Each domain derived from the same category has its own
representation (unknown at category level) and, possibly, new code for its operations (in
order to achieve efficiency). This paper describes an experimental work; it constitutes the
beginning of a long-term research. Computer algebra system Maple is used here as testing
tool, due to its interactivity, user-friendly interface, and ready-to-use capabilities. After
the experimentation work will be finished, we intend to develop an operational version

of the processor using a high-level programming language.

1. Poisson series and expressions

A Poisson series have the form:

* L . Sin
S = Z Cizl'zy -+ ziy (kiyr + kay2 + - - + knya), (1)

1=0 cos

where: C; are numerical coefficients; T1, %2, , Tm are monomial variables; yi,y2,- - ;Yn
are trigonometric variables; 3y, j2,- - ,Jm and ky, ko, - - , kn are exponents and coefficients,
respectively. The summation index i covers the set of all possible combinations of expo-
nents j and coefficients k (j € Z™, k € Z7).

One can write the form (1) of a Poisson series as follows:

o0
S = § T;, |)
=0
\\“
Received by the editors: July 27, 1996.

:‘9’91 Mathematics Subject Classification. 68Q40, 68Q65.
91 CR Categories and Descriptors. D.1.56 [Programming Techniques]: Object-Oriented Programming; D.3.2 [Program-

ming Lap .
Buages): Language Classifications — object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and

Fe‘ture; -
abstract data types; 1.1.3 [Algebraic Manipulation]: Languages and Systems — special-purpose algebraic. systems.

B. PARV
in which T; is a term of this series:

T; = Ci B F;,
where the polinomial part P; is:

a2 j
P, = afial . aim,

(3)

and the trigonomeiric part F; have the form:
Fy = sinfeos(kwyr + kay2 + -+ - + knyn), (4)

In practice one does not operate with Poisson series, but with partial sums of these ones.

the so-called Poisson expresstons:

N
S=) T, NeN (5

=0
This new version of the Poisson Symbolic Processor presented here is able to manipulat:

Poisson expressions of the form (5).

2. Maple and Object-Oriented Programming

The Maple programming language [2, 3, 4] is a procedure-based one. Despite thi
fact, due to the powerful data types available, one can simply implement all the basi
concepts of the object-oriented programming. At least two Maple features facilitate thi
task:

1. interpretative nature of Maple, which means, from our viewpoint, dynamic bind

ing of function calls, and

2. Maple table, in fact a data structure corresponding to the hash table, which i

well-suited for implementing class definitions.

The Gauss package (see [5]), presented in the next section, constitutes an exampl
of implementing object-oriented concepts in Maple.

Why object-oriented computer algebra? This question is not a new one, but pos
sible answers were given only in the last decade [1, 5, 7]. The practical answers appea®
a few years ago, cspecially IBM’s AXIOM, and the Gauss package in Maple.

First, an object-oriented approach is well-suited for real-world modelling. In th

: . S
case of computer algebra systems, the real objects are mathematical ones (number

functions, operators, functionals, sets. structures, more generally analytical expressmns)

8

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

These objects have a well-defined behaviour (by axioms, rules, theorems, properties), and,
finally, the goal of the mathematical science is to study this behaviour.

Gecond, the object-oriented approach uses classification mechanisms as tools for
nanaging real world complexity. These mathematical objects can be grouped in classes,
and the inheritance relations between classes can be expressed by the class hierarchies.

Third, an other mathematical-specific thing, the parameterization, was borrowed
in the world of programming languages; the term used here is genericity. By using object-
oriented programming and genericity, one can express, in a natural way, the class hierar-

chies of mathematical objects.

9 1. Gauss Package. The Gauss Package introduces a new approach of programming,
based on parameterized (generic) data types.

There are two main concepts: category and domain. A category is an abstract
and parameterized (generic) class, and a domain is a concrete class in the object-oriented
terminology. An object is an instance of a domain. The category does not know the
representation of objects - this is essentially the meaning of the abstract word; conversely,
the domain (which represents a concretization of a category) defines the representation
of its objects. The category definition contains: ancestor(s) specification, definition of
signatures for all specific operations, and the implementation of all operations which can
be implemented at category level (without knowing the representation). The domain
definition defines domain category (categories), states the representation and implements
the remaining operations (unimplemented at category level). Using multiple inheritance,
Gauss implements a wide hierarchy of categories, all of them being algebraic objects. The
root of this hierarchy is Set category, with the following operations:

I =, <> - comparison operators

2 Input - conversion from Maple representation to domain representation (known as
wutial constructor in the ob ject-oriented terminology)

4 Dutput - conversion from domain representation to Maple representation

4 Randon - generates a pseudorandom value from domain

o Type - predicate which defines the domain structure; it is used to test if an expression
belongs o domain (from representation point of view).

22. Abstract and parameterized classes. Gauss domains are in fact parameterized
e function, which

(gener; . : . . .
generic) classes. From implementation point of view, a domain is a Mapl

9

B. PARV

— Maple table with operatinn names as table entries. The domain ancestor(q) i
. 3), the

class instances and the properties of defined operations are also table entrieg.

For example, the domain Integer() returns the table in which the entrieg 4. »
Xalll) o]

subtraction (““), multiplication (‘*), greatest common divisgy (gcq

teger addition (‘+%),)

zero and unit elements, etc.

The parameters of every domain are any valid Maple expressions, including of her

domains. The Gauss package contains a number of usual domains (see [5]). For example.
the domain DUP(R, x) from Gauss (DenseUnivariatePolynomial (R,x) i.e. the domajn’
'of univariate polynomials with real coefficients) has two parameters: the coefficient ring
(R) and the variable name (x). The first parameter, R must be a Maple domain, while the
second must be a Maple name.

From programming viewpoint, a Maple category is the Maple (Gauss) implementa-
tion of an abstract data type. One can derive several domains from the same category, sim-
ply by choosing different '-répres.entations (and then by implementing accordingly the cor-
responding operations). For example, Gauss package includes the ExponentVector(X),
EV(X) category, where X is a list of Maple names. This category defines the ezponent
vector abstract data type: if X contains the symbols z1, Z3,... ,Zx, then EV(X) will define

the set of all monomials in the variables X, i.e. monomials of the form:

P aft i (6)
where z; are variable names, and ¢; are exponents (natural numbers). If the list X is
ordered, and if this list is a parameter of the domain being considered, then for every
monomial of the above form it is necessary to consider only the list (vector) of exponents
E = {617629' tt 7en}-

One of the major benefits of the object—oriented programming is software reusc:
Every (object-oriented) application framework contains a class hierarchy, from which, by

uging inheritance, one can extend (dernve) new classes needed for an a.pphca.tlon—ﬁ"l?eclﬁc

domain, with a minimum programming effort. In most situations, the existing classes
are almost all what we need. By applying these considerations to the Gauss packag¢
(fvhnch i8, in fact, an example of application framework), the programming steps are the
following:

1. Define all the necessary categories

10

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

9. Define all the corresponding domains
3. Instantiate the domains by setting properly the generic parameters

4. Manipulate the obtained objects by using their operations.

2.3. Deriving new categories and domains. For a new category (for example
ExponentVector), does not matter the representation of its objects; we are only in-

terested in choosing the specific operations we need for manipulating the objects. The

natural op
monomials. Consequently, besides the already inherited operations, the ExponentVector

erations with monomials are multiplication, division, and common factor of two

category must contain the definition of the following operations:

o addition of two exponent vectors (which corresponds to monomial multiplica-
tion)
o subtraction of two exponent vectors (which corresponds to monomial division)

e the minimum of two exponent vectors (which corresponds to monomial greatest

common divisor).

The operations inherited from Set must be re-implemented. There are two alterna-
tives: to implement general algorithms at category level (which, in turn, must invoke
the representation-specific functions, defined at domain level), or to postpone (the used
term is to deferre) this implementation to the domain level (where the representation is
known).

After the category is completely defined, one can derive from it the corresponding
domains. Usually, one can derive many domains from the same czltegory. For examplé, in
the Gauss package, there are presented four domains derived from the ExponentVector
category: DenseExponentVector, PrimeExponentVector, MapleExponentVector, and

MacaulayExponentVector. Every such a domain uses a different representation, and,

consequently, specific algorithms for the operations it implements.

3. The class hierarchy for the Poisson Symbolic Processor

Based on the definition (1), the elements of a Poisson series (expression) can be

efined in an hierarchical way. First, we consider the term components (factors): the
Coeffici . . .
eﬂlclent, monomial part, and trigonometric part.

11

B. PARV

bserve the elements well-suited for parameterization: the lists of
y observe the

can eas .
One . variables. For a concrete problem, these variables (symb ols)

monomial and trigonometr

i ' i del.
ters of its corresponding mathematical mo

are parame

The cocflic

jent is a rational number. Because Maple contains rational data typ,

))E,Sl(es

this. the Gauss package contains the definition of the Rational domain.

The monomial part can be considered as an instance of an exponent vector. Be.
e vial pa

o the existing ExponentVector category deals with exponents considered natura]
cause the exis

i i i i exponents.
numbers, one must redefine this category 11 order to manipulate integer exp ts

The trigonometric part has two components: the trigonometric function to be

applied (it sin or cos) and its argument (a linear combination of trigonometric variables,

with integer coefficients). For the same reason as in the case of ExponentVector, the

argument can be expressed in the terms of a list of coefficients, if the list of trigonometric
variables is considered as parameter. The CoefficientVector category described below
implements the definition of this list (vectof) of coefficients. Based on this category, one
can define TrigPart category, which describes the behaviour of the trigonometric part.
Finally, the PoissonExpression category defines the behaviour of the Poisson
expressions, taking the coefficient ring, the ExponentVector, and the TrigPart categories

as parameters.

3.1. The ExponentVector category. This category 18 parameterized with the list of

monomial variables (list of names). The operations are:
J
e Variables - returns the list of monomial variables

e Index - returns the index of the argument - a monomial variable name - in the
list of monomial variables

e Exponent - returns the exponent of the argument - a monomial variable nani
-in the current object

e Dim - returns the number of monomial variables

Vect2List - conversion from internal representation to list of integers

List2Vect - conversion from list of integers to internal representation.

addition - multiplication of monomial parts

subtraction - division of monomial parts

comparison - returns -1, 0 sau 1, i.e. less than, equal, or greater than.

12

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

The last two operations, List2Vect and Vect2List, are defined but not imple-

o ented in this category (by using object-oriented terminology, these function can be re-

ferred as pure virtual functions). By using these functions, one can implement, at category

Jevel, some of the defined operations (despite the fact one does not know the representa-

tjon). For example, the algorithm for the addition of two exponent vectors consists of the

following steps:

]. operand conversion from internal representation (unknown at this point) to list
representation (natural representation of a vector) using Vect2List;

2. adding lists, element by element;

3. result conversion from list representation to internal representation using

List2Vect.

Besides the above-discussed operations, the ExponentVector category definition also con-
tains the implementation of some conversion functions, inherited from Set: Input and

Output. Actually, these operations are implemented in all categories we discuss.

The following text represents the definition of ExponentVector category:

#

ExponentVector(X)

#

ExponentVector := proc(X:list(name))

local D, env;

if not type(X, list(name)) then ERROR(‘invalid argument ‘) fi:
D := NewCategory();

D := OrderedAbelianMonoid(op(D));

addCategory(D, ExponentVector D3

defOperation(Variables, List(Name), D);
defOperation(Index, Name —-> Integer, D);
defOperation(Exponent, [D, Name] -> integer, D);
defOperation(Dim, Integer, D);

defOperation(List2Vect, List(Integer) &> D, D);
defOperation(Vect2List, D &> List(Integer), D 5
defOperation(‘+‘, [D, D] &> D, D);
defOperation(‘-, [D, D] &> D, D);
defOperation(‘<>=*, [D, D] &-> Union(-1,0,1), D);
implement some operations... .

op(D)

®Md: # ExponentVector Category

For the reasons discussed above, there is another deferred operation, denoted by

- O='. Like Vect2List and List2Vect, this operation is used for implementing other

C .
“Mparison operations (‘<‘ and ‘=*).
13

B. PARV
Vector Category: This category is parameterized with tp,. .
- st (lf

3.9. The Coefﬁcient ‘ .
) mes). The operations include:

ables (list of na
1e list of trigonometr

gument - a trigonometric variable
- Harme _
S

trigonometric varl
ic variables

e Variables - returns tl

e Index - returns {he index of the ar

of trigonomctric va
e coefficient of its argument -

the list riables
Coeff -returns th a trigonometric variable narme

in the current object

_ normalizes the argument of a trigonometric function

the number of trigonometri
ternal representation to list of integers

e Normalize
¢ variables

e Dim - returns
Vect2List - conversion from in

rsion from list of integers to internal representation

e List2Vect - conve

addition - addition of trigonometric fun
rigonometric function arguments)

ction arguments

o subtraction - subtraction of t
o multiplication with a rational number

e comparison of two trigonometric coefficients.

Because the linear combinations of trigonometric variables are arguments of the

nctions sin and cos, these combinations need to be normalized. Taking

trigonometric fu
fine the normal form of an argument t

into account the parity of these functions, we de he

form in which the first non-zero coefficient is positive. The Normalize operation returns

the normal form of its argument, and a state value (-1 or 1) which indicates the sign of

the first non-zero coefficient in the initial argument.

The following text represents the definition of CoefficientVector category:

E

CoefficientVector(X)

-3

CoefficientVector := proc(X:list(name))

local D, env;
if not type(X, list(name))

, then E ‘i i .
e RROR(‘invalid argument‘) fi:
D := OrderedAbelianMonoi

id(op(D));

addCategory(D, CoefficientVector S'
defOperation(Variables, List(Name). D);
:::gporntion(Index, Name &-> integ;r D')'
detoporation(Coeff, [D, Name] &-> ta;ionai D);

peration(Normalize, [D, integer] &-> ’ '
2ot0porat§on(Dim, Integer, D); b
de;gperat?on(List2Vect, List(r;tional) &->
de peration(Vect2List, D &-> List(rati 5 D
detoperations({4+, =}, [0, D) & >‘01°na1)' P

efOperation(*‘.‘, [rational,,D] &> D .DD));

14

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

goperation(«¢>=*, [D, D] &> Union(-1,0,1), D);
:einplenent some operatioms...

:is?); CoefficientVector Category
3.3. The TrigPart category. The TrigPart category has as argument the domain of

coefficient vectors, which in turn must be derived from CoefficientVector category.

The operations are:
e List2Trig - conversion from list to internal format
e Trig2List - conversion from internal format to list
o CoefficientVector - returns the Coefficient Vector domain
o Variables - returns the list of trigonometric variables
o Argument - returns the coefficient vector of an object
e Function - returns the trigonometric function
e Coeff - returns the coefficient of its argument - a trigonometric variable name
- in the current object
e Dim - returns the number of trigonometric variables
e sin, cos - apply the trigonometric functions on an CoefficientVector object
e multiplication of two trigonometric parts

e comparison of two trigonometric parts.

In the case of multiplication, in order to preserve the form of the trigonometric

part, one must apply the following rules:

sin(z) * sin(y) = (cos(x — y) — cos(z + v))/2,
sin(z) * cos(y) = (sin(z —y) + sin(z + v))/2,
cos(z) * cos(y) = (cos(z —y) + cos(z +y))/2.

The following text represents the definition of TrigPart category:

#
¥ TrigPart
t 4
TrigPart := proc()

local s, P, T, env;

S := args[1];

1f not hasCategory(S, CoefficientVector)
then ERROR(‘the argument must be an CoefficientVector‘) fi;
P := newCategory(); '
:g:gat°8°fY(P. TrigPart);
deroperat%on(LiftZTrig, Record(Name, S) &> P, P);
defnp°tat}°n(Trig2List, P &-> Record(Name, S), P);
defuperat?on(CoefficientVector, CoefficientVector, P);

peration(Variables, List(Name), P);

15

B. PARV

P); , .
p &> 5, sin), P);
defopcration(Arsum?n;’ 55 Union(c"s; none,
gion(Fumct®mr - patiomal, P 7
de:gpe::tion(coett, P & : R;); ional, P1, P);
ae oo ation(Dim, Integer, avional, s] &-> [Ratiomal, ¥l. -
defOPef . ({’in’ CO'}o t(gatlonal, P)), P);
getOperationst WAL oty > List(LIST TR TE Ly,
dgfop.n:;:ﬁ(‘o;‘. (p, P1 &> union(~1, ©» 20
defOpera .
inpli:ent some operations
op(P) ity
end: # TrigPart Categ

: TEES i ssonExpression category has the
4 1 sion Category: The Poiss
3.4. The PoissonExpres

following par ameters:

ent ring (usually the ring of rational numbers)

e the coeffici

e the exponent vector domain

e the trigonometric part ‘dorlnajn.

and the defined operations are:
° ListZExpr _ conversion from list to internal format
e Expr2List - conversion from internal format to list
e CoefficientRing - returns the coefficient ring domain
e ExponentVector - returns the exponent vector domain
e TrigPart - returns the trigonometric part domain
e PolVariables - returns the list of monomial variables
e TrigVariables - returns the list of trigonometric variables
e PolDim - returns the number of monomial variables
e TrigDim - returns the number of trigonometric variables
o multiplication of a term with a rational number
® addition (n-ary operation)
* multiplication (n-ary operation)

® comparison of two terms
e Diff - 1 1vati i
partial derivative with respect to a specified variable

® Int - 1 1
Integration with respect to a specified variable

The followin te 0
t
. Ng text represents the definition of PoissonExpression categ ry:

: PoiuonExpression

PoissonExpress ion
local R, E, s, p
R := args[1];

‘= proc()
» T, env;

16

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

"

£ : axgs[ﬂ;
g := args [31;)
it mot hasCategory(R, Ring) .
¢hen ERROR(‘1st argument must be a Ring‘)
o1if DOt hasCategory(E, ExponentVector)
chea ERROR(‘2nd argument lx'wt be an ExponentVector')
e1if not hasCategory(s, TrigPart)
then ERROR(‘3nd argument must be an CoefficientVector') fi;
p := newCategory();
addCategory(P, PoissonExpression);
if ha'c;tgsory(n, UFD) then P := UFD(P)
elif basCategory(R, GedDomain) then P := GcdDomain(P)
elif hasCategory(R, IntegralDomain) then P := IntegralDomain(P)
elif hasCategory(R, CommutativeRing) then P := CommutativeRing(P)
else P := Ring(P)
fi,;
defOperation(List2Expr, List(Record(R, E, S)) &> P, P);
defOperation(Expr2List, P &-> List(Record(R, E, S)), P);
defOperation(CoefficientRing, Ring, P);
defOperation(ExponentVector, ExponentVector, P);
defOperation(TrigPart, TrigPart, P);
defOperation(PolVariables, List(Name), P);
defOperation(TrigVariables, List(Name), P);
defOperation(PolDim, Integer, P);
defOperation(TrigDim, Integer, P);
defOperation(‘.¢, [R, P] &> P, P);
defOperation(‘+‘, Nary(P) &-> Nary(P), P);
defOperation(‘#‘, Nary(P) &-> Nary(P), P);
defOperation(‘<>=*‘, [P, P] &-> Union(-1, 0, 1), P);
defOperations({Diff, Int}, [P, Name] &-> P, P);

* implement some operatioms...
op(P)

end: # PoissonExpression Category

4. Implementation issues

Two different domains were implemented for each of the above-discussed categories.
Fach implementation uses a different internal representation of the exponent vector and
coefficient vector: list and Gédel coding.

In the case of list representation every exponent or coefficient vector is represented
% a Maple list, in which all the elements are integer numbers (Maple integers). Conse-
duently, the List2Vect and Vect2List operations will implement the identity function
and the comparison operator is based on the lexicographic ordering.

In the case of Gédel coding, an exponent or coefficient vector is represented as

Tat) . :
onal number, by using the first n prime numbers (n is the number of elements in the

.

(a,b,c,d,...) — 2°3%5°7¢. ..

17

B. PARV

Taking into account the integer nature of vector elements (positive or negative UMby,
ng into

s),

it follows that the result of this mapping is a rational number; its numerator wi]| contajy,
1

t of the powers with positive exponent ude g
e exponents. The function which define this coding is bijectiy,

od s, while the denominator wi]) inc]
the produc

the powers with negativ

so it follows that this represent
Thus. one can define the List2Vect and Vect2List operations as follows: List2vect wil

implement the d

< the natural ordering of the rational numbers.

Domain implementation also contains the Type operation (inherited from Set.

ation is unique and it exists the inverse transformat;,,

irect mapping, while Vect2List the inverse one. The considered orderip,

returns a boolean value, depending on whether its arguments satisfies the rules stated fo;
the concrete representation chosen), and its zero element D [o0].

Finally, the aritmetic operations were redesigned, in order to exploit the specific
features of the concrete representation. After all, the invoking of the conversion routines
List2Vect and Vect2List was removed, in order to gain computing speed.

The implemented domains are: ListExponentVector and PrimeExponentVector,
ListCoefficientVector and PrimeCoefficientVector, ListTrigPart and

PrimeTrigPart, ListPoissonExpression and PrimePoissonExpression.

References

[1] S.K. Abdali, G.W. Cherry, N. Soiffer, An Object Oriented Approach to Algebra System Design,
ISSAC-86, 24-30, 1986.

[2] B.W. Char et al., Maple V — Library Reference Manual, Springer, 1992.

[3] B.W. Char et al., Maple - Language Reference Manual, Springer, 1992.

[4] B.W. Char et al., First Leaves: A Tutorial Introduction to Maple, Springer, 1992.

[5] D. Gruntz, and M. Monagan, Introduction to Gauss, MapleTech 9, 1993, 23-35.

[6] R. Jenks, and R. Sutor, AXIOM - The Scientific Computation System, Springer, 1992.

[7] M. Monagan, Signatures + Abstract Data Types = Computer Algebra - intermediate express!”
swell, PhD Thesis, University of Waterloo, 1989.

(8] B. Parv, Poisson Symbolic Processor, Studia, Mathematica, XXXIV, 1989, No. 3, 17-29.

“BABES-BoLYAI” g, BV

UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENC
3400 CLUJ-NAPOCA, ROMANIA

E-mail address: bparv@cs.ubbclu j.ro

18

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

