
NIV.
"BABE^-BOLYA",

INFORMAT) Volume I, Number 1, March 1996
TUDIA UNI

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

D. PÂRV

Abstract. This paper presents an implementation of the Pois9on Symbolic Processor

by using the Computer Algebra System Maple and object-oriented facilities introduced

by version 1.0 of Gauss package. An hierarchy of abstract classes (called categories in

Gauss) is defined; each class representa an entity which is used to construct a Poison

expression (which is the partial sum of a Poisson series): monomial part, trigonometric

part, term, expression. From each category there is derived at least one "concrete" class

(called domain in Gauss). Each domain derived from the same category has its own

representation (unknown at category level) and, possibly, new code for its operations (in

order to achieve efficiency). This paper describes an experimental work; it constitutes the

beginning of a long-term research. Computer algebra system Maple is used here as testing

tool, due to its interactivity, user-friendly interface, and ready-to-use capabilities. After

the experimentation work will be finished, we intend to develop an operational version

of the processor using a high-level programming language.

1. Poisson series and expressions

A Poisson series have the form:

Sin

S=C : m (k1yn + kava t+ knyn), (1)
COS i=0

where: C; are numerical coeficients; 1, 2,*,Tm are monomial variables; J1, V2, *** Vn

are trigonometric variables ji,ja,* ,im and k1, kz,** , kn are exponents and coeticients,

espectively. The surmmation indexi covers the set of all possi ble combinations of expo-

nents j and coefficients k (j e Z", keZ").

One can write the form (1) of a Poisson series as follows:

= Ti (2)

Received by the editors: July 27, 1996.
1991 Mathematics Subject Classification. 68Q40, 68Q65.
1991 CR Categories and Descriptors. D.1.5 [Programming Techniques); Object-Oriented Programming; D.3.2 (Program

Augee) Language Classifications- object-oriented languages; D.3.3 [Progranmiming T.anguages Language Constructs and

betract data types; I.1.3 [Algebraic Manipulation): Languages and Systems speciak-purposealgebraic.systems.

7

B. PÅRV

in which T; is a term of this series:

T= CPFi

where the polinomial part P is:

P =
(3)

and the trigonometric part Fi have the form:

F = sin/cos(kiy1 + kava + + kn/n), (4)
In practice one does not operate with Poisson series, but with partial sums of these ones,

the so-called Poisson erpressions:

N

S=7, NEN (5
i=0

This new version of the Poisson Symbolic Processor presented here is able to manipulate

Poisson expressions of the form (5).

2. Maple and Object-Oriented Programming

The Maple programming language (2, 3, 4 is a procedure-based one. Despite this
fact, due to the powerful data types available, one can simply implement all the basi

concepts of the object-oriented programming. At least two Maple features facilitate this

task:

1. interpretative nature of Maple, which means, from our viewpoint, dynamic bind

ing of function calls, and

2. Maple table, in fact a data structure corresponding to the hash table, which

well-suited for implementing class definitions.

The Gauss package (see [5]), presented in the next section, constitutes an exampir

of implementing object-oriented concepts in Maple.
Why object-oriented computer algebra? This question is not a new one, but pos

sible answers were given only in the last decade [1, 5, 7]. The practical answers appea

a few years ago, especially IBM's AXIOM, and the Gauss package in Maple.

First, an object-oriented approach is well-suited for real-world modelling. In b

case of computer algebra systems, the real objects are mathematical ones (numbers

function8, operators, functionals, sets, structures, more generally analytical expressiOu

8

USING MAPLE IN PROCESSING POISSON EXPRes$1ONS

fnally, the goal of the mathematical scienee is to study this behaviour.

Second, the object-oriented approach usen classification mechanisms as tools for

se objects have a well-defined behaviour (by axioms, rules, theorems, properties), and,

anaging real world complexity. These mathematical objects can be grouped in classes.

and the inheritance relations between classes can be expressed by the class hierarchies.

Third, an other mathematical-specific thing, the parameterization, was borrowed

in the world of programming languages; the term used here is genericity. By using object

oriented programming and genericity, one can express, in a natural way, the class hierar-

chies of mathematical objects

2.1. Gauss Package. The Gauss Package introduces a new approach of programming,

based on parameterized (generic) data types.

There are two main concepts: category and domain. A category is an abstract

and parameterized (generic) class, and a domain is a concrete class in the object-oriented

terminology. An object is an instance of a domain. The category does not know the

representation of objects - this is essentially the meaning of the abstract word; conversely,

the domain (which represents a concretization of a category) defnes the representation

of its objects. The category definition contains: ancestor(s) specification, definition of

signatures for all specific operations, and the implementation of all operations which can

be implemented at category level (without knowing the representation). The domain

definition defines domain category (categories), states the representation and inplements

the remaining operations (unimplemented at category level). Using multiple inheritance,

Gauss implements a wide hierarchy of categories, all of them being algebraic objects. The

root of this hierarchy is Set category, with the following operations:

,>- comparison operators
2: Input conversion from Maple representation to domain representation (known as

5: Type - predicate which defines the domain structure; it is used to test if an expression

ritial constructor in the object-oriented terminology)
Output conversion from domain representation to Maple representation

andom-generates a pseudorandom value from domain

Delongs to domain (from representation point of view).

2. Abstract and parameterized classes. Gauss domains are in fact parameterizea

Classes. From implementation point of view, a domain is a Maple function, which

9

B. PÂRV

ancestor(s), the
returns a Maple table with operation names as table entries. The domain ancect.

class instances, and the properties of defined operations are also table entries

For example, the domain Integer() returns the table in which the entrics aro. in

teger addition (+"), subtraction (-), multiplication ("*)%greatest cornmon divisor (re a

zero and unit elements, etc.

her The parameters of every domain are any valid Maple expressions, including ..

domains. The Gauss package contains a number of usual domains (see [5]). For mple,

the domain DUP (R, x) from Gauss (DenseUnivariatePolynomi al (R, x) i.e. the domain

of univariate polynomials with real coefficients) has two parameters: the coefficient ring

(R) and the variable name (x). The first parameter, R must be a Maple domain, while the

second must be a Maple name.

From programming viewpoint, a Maple category is the Maple (Gauss) implementa

tion of an abstract data type. One can derive several domains from the same category, sim-

ply by choosing different representations (and then by implementing accordingly the cor-

responding operations). For example, Gauss package includes the Exponent Vector (X),

EV (X) category, where X is a list of Maple names. This category defines the erponent

vector abstract data type: if X contains the symbols «1, E2,... , T,n, then EV (X) will define

the set of all monomials in the variables X, i.e. monomials of the form:

(6)

where ; are variable names, and ej are exponents (natural numbers). If the list X is

ordered, and if this list is a parameter of the domain being considered, then for every

monomial of the above form it is necessary to consider only the list (vector) of exponents

E = {e1,e2,* , Cns
One of the major benefits of the object-oriented programming is software reu

Every (object-oriented) application framework contains a class hierarchy, from which, Dy

using inheritance, one can extend (derive) new classes needed for an application-spec

domain, with a minimum programming effort. In most situations, the existing las
asses

are almost all what we need. By applying these considerations to the Gauss paches

(which is, in fact, an example of application framework), the programming steps are

following

the

. Define all the necessary categories

10

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

2. Define all the corresponding domains

3. Instantiate the domains by setting properly the generic parameters

4. Manipulate the obtained objects by using their operations

93. Deriving new categories and domains. For a new category (for example

EDonentVect or), does not matter the representation of its objects; we are only in-

terested in choosing the specific operations we need for manipulating the objects. The

natural operations with monomials are multiplication, division, and common factor of two

monomials. Consequently, besides the already inherited operations, the Exponent Vector

category must contain the definition of the following operations:

addition of two exponent vectors (which corresponds to monomial multiplica-

tion)
subtraction of two exponent vectors (which corresponds to monomial division)

the minimum of two exponent vectors (which corresponds to monomial greatest

common divisor).

There are two alterna- The operations inherited from Set must be re-implemented.

tives: to implement general algorithms at category level (which, in turn, must invoke

the representation-specific functions, defined at domain level), or to postpone (the used

term is to deferre) this implenentation to the domain level (where the representation is

known).
After the category is completely defined, one can derive from it the corresponding

domains. Usually, one can derive many domains from the same category. For example, in

The Gauss package, there are presented four domains derived from the ExponentVector

cauegory: DenseExponentVector, PrimeExponentVector, MapleExponentVect or, and

nacaulay ExponentVector. Every such a domain uses a different representation, and,

equently, specific algorithms for the operations it implements.

3. The class hierarchy for the Poisson Symbolic Processar

Based on the definition (1), the elements of a Poisson series (expression) can be

ened in an hierarchical way. First, we consider the term components (factors): the

cocticient, monomial part, and trigonometric part.
11

B. PARVv

One can easy
observe the elements

well-suited for parameterization: the lict

bols)

ts of

monomial and trigonometric
variables. For a concrete problem, these variables (sVmh.

The cocfficient is a rational number. Because Maple contains rational data

ides

are parameters
of its corresponding

mathematical model.

type

this, the Gauss package contains the definition of the Rational domain.

The monomial part can be considered as an instance of an exponent vector. Ba

as a builtin data type, there are no problems in working with rational numbers; besil

cause the existing ExponentVect or category deals with exponents con_idered natural

numbers, one must redefine this category in order to manipulate integer exponents.

The trigonometric part has two components: the trigonometric function to be

applied (it sin or cos) and its argument (a linear combination of trigonometric variables

with integer coefficients). For the same reason as in the case of ExponentVector, the

argument can be expressed in the terms of a list of coefficients, if the list of trigonometric

variables is considered as parameter. The CoefficientVector category described below

implements the definition of this list (vector) of coefficients. Based on this category, one

can define TrigPart category, which describes the behaviour of the trigonometric part.

Finally, the PoissonExpression category defines the behaviour of the Poisson

expressions, taking the coefficient ring, the ExponentVect or, and the TrigPart categories

as parameters.

3.1. The Exponent Vector category. This category is parameterized with the list ot

monomial variables (list of names). T'he operations are:

Variables - returns the list of monomial variables

Index - returns the index of the argument - a monomial variable name - in the

list of monomial variables

Exponent - returns the exponent of the argument a monomial variable nani

-in the current object

Dim - returns the number of monomial variables

Vect2List - conversion from internal representation to list of integers

List2Vect conversion from list of integers to internal representation.

addition multiplication of monomial parts
subtraction - division of mononial parts

comparison returns-1, 0 sau 1, i.e. less than, equal, or greater than.

12

USING MAPLE IN PROCESSING POISSON EXPRESSIONS

The last two operations, List2Vect and Vect2List, are defined but not imple-

nted in this category (by using object-oriented terminologEY, these function can be re-

fatred as pure virtual functions). By using these functions, one can implement, at category

lovel. some of the defined operations (despite the fact one does not know the representa-

)For example, the algorithm for the addition of two exponent vectors consists of the

following steps:

1. operand conversion from internal representation (unknown at this point) to list

representation (natural representation of a vector) using Vect2List;

2. adding lists, element by element;

3. result conversion from list representation to internal representation using

List2Vect.

Besides the above-discussed operations, the ExponentVect or category definition also con-

tains the implementation of some conversion functions, inherited from Set: Input and

Out put. Actually, these operations are implemented in all categories we discuss.

The following text represents the definition of ExponentVector category:

#ExponentVect or (X)

ExponentVector := proc(X:1ist (name)
local D, env;
if not type (X, list (name)) then ERROR("invalid argument) fi:

D: NewCategory ()

D: OrderedAbel ianMonoid(op(D));

addCategory(D, Exponent Ve ctor);

defOperation (Variables, List (Name), D);

defOperat ion(Index, Name -> Integer, D);

defOperation(Exponent, [D, Name]-> integer, D);

def0peration(Dim, Integer, D);

erOperation(List2Vect, List (Integer) &-> D, D);

erOperation(Vect2List, D &-> List (Integer), D);

defOperation(, D, D]&-> D, D);
defOperat ion('-', [D, D] &-> D, D);

def0perat ion ('o=, D, D] &-> Union(-1,0,1), D)

inplement some operations.
op(D)

end: ExponentVector Category

ror the reasons discussed above, there is another deferred operation, denoted by

Like Vect 2List and List2Vect, this operation is used for implementing other

omparison operations ('<* and =).
13

B. PARV

th the list d
32. The Coefficient Vector

Category.
This category 1s parameterized witl

trigonometric
variables (list of names). The operations include:

Variables
-

returns the list of trigonometric
variables

ble name-
A

returns the index of the argument
- a trigonometric variable

Index

the list of trigonometric
variables

a trigonometric variable narne
Coeff-returns

the coefficient of its argument

in the current object

normalizes the argument of a trigonometric function

Normalize-

Dim returns the number of trigonometric variables

Vect 2List - conversion from internal representation to list of integers

conversion from list of integers to internal representation
List2Vect

addition addition of trigonometric function arguments

subtraction - subtraction of trigonometric function arguments)

multiplication with a rational number

comparison of two trigonometric coefficients.

Because th linear combinations of trigonometric variables are arguments of the

trigonometric functions sin and cos, these combinations need to be normalized. Taking

into account the parity of these functions, we define the normal form of an argument the

form in which the first non-zero coefficient is positive. The Normalize operation returns

the normnal form of its argument, and a state value (-1 or 1) which indicates the sign o

the first non-zero coefficient in the initial argument.

The following text represents the definition of CoefficientVector category:

CoefficientVector (X)
CoefticientVector = proc(X:list (name))
local D, env;
if not type (X, list(name)) then ERROR('invalid argument') fi:
D NewCategory ();
D OrderedA belianMonoid(op(D));
addCategory(D, CoefficientVector);
defOperation(Variables, List (Name), D);
defOperation(Index, Name &-> integer, D);
det0peration(Coeff, D, Name] &-> rational, D);
def0peration(Normal ize, [D, integer] k-> D, D):
detOperation(Dim, Integer, D)
det0peration(List2Vect , List(rational) &-> D, D);
def0peration(Vect2List, D &-> List (rational), D):
defOperations({'+', '-}, [D, D] &-> D, D);
defOperation('.', Lrational, D] &-> D, D);

14

USING MAPLE IN PROCESSING POISsON EXPRESSIONS

daf Operation('<>=', D, D]&->Union(-1,0,1), D);

#inplement
some operations.. .

op (D)

end:# Coeff icientVector Category

23. The TrigPart category. The TrigPart category has as argument the domain of

coefficient vectors, which in turn must be derived from Coefficient Vector category.

The operations are:

List2Trig - conversion from list to internal format

Trig2List
conversion from internal format to list

CoefficientVector - returns the Coefficient Vector domain

Variables - returns the list of trigonometric variables

Argument returns the coefficient vector of an object

Function - returns the trigonometric function

Coeff returns the coeficient of its argument a trigonometric variable name

- in the current object

Dim - returns the number of trigonometric variables

sin, cos - apply the trigonometric functions on an CoefficientVector object

multiplication of two trigonometric parts

comparison of two trigonometric parts.

In the case of multiplication, in order to preserve the form of the trigonometric

part, one must apply the following rules:

sin(r) * sin(y) = (cos(r - y) - cos(r +y))/2,

sin(r) * cos(y) = (sin(z -y) + sin(r + y)/2,

cos(r) * cos(y) = (cos(z- y) + cos(r + y)/2.

The following text represents the definition of TrigPart category:

#TrigPart

TrigPart := proc()
local S, P, T, env;

Sargs (1];
if not hasCategory (S, Coefficient Vector)

Chen ERROR(' the argument must be an CoefficientVector ") fi;
P newCategory (O;

addCategory (P, TrigPart);
defOperation(List2Trig, Record (Name, s) &-> P, P);

det operation(Trig2List, P &-> Record(Name, S), P);
derOperation (CoefficientVector, CoefficientVector , P);|
defOperation (Variables , List(Name), P);

15

B. PÅRV

defOperation(

Argument,
P t-> S, P);

defOperation (
Function,

P t-> Union (cos, none,
sin), P):

defOperation (Coeff, P &->
Rational,

P);

defOperation(

Dim,
Integer,

P);

def0perations(

(sin, cos),
Rational, s] &-> CRa

defOperation ('*", (P, P] -> List(List
(Rational, P)), P);

defOperation('o=',

[P, P] &-> Union(-1, 0, 1), P);

implement
some

operations.
..

op(P) end:#TrigPart Category

Rational P], P);

the

3.4. The
PoissonExpression Category. The

Poissonexpression category has tha

following parameters:

the coefficient ring (usually the ring of rational numbers)

the exponent vector domain

the trigonometric part domain.
.

and the defined operations are:

List2Expr - conversion from list to internal format

Expr2List - conversion from internal format to list

CoefficientRing - returns the coefficient ring domain

ExponentVector - returns the exponent vector domain

TrigPart -returns the trigonometric part domain

.PolVariables - returns the list of monomial variables

TrigVariables returns the list of trigonometric variables

PolDim returns the number of monomial variables

TrigDin- returns the number of trigonometric variables

multiplication of a term with a rational number

addition (n-ary operation)

multiplication (n-ary operation)
comparison of two terms
Diff partial derivative with respect to a specified variable
Int - integration with respect to a specified variable.
The following text represents the definition of PoissonExpression cab #PoissonExpression

PoissonExpression := proc()
local R, E, S, P, T. env; R args [1];

16

USING MAPLE IN PROCESSING POISsON EXPRESSIONS

args [2];
S: args [3);
if not hasCategory (R, Ring)

then ERROR("1st argument must be a Ring')

lif not hasCategory(E, Ezponent Vector)
then ERROR("2nd argunent must be an Exponent Vector')
elif not hasCategory (S, TrigPart)
then ERROR("3nd argunent aust be an Coefficient Vector') fi;

P: newCategory);
addCategory(P, PoissonBrpression) ;

if hasCategory (R, UFD) then P = UFD (P)

elif hasCategory (R, GcdDomain) then P = GcdDomain (P)
elif hasCategory (R, IntegralDomain) then P= Integral Domain (P)
lif hasCategory (R, Commut ativeRing) then P : CommutativeRing (P)
else P : Ring(P)

fi;
defoperation(List28xpr, List (Record (R, E, s)) a-> P, P);
defOperation(Expr2List, P &-> List (Record (R, E, s)), P);
defOperation(CoefficientRing, Ring, P);
defOperation(ExponentVector, ExponentVector, P);
defOperation(TrigPart, TrigPart, P)
def0peration(PolVariables, List (Name), P);
defOperation(TrigVariables, List (Name), P);
defOperation(PolDim, Integer, P);
def0peration(TrigDim, Integer, P);
defOperat ion(,', [R, P] &-> P, P)
def0peration(+", Nary(P) &-> Nary (P), P);
defOperation(' ', Nary(P) &-> Nary (P), P);

defOperat ion ('o=', [P. P] t-> Union(-1, 0, 1), P)

defOperat ions ({Diff, Int), CP, Name] &-> P, P);
implement some operat ions...

op(P)

end:# PoissonExpression Category

4. Implementation issues

Two different domains were implemented for each of the above-discussed categories.

Each implementation uses a diferent internal representation of the exponent vector and

coefficient vector: list and Gödel coding.
n the case of list representation every exponent or coefficient vector is represented

s a Maple list, in which all the elements are integer numbers (Maple integers). Conse

quently, the List2Vect and Vect2List operations will implement the identity function

as

and t comparison operator is based on the lexicographic ordering
In the case of Gödel coding, an exponent or coefficient vector is represented as

rationa
mber, by using the first n prime numbers (n is the number of elements in the

vector:

(a,6, c, d,...) > 23'5°7d.

17

B. PARV

numbers), e
Taking into account the integer nature of vector elements (positive or negatiso

ill contai
it follows that the result of this mapping is a rational number; its numerator will

the product of the powers with positive exponents, while the denominator will includa .

tive, the powers with negative exponents. The function which define this coding is biinei:

so it follows that this representation is unique and it exists the inverse transfor m ation.

Thus, one can define the List2Vect and Vect2List operations as follows: List2Vars

implement the direct mapping, while Vect2List the inverse one. The considered orderin . ing

is the natural ordering of the rational numbers.

Domain implementation also contains the Type operation (inherited from Set: it

returns a boolean value, depending on whether its arguments satisfies the rules stated for

the concrete representation chosen), and its zero element D[OJ.

Finally, the aritmetic operations were redesigned, in order to exploit the specific

features of the concrete representation. After all, the invoking of the conversion routines

List2Vect and Vect2List was removed, in order to gain computing speed.

The implemented domains are: ListExponent Vector and PrimeExponentVector,

ListCoefficientVector and PrimeCo effici ent Vect or, ListTrigPart and

PrineTrigPart, ListPoissonExpression and PrimePoissonExpression.

References

[S.K. Abdali, G.W. Cherry, N. Soiffer, An Object Oriented Approach to Algebra System Design

ISSAC-86, 24-30, 1986.

[2 B.W. Char et al., Maple V - Library Reference Manual, Springer, 1992.

3) B.W. Char et al., Maple Language Reference Manual, Springer, 1992.

4 B.W. Char et al., First Leaves: A Tutorial Introduction to Maple, Springer, 1992.

5] D. Gruntz, and M. Monagan, Introduction to Gauss, MapleTech 9, 1993, 23-35.

6) R. Jenks, and R. Sutor, AXIOM The Scientifc Computation System, Springer, 1992.

7 M. Monagan, Signatures + Abstract Data Types = Computer Algebra - intermediate erpress SS10

swell, PhD Thesis, University of Waterloo, 1989.

8 B. Párv, Poisson Symbolic Processor, Studia, Mathematica, XXXIV, 1989, No. 3, 17-29.

BABES-BoLYAI" UNIVERSITY, FacULTY OF MATHEMATIcs AnD CoMPUTER SCIEN

3400 CLUuJ-NAPOCA, RoMANIA

E-mail address: bparv@cs.ubbcluj.ro

18

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

