STUDIA UNIV BABES-BOLYAI MATHEMATICA XXXVIII 3, 1993

ON SOME MODELS OF PARALLEL PERFORMANCE
Duniela VASARU®

Dediated to Professor kmil Muntean on his 60* anniversary

Reverved November 29, 1992
HCA Classification 63Y05, 68005, 684120, 68()22

REZUMAT Arsticolul "Asupra unor medele de performantil paraield” precintd citeva

ditre cele mai folosite modele de caracterizare a pertormanter algontnulor paraleli Acestea

au ca trisitur comun? folosirea fracintor senale § paralele in studiul performanier Paralel cu

prezentarea lor sunt discutate atdt cahithfile g1 defectelo lor cfit si relaule existente intre ele

in finalul anicollus este dat un exemplu de tolosirc al acestor modele in caraclerizarea

performangel pamlele

i. Intreduction. New requirements in engineering and computational science had
lead to a strong interest 1n constructing a "teraflop” computer Parallel processing 1s
constdered to be the great hope in obtaining such a performance Ideally, on n, processors
a program will run n, times faster than on a single one Unfortunately this 15 1arely the case
Oune reason 1s the great disproportion existing between the progress in hardware technology
and the methods of programming the paiallel computers In what concerns the software part,
theie are a lot of problems waiting to be solved Two of them are the inexistence of a
common complexity mode! for parallelism and the difficulties encountered 1n analyzing the
performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in

common the use of sernal and parallel fractions tn characterizing the parallel algonthms,

" "Babey-Bolvar" University, Faculty of Mathematics and Computer Science, 3400 ‘Tup-Napoca, Romania

D VASARU

showing the relations between them and how can we use them in predicting the parallel

performance

2. Preliminaries. The most common used measures of parallel performance are
speedup and efficiency {2,3] They arc both functions of problem size n and number of

processors ny, and formally can be described by

o) puny =5)
1n) ’ n,

T(n,i) 13 the time spent to solve a problem of size n by i processors Because of the

Stn) =

overhead introduced by parallelization, T(n,i) 18 considered relative to the best senal
unplementation

The influence that the two parameters n and a,, have on the speedup and effictency 1s of
great practtcal importance By varying one or both parameters, different models of parallel
performance are coming out

In oider to make more readable the article, we will not mention always the parameters
of a function For example, we will write S tustead of S(u,mn,) It should be clear from the
context on which parameters a function depends In geneial, all the functions have two

parameters In the case that one of them 18 fixed we will not mention 1t

3. Amdahl’s Law Considet an algorithm solving a problem of given size n that has
one part mtinsically sequential and the other part, 100% parallelizable, can be distuibuted
equally among the available processors Now, tf' s 1s the fraction of ttme spent by a

uniprocegsor on the senal pait of the algorthin (senial fraction) and p 1s the fraction of time

118

ON SOME MODELS OF PARALLEL PERFORMANCE

spent on the parallelizable part by the umprocessor, then the time spent by n, processors on

the same problem will be (s+p/n,)*T(1) So, the speedup will be given by
s+p)*1(1) _ I @)
(s+pln)*T(1) s+(1-s)/n,

This 15 a steep functton of 8 near s = 0 For a fixed number of processors the speedup is

icreasing unbounded with the decreasing of s This case can be used in selecting the most
efficient parallel algorithm (in the sense of efficient use of processors) among different
algonthms solving the same problem the one with the minimum s is the best
What’s happening 1f we have a single aigonithm for a fixed-problem size and an
increastng number of processors? Then the speedup 1s assimptotically bounded by 1/s
§—>1s as n,—» - 3)
Tius is the performance forecast by Amdahl’s Law 1f a computer has two speeds or
modes of operation during a given catculation, the stow mode will himt overall performance
even i the fast mode 15 inflnitely fast [1,4] It means that if an algorithm has 2% sequential
part, speedup greater than 50 one can not obtain even 1f 1t has thousands of processors
This result was used by Amdahl as an argument against building massively parallel
systems
The limitation of speed given by (3), as we will see 1n the next sections, 1s valid only for
the case under consideration, 1 e for fixed-size problems That’s the reason why the model
discussed 15 falso called the fixed-size model
4. Moter’'s Law Moler was one of the firsts to show that Amdahl’s limtt can be

beated [1] He had proved that parallelism can attain desied speedup for sufficiently large

119

D VASARU

computations

Instead of considering a fixed size problemn'and an increasing number of processors, he
had study the case of a fixed number of processors and instances uf the same problem but
with different sizes He had shown that the senal fraction s is dependent on the nput size
s = s{n) So, s 1sn’t constant (the main assumption n the fixed-size model) Even 1f S 15
bounded by 1/s, this limit 1sn’t fixed He define an effective parallel algonthm as one for
which s(n) —> 0 when & — o In this case, for a fixed number of processors n,, one would

obtain

Sa___ Y o
s(m)+(1-s(n))/n,
It follows that for problems large enough, 1t can be obtained the desued speedup (the

n,, forn—= @)

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as

big as the available memory allows

5. Sandia’s Model The researchers from Sandia Laboratonies had studied the vanation
of speedup starting from the following observation 1f one has more computing power, he
usuatly don’t use 1t to solve the same problem of fixed size but larger instances of the
problem [1,6] The reason ts obvious there 1s no point 1n using more processors than the
concurrency of a problem because then, some of them will remain 1dle Also, by increasing
the number of processors the overhead due to communication 13 incieasing and if the problcnf
size 15 fixed, than the computational time will remain fixed, while the communication ume
will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processors, the seral

120

ON SOME MODELS OF PARAL LEl PFRFORMANCE

fiaction s can be made as little as we want The senal component of an algonthm is
determined by the startup time, seral bottlenecks and 1/O, which are not dependent on the
problem size The parallelizable part of an algonthm vanes with the input size It follows that
s can be made to shnnk under these circumstances

Adding more processors brings more memory and more speed How do we scale the
pioblem size with memory or with speed? Most scientists scale the problem in order to
ocoupy all the available memory This 1s called the scaled model and 1t 1s the one proposed
by Sandia They assumed as a first approximation that the parallel part grows proportionatly
with the number of processors

The mode! proposed by Sandia as an alternative to the fixed-size model 15, 1n fact, the
inverse of the Amdahl’s paradigm lnstead of asking how fast a given sertal program wall
run on 0, processors, it's asked how tong 1t will take to run 4 given paiallel program on an
UNIPFOCESSOF

If 8° 15 the fraction of time spent by a multiprocessor machine with 6, processors on
sertal parts of a parallel program and p’ the fraction of time spent by the same multiprocessor
on the paallel part, the time to run the program on an uniprocessor will be (8’+p’*n,.)*T(n,).
Then , the scaled speedup will have the form

- (" +p’wn)*1(n)

S =37+ (I=s)* 5
" G +p"*Tn) g)

It 18 easy to see that the scaled speedup 15 a function of moderate slope 1-n, of s° (a lineg)

and it grows with mcreasing n,
Another alternative 1s to scale the problem size in order to maintain constant execution

time This 15 called the fixed-time model An example for the use of this model 1s the

121

D VASARU

weather prediction It doesn’t make sense to have an execution time greater than 24 hours
in predicting the time for the next day

To illustrate the difference between these models (in fact, the fixed-time model 1s
intermediary between the fixed-size model and the scaled model), we will present an example
For the multiplication of two matrix (with dimensions nxn), the memory needed 1s O(n’) but
the number of operations 13 O(n®) For the scaled model (pioblem size scales with memory)
n’ grows proportionally with n, but for the fixed-time model, n* grows proporttonally with

np (ie n® grows as np,™")

6. General Model of Parallel Performanece Carmona and Rice proposed a general
. model of paralle! performance which capture the previous presented models [2]

They use the same cnteria of charactenzing the parallel algorithms, speedup and
efficiency, but with some shights modifications of (1) Instead of considering running time as
a measure of the complexity of algonthms, time beeing dependent on the architecture, they
use as a measure of work the computational counts or unit counts based on the stze of an
indivistble tgsk

If wa 1s the work accomplished by a parallel program and we the work expended by
the same progtam, the efficiency can be expressed by E = wa/we

The work accomplished ts ‘glven by the number of operations done by the best senal
implementation and it’s not depending on the number of processors, only on the broblem size
In general, wa < we because the parallelization introduces some overhead, redundant

operations, communication requirements not needed in the serial case

122

ON SOME MODELS OF PARALLEL PERFORMANCE

The difference ww = we-wa 18 called the wasted work It covers the time needed for
the following activities watting for other tasks to complete work, communication delays
and/or memory contentton (dependent on the particular architecture and the implementation
of the algorithm), operation redundancies introduced by the implementation, including task
activation/ termination and synchronization code Ww 13 a function of both problem size and
number of processars

Under these considerations, the expressions for effictency and speedup will be

. wan) wa(n)
Een,) we(mn) waln)+ww(nn) ©)
wa(n)

S(n,np) =K *xp =

—— %N 7
¥ wa(n)+ww(nn) ? ™

Using these work parameters, Rice and Carmona give also new interpretations for the

serial fraction s and the scaled senal fraction s* From (2) and (7) 1t follows

s=a ™l wen ®)
wa nP—] P

So, 8 can be interpreted as the distribution actoss the additional processors of the ratio

of work wasted to work accomplished Simularly, from (5) and (7)

H
s’ = % * _l_;_i’__ R (ul,>l) ©)
»

Therefore, 8’ can be interpreted as a collective wasted effort np*sl, where sl is the
distrlbut;on across the additional processors of the ratio of work wasted to wc;rk expended

From eqs (8) and (9) it follows that s,8’,p,p* are functions both of problem size and the
number of processors This modifies the previous points of view, 1e s was considered
constant for fixed-s1ze problems as the number of processors increases, s’ was considered

only for scaled problems, with n=n(n,) a increasing function of n, These differences appear

from the fact that the new defimitions of s and 8’ incorporate wasted work

123

D VASARU

It s not difficult to see that the fixed size-model i1s a particular case of these new
definttions 1f the wasted work has the form ww = (ng- 1) * w(n), where w(n) ts a function
only of n, then s will be constant for fixed-size problems Intuitivety, ww has this form «f
each one of the new np-1 processors contrtbutes in equal part to the wasted work (with w(n))
and these contnbutions don’t depend on the number of processors In a similar way we ecan
show that the other described models are particular cases of this general one

Using eqs (6),(7),(8) and (9),it results the following law

- {s/s’ , ww>0

n, ww =0
g/ w>0 (1)

E-= {Pl d : :ww-O
This law relates s and 8 for different combinations of n and np, while the previous
models showed the trend in speedup when s and 8" are varied for a given number of
processors, or are held fixed and ny 1s vanied The law (10) also gives an interesting relation

between the fixed-size and the scaled model, showing how can one predict the other From

{2),{5) and (10) it’s easy to denve

/ A
sh= it
s+(1—/s)/nP . (n
s= Y . (12)

T l—o7
s'+(1=s")*n,

These relations can be used in two ways for a given speedup, one can determine from
the base scalar fraction the scaled seual fraction (or viceversa), secondly (and more
important), from the senal fraction of a base problem s one can derive the scaled seral
fraction g* (and, therefore, tt;e scaled speedup) for a larger problem, by simply making s’=s

in (5)

124

ON SOME MODELS OF PARALLEL PERFORMANCE

_The general model proposed by Carmona-and Rice 1s described by a group of assertions,
assertions stating how the parameters influence each other on the curves of the form n =
u(n,) These curves represent all passible relations between the problem size and the number
of processors Given a function f(m,n,), the notation ft (res;pect\vely fl) denotes that f
increases (decreases) on some fixed curve n = n(n,) as 0y increases Also, ftr (respectively
f}r) denotes that f approaches the limit r on the curve as n, = ®

The performance model is given by the following assertions

Al 8} = s} = 8¢ (for any curve n = n(ny))
A2 s} = 3't = E| (for any curve n = n(ny))
A3 Assume that n = n(n,) defines a constant s-curve Then s’= @(1) and s’f 1

Furthermore, 8% 1/c and E{0, where s(n(np),n,)=c (constant s-curve)

A4 Assume that n = n(n,) defines a constant s’-curve Then s = 8(1/n,) and s}0

Furthermore, § = ©(n;), $4 and E{(1-c), where s’(n(ny),n,) = c (constant s’-curve)

This general model provides a framework in which the various performance parameters
can be compared and contrasted within a single unified view of speedup It 1s easy to see that
assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4
of the scale;i model (Sandia)

Now, one question easily arises why these differences between the general model and
the previous ones with respect to the number of parameters on which 8 and 8’ depend? One
reason it was given above The new definitions incorporate wasted work This 1s due to the
fact that in all the other models the speedup was interpreted as the gain 1n time of a parallel

implementation with respect to the serial implementation of the same algornthm, and not over

125

D VASARU

the implementation of the best senal algorithm that solve the problem, as 1t 1s the case in the

general model (best seral implementation)

7. Example To ilustrate the use of these models 1n predicting the performance of the
parallel algorithms, we will give an example The problem to be solved is the evaluation of

a polynomial expression at a given point x

A
)y =% ex’
i=0
it 1s well known that the standard senal algorithm takes 3n-1 umt counts (n additions
and 2n-1 multiplications, considering that an addition and a multiplication take each a unit
count) The best senal algonthm 1s the Homner scheme and 1t takes 2n unit counts (n additions
and n multtplications)

A parallel algorithm for solving this problem using p processors, p = n/2, is the following

(see [5,7]) each processor 1 evaluates, using the Horner scheme, the following polynomial

{-0)ipi :
gW) = Y ¢, x¥ 1=0 p-l
/=0
The value of the 1nitial polynomial can be computed from the following expression
p-1

fo) = Y g
i=0 .
This paraliel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithin
1s 2) For more details on the analysis of the complexity see [5]
In order to study the performance of the algonthm, we have to determine the senal
fractions From above and from the general model of performance, we have
wa = 2n,

we = p(2n/p + 2*log p) = 2(n + p*log p),

126

ON SOME MODELS OF PARALLEL PERFORMANCE

ww = 2p*log p

s = (p*log p)(n*(p-1))

s’ = (p™log p)/((n + p*log p)*(p-1)

S =no/(n/p + log p)

E =n/(n + p*log p)

We can see that the parallel algonthm is efficient in the sense of Molet for a fixed
number of processors, s(n) = 0 when n—w and S — p It depends on cut interests and on
the avatlable memory how much we will increase the dimension of-the problem

From the restnction p=n/2 1t comes that we cannot increase to nfinity the number of
processors without increasing the dimension of the problem, if we want to make an efficient
use of the processors

For a fixed problem size n, the speedup 18 an increasing function of p, when 1 < p = n/2
(1t can be seen by studying the sign of the denivative) It follows that the optimal number of
processors (in order to obtatn a maximum speedup) 1s p = n/2 and the maximum cbtainable
speedup for fixed n 1s 8, = n/(1+log n) and the efficiency will be E = 2/(1 + log n) Tius
efficiency 1s not very good, especially for big problems

If we want to find the optimal number of processors in order to obtair a maximum
efficiency for a givon problem size, we have to study the expression of E It is a decreasing
functton of p and so, 1f we want an optimal efficiency, 1t will be obtained for p=2 1 tlus case,
E,.=n/(n+2) and S = 2n/(n+2)

We can see that maximizing the efficiency 13 not the same thing as maximizing the

speedup Sometimes 18 better to find a way 1n between these two extremes

127

D VASARU

If neither the dimenston of the problem, nor the number of processors 1s fixed, we can
predict the performance of the parallel algorithm for vanous relations between these two
parameters For example, if n = c*p (with consiant cz2, from the 1estriction on the number
of processors), we obtain

8 = n/(c + log (n/c)) and E = ¢/(c + log(n/c))

It comes that the speedup 18 increasing with the dimension of the problem and the number
of processors, but the efficiency is decieasing

There are many interesting conclusions that can be find out from the expressions above
We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters o and p
need to be corelated? From the expression of the efficiency it comes out that

n = (E*p*log p)/(1-E)

It means that we have to grow the dimension of the problgm propéniona!ly with
p*logp (this 13 the 1soefficiency function for the parallel algorithm, as defined in {4]) in order

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most imporiant
applications of these models:
- determining the best parallel algonthm for solving a fixed size problem on a given
architecture (the one with the least scalar fraction),
- as the scalar fraction of an algorithm depends on the architecture used, we can determine

the most appropriated architecture on which the parallel algotithm should be implemented or

©

128

ON SOME MODELS OF PARALLEL PERFORMANCE

viceversa (finding the minimum s),

- for a fixed size prablem we can determine the optimal number of processors to be used in
order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the
number of processors tn order to maintain a fixed efficiency (called the tsoefficiency
function)

There are also other models {or predicting the parallel performance, for a general view
see [4] There 1sn’t a best model, 1t depends on our interests which one should we use, each
1s appropriate for a different situation That 15 the reason why we had choose to present the
models that have in common the use of serial fractions in this case, the general model of

peiformance of Rice and Carmona is the best, as 1t 1s a generalization of all the others

REFERENCES

I GF Carey (ed), Parallel Supercomputing Mcthods, Algonthms and Applications, WILEY Seres
in Parallel Compuling 1989

2 EA Cammona, MD Rice, Modeling the Sental and Parallel Fractions of a Parallel Algonthm, Journal
of Parallel and Distnibuted Computing, vol 13, no 3, p 286-298, 1991

3 Gh Coman, DL Johnson, Compleattatea algontmilor, Umversitatea "Babes-Bolyal", Facultatea de
Matematica si Fizica, curs hitografiat, 1987

4V Kumar, A Gupta, Analyzing Scalabiity of Parallel Algorithms and Arclitectuies, AHPCRC Preprint
92-020

5 D Vasam, Calcul Paralel, Lucrare de Diploma, 1991, Univ "Babes-Bolym", Fac de Matem , Cluyj
HM Wacker, The Use of Amdahl’s Scaled Law in Detcrmiung the Power of Vector Computers, 1989
CERN School of Computing, p 156-171

7 S Wilson, Numerical Recipes for Supercomputers, in Supercomputattonal Science, R G Evans,S Wilson
(ed), Plenum Press, New-York and London, 1990, pp 81-109

129

