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REZUMAT Articolul "Asupra unor modele de performantă paralelă" prezintă câteva 
dintre cele mai folosite modele de caracterizare a performanţei algontnulor paraleli Acestea 
au ca trăsătură comună folosirea fracţiilor seriale şi paralele in studiul performantei Paralel cu 
prezentarea lor sunt discutate atât calităţile şi defectele lor cât şi relaţiile existente între ele 
in finalul articolului este dat un exemplu de folosire al acestor modele in caracterizarea 
performantei paralele

1. Introduction. New requirements in engineering and computational science had 

lead to a strong interest in constructing a "teraflop" computer Parallel processing is 

constdeied to be the great hope in obtaining such a performance Ideally, on np processors 

a program will run np times faster than on a single one Unfortunately this is tarely the case 

One reason is the great disproportion existing between the progress in hardware technology 

and the methods of programming the paiallel computers In what concerns the software part, 

there are a lot of problems waiting to be solved Two of them are the inexistence^ of a 

common complexity model for parallelism and the difficulties encountered in analyzing the 

performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in 

common the use of serial and parallel fractions in characterizing the parallel algorithms.
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showing the relations between them and how can we use them in predicting the parallel 

performance

S(>i,n )  = , b\n,n  ) ■= —
T(n,n) flp

2. Preliminaries. The most common used measures of parallel performance are 

speedup and efficiency [2,3] They aie both functions of problem size n and number of 

processors n,, and formally can be described by
V

(!)

T(n,i) is the time spent to solve a problem of size n by i processors Because of the 

overhead introduced by parallelization, T(n,i) is considered relative to the best senal 

implementation

The influence that the two parameters n and n,, have on the speedup and efficiency is of 

great practical importance By varying one or both parameters, different models of parallel 

performance are coming out

In older to make more readable the article, we will not mention always the parameters 

of a function For example, we will wnte S instead of It should be clear from the

context on which parameters a function depends In geneial, all the functions have two 

parameters In the case that one of them is fixed we will not mention it

3. Amdahl’s Law Considei an algorithm solving a problem of given size n that has 

one part inUmsically sequential and the other part, 100% parallelizable, can be distubuted 

equally among the available processors Now, if s is the fraction of time spent by a 

uniprocessor on the serial paît of the algorithm (senal fraction) and p is the fraction of time

118



ON SOME MODELS OF PARALLEL PERFORMANCE

spent on the parallelizable part by the uniprocessor then the time spent by n,. processors on 

the same problem will be (s+p/n^TXl) So, the speedup will be given by

s - № П Р  m » m
i + ( l -*)/« ,

This is a steep function of s near s = 0 For a fixed number of processors the speedup is 

increasing unbounded with the decreasing of s This case can be used in selecting the most 

efficient parallel algorithm (in the sense of efficient use of processors) among different 

algorithms solving the same problem the one with the minimum s is the best

What’s happening if we have a single algorithm for a fixed-problem size and an 

increasing number of processors7 Then the speedup is assimptotically bounded by 1/s

S  -*  1Л as np -*  oo (3)

This is the performance forecast by Amdahl’s Law if a computer has two speeds or 

modes of operation during a given calculation, the slow mode will limit overall performance 

even if the fast mode is infinitely fast [1,4] It means that if an algorithm has 2% sequential 

part, speedup greater than 50 one can not obtain even if it has thousands of processors 

This result was used by Amdahl as an argument against building massively parallel 

systems

The limitation of speed given by (3), as we will see in the next sections, is valid only for 

the case under consideration, i e for fixed-size problems That’s the reason why the model 

discussed is also called the fixed-size model
Г

4. Moler’s Law Moler was one of the firsts to show that Amdahl’s limit can be 

beated [1] He had proved that parallelism can attain desned speedup for sufficiently large
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computations

instead of considenng a fixed size problem'and an increasing number of processors, he 

had study the case of a fixed number of processors and instances of the same problem but 

with different sizes He had shown that the serial fraction s is dependent on the input size 

S = s(ll) So, s isn’t constant (the main assumption in the fixed-size model) Even if S is 

bounded by 1/s, this limit isn’t fixed He define an effective parallel algorithm as one for 

which s(n) —* 0 when n - » »  In this case, for a fixed number of processors n,>, one would 

obtain

1
ä(h)+(1 -s(n))/nD

n , for n (4)

It follows that for problems large enough, it can be obtained the desned speedup (the 

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as 

big as the available memory allows

S. Sandhi’s Model The researchers from Sandia Laboratories had studied the variation 

of speedup starting from the following observation if one has more computing power, he 

usually don’t use it to solve the same pioblem of fixed size but larger instances of the 

problem [1,6] The reason is obvious there is no point in using more processors than the 

concurrency of a problem because then, some of them will remain idle Also, by increasing 

the number of processors the overhead due to communication is incieasing and if the problem 

size is fixed, than the computational time will remain fixed, while the communication time 

will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processois, the serial
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fi action s can be made as little as we want The serial component of an algorithm is 

deteimined by the startup time, serial bottlenecks and I/O, which are not dependent on the 

problem size The parallelizable part of an algorithm vanes with the input size It follows that 

s can be made to shrink under these circumstances

Adding more processors bnngs more memory and more speed How do we scale the 

pioblem size with memory or with speed“7 Most scientists scale the problem in order to 

occupy all the available memory This is called the scaled model and it is the one proposed 

by Sandia They assumed as a first approximation that the parallel part grows proportionally 

with the number of processors

The model proposed by Sandia as an alternative to the fixed-size model is, in fact, the 

inverse of the Amdahl’s paiadigm Instead of asking how fast a given serial program will 

run on n,, piocessors, it’s asked how long it will take to run a given paiallel piogram on an 

uniprocessor

If s’ is the fraction of time spent by a multiprocessor machine with n,, processors on 

senal pails of a parallel progiam and p’ the fraction ot time spent by the same multiprocessor 

on the paiallel part, the time to run the program on an uniprocessor will be (s’+p’*n,,)AT(ii1,). 

Then , the scaled speedup will have the foim
( л '  * / i  )* ' / ' ( > I )

S  -  ____ 1____ « s / + ( | - л >  „  (5)
(.s'+//)*?'(»)

It is easy to see that the scaled speedup is a function of modei ate slope l-nP of s’ (a line) 

and it giows with increasing n,.

Another alternative is to scale the problem size in order to maintain constant execution 

time This is called the fixed-time model An example for the use of this model is the
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weather prediction It doesn’t make sense to have an execution time greater than 24 houis 

in predicting the time for the next day

To illustrate the difference between these mortels (in fact, the fixed-time model is 

intermediary between the fixed-size model and the scaled model), we will present an example 

For the multiplication of two matrix (with dimensions nxn), the memory needed is 0 (n 2) but 

the number of operations is 0 (n3) For the scaled model (pioblem size scales with memory) 

na grows proportionally with nP but for the fixed-time model, n3 grows proportionally with 

nP (i e u2 grows as nPM)

6. General Model of Parallel Performance Carmona and Rice proposed a general 

model of parallel performance which capture the previous presented models [2]

They use the same criteria of characterizing the parallel algorithms, speedup and 

efficiency, but with some slights modifications of (1) Instead of considering running time as 

a measure of the complexity of algorithms, time beeing dependent on the architecture, they 

use as a measure of work the computational counts or unit counts based on the size of an 

indivisible task

If wa is the work accomplished by a parallel program and we the work expended by 

the same progiam, the efficiency can be expressed by E = wa/we

The work accomplished is given by the number of operations done by the best serial 

implementation and it’s not depending on the number of processors, only on the problem size 

In general, wa < we because the parallelization introduces some overhead, redundant 

operations, communication requirements not needed in the serial case
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The difference ww = we-wa is called the wasted work It covers the time needed for

the following activities waiting for other tasks to complete work, communication delays 

and/or memory contention (dependent on the particular architecture and the implementation 

of the algorithm), operation redundancies introduced by the implementation, including task 

activation/ termination and synchronization code Ww is a function of both problem size and

number of processors

Under these considerations, the expressions for efficiency and speedup will be

wa(n) wa(ii)E i n j i } _______
' we(n,u^ wa(n)+ww(n,n^)

S M  - E * n  =

(6)

. , . ___ _________  * ti (7)
p p wà(n)+ww(ti,nf)  p

Using these work parameters, Rice and Carmona give also new interpretations for the 

senat fraction s and the scaled senal fraction s’ From (2) and (7) it follows

( V 1)
w  1s = ___*___
wa и -1p

(8)

So, s can be interpreted as the distribution acioss the additional processors of the ratio 

of work wasted to work accomplished Similarly, from (5) and (7)

• (" >D
ww +
we n -1

P

(9)

Therefore, s’ can be interpreted as a collective wasted effort nP*sl, where si is the

distribution across the additional piocessois of the ratio of work wasted to work expended 

From eqs (8) and (9) it follows that s,s’,p,p’ are functions both of problem size and the 

number of processors This modifies the previous points of view, î e s was considered 

constant for fixed-size problems as the numbei of processors increases, s’ was considered

only for scaled problems, with n=n(n,,) a increasing function of nP These differences appear 

from the fact that the new definitions of s and s’ incorporate wasted work
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It is not difficult to see that the fixed size-model is a particular case of these new 

definitions if the wasted work has the form ww = (nP- 1) * w(n), where w(n) is a function 

only of n, then s will be constant for fixed-size problems Intuitively, ww has this form if 

each one of the new nP-l processors contnbutes in equal part to the wasted work (with w(n)) 

and these contributions don’t depend on the number of processors In a similar way we can 

show that the other described models are particular cases of this general one 

Using eqs (6),(7),(8) and (9),it results the following law

ţs/s ' , ww>0

(10)

s - )s,s' ■ ww “ 0

£  B [ P ' l P  , W > 0  
l 1 , M'w=0

This law relates s and s’ for different combinations of n and np, while the previous 

models showed the trend in speedup when s and s’ are varied for a given number of 

processors, or are held fixed and nP is varied The law (10) also gives an interesting relation 

between the fixed-size and the scaled model, showing how can one predict the other From 

(2),(5) and (10) it’s easy to denve

’ V • 0 0л+(1-л)/н,
S  *» — ,----- — ------- (12)

s +(\ - s , )*np
These relations can be used in two ways for a given speedup, one can determine from 

the base scalar fraction the scaled senal fraction (or viceversa), secondly (and more 

important), from the serial fraction of a base problem s one can denve the scaled serial 

fraction s’ (and, therefore, the scaled speedup) for a larger problem, by simply making s’- s  

in (5)
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The general model proposed by Carmona and Rice is described by a group of assertions, 

assertions stating how the parameters influence each other on the curves of the form n = 

n(n,,) These curves represent all possible relations between the problem size and the number 

of processors Given a function f(n,np), the notation ff (respectively f | )  denotes that f 

increases (decreases) on some fixed curve n ш n(nP) as nP increases Also, f f r  (respectively 

f j r )  denotes that f  approaches the limit r on the curve as nP -*■ »

The performance model is given by the following assertions 

A1 s 'i  =t> s j => Sf (for any curve n = n(nP))

A2 sf => s’t  => E l (for any curve n = n(nP))

A3 Assume that n = n(n,,) defines a constant s-curve Then s ’= 0(1) and s ’f 1

Furthermore, Sf l /c and E |0 , where s(n(nP),nF)=c (constant s-curve)

A4 Assume that n = n(nP) defines a constant s’-curve Then s = 0 ( l/n P) and s |0
, 4

Furthermore, S = 0(nP), Sţ and E j(l-c), where s’(n(nP),nP) = c (constant s’-curve) 

This general model provides a framework in which the various performance parameters 

can be compared and contrasted within a single unified view of speedup It is easy to see that 

assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4 

of the scaled model (Sandia)

Now, one question easily arises why these differences between the general model and 

the previous ones with respect to the number of parameters on which s and s’ depend? One 

reason it was given above The new definitions incorporate wasted work This is due to the 

fact that m all the other models the speedup was interpreted as the gain in time of a parallel 

implementation with respect to the serial implementation of the same algorithm, arid not over
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the implementation of the best serial algorithm that solve the problem, as it is the case in the 

general model (best serial implementation)

7. Example To illustrate the use of these models in predicting the performance of the 

parallel algorithms, we will give an example The problem to be solved is the evaluation of 

a polynomial expression at a given point x
n

л *)c E crx ‘
/=0

It is well known that the standard serial algorithm takes 3n-l unit counts (n additions 

and 2n-l multiplications, considering that an addition and a multiplication take each a unit 

count) The best serial algorithm is the Homer scheme and it takes 2n unit counts (n additions 

and n multiplications)

A parallel algorithm for solving this problem using p processors, p s  n/2, is the following 

(see [5,7]) each processoi i evaluates, using the Horner scheme, the following polynomial

«,(*) = E VA' " i =>0, j>-l
y=0

The value of the initial polynomial can be computed from the following expression
/>-1

A*) = E  gJL* ) * * 1
/’=0

This parallel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithm 

is 2) For more details on the analysis of the complexity see [5]

In order to study the performance of the algorithm, we have to determine the serial 

fractions From above and from the general model of performance, we have 

wa = 2n,

we = p(2n/p + 2*log p) = 2(n t p*log p) ,

126



ON SOME MODELS OF PARALLEL PERFORMANCE

WW = 2p*log p

S = (p*log p)/(n*(p-l))

s’ = (p2*log p)/((n + p*log p)*(p-l))

S = n/(n/p + log p)

E = n/(n + p*log p)

We can see that the parallel algorithm is efficient in the sense of Molei for a fixed 

number of processors, s(n) -» 0 when n-»°° and S —» p It depends on oui interests and on 

the available memory how much we will increase the dimension of the problem

From the restriction psm/2 it comes that we cannot increase to infinity the number of 

processors without increasing the dimension of the problem, if we want to make an efficient 

use of the processors

For a fixed problem size n, the speedup is an mcieasing function of p, when 1 < p s  n/2 

(it can be seen by studying the sign of the derivative) It follows that the optimal number of 

processors (in order to obtain a maximum speedup) is p = n/2 and the maximum obtainable 

speedup for fixed n is n/(l+log n) and the efficiency will be E = 2/(1 + log n) This 

efficiency is not very good, especially for big problems

If we want to find the optimal number of processors in order to obtain a maximum 

efficiency for a given problem size, we have to study the expression of E It is a decreasing 

function of p and so, if we want an optimal efficiency, it will be obtained for p=2 I this case, 

Епшх=п/(п+2) and S = 2n/(n+2)

We can see that maximizing the efficiency is not the same thing as maximizing the 

speedup Sometimes is better to find a way in between these two extremes
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If neither the dimension of the problem, nor the number of processors is fixed, we can 

predict the performance of the parallel algorithm for various relations between these two 

parameters For example, if n ■= c*p (with constant ca2, from the lestnctton on the number 

of processors), we obtain

S = n/(c + log (n/c)) and E = c/(c + log(n/c))

It comes that the speedup is increasing with the dimension of the problem and the number 

of processors, but the efficiency is deci easing

There are many interesting conclusions that can be find out from the expressions above 

We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters n and p 

need to be corelated8 9 From the expression of the efficiency it comes out фа! 

n = (E*p*log p)/(l-E)

It means that we have to grow the dimension of the problem proportionally with 

p*logp (this is the isoefficiency function for the parallel algorithm, as defined in {4}) in order 

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most important 

applications of these models:

- determining the best parallel algorithm for solving a fixed size problem on a given 

architecture (the one with the least scalar fraction),

- as the scalar fraction of an algorithm depends on the architecture used, we can determine 

the most appropriated architecture on which the parallel algouthm should be implemented or
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viceversa (finding the minimum s),

- for a fixed size problem we can determine the optimal numbei of processors to be used in 

order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the 

number of processors in order to maintain a fixed efficiency (called the isoefficiency 

function)

There are also other models for predicting the parallel performance, for a general view 

see [4] There isn’t a best model, it depends on our interests which one should we use, each 

is appropriate for a different situation That is the reason why we had choose to present the 

models that have in common the use of serial fractions in this case, the general model of 

peiformance of Rice and Carmona is the best, as it is a generalization of all the others
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