
STUDIA UNIV BABEŞ-BOLYAI, MATHEMAI ICA XXXVIII 1, 1У93

ON SOME MODELS OF PARALLEL PERFORMANCE

Daniela VĂSARU'

Dedicated to frofeaitor fcmtl Muntean on hin 60* anniverbnry

HettíivtíJ November 29, 1992•It Л/ (ЧшьфиШоп 65Y05, 68Q0% 6SKÎ20, 68Q22

REZUMAT Articolul "Asupra unor modele de performantă paralelă" prezintă câteva
dintre cele mai folosite modele de caracterizare a performanţei algontnulor paraleli Acestea
au ca trăsătură comună folosirea fracţiilor seriale şi paralele in studiul performantei Paralel cu
prezentarea lor sunt discutate atât calităţile şi defectele lor cât şi relaţiile existente între ele
in finalul articolului este dat un exemplu de folosire al acestor modele in caracterizarea
performantei paralele

1. Introduction. New requirements in engineering and computational science had

lead to a strong interest in constructing a "teraflop" computer Parallel processing is

constdeied to be the great hope in obtaining such a performance Ideally, on np processors

a program will run np times faster than on a single one Unfortunately this is tarely the case

One reason is the great disproportion existing between the progress in hardware technology

and the methods of programming the paiallel computers In what concerns the software part,

there are a lot of problems waiting to be solved Two of them are the inexistence^ of a

common complexity model for parallelism and the difficulties encountered in analyzing the

performance and corectness of parallel algorithms

This paper presents a number of models of parallel performance, models that have in

common the use of serial and parallel fractions in characterizing the parallel algorithms.

"Habey Bolyai" Univenity, Faculty o f Mathematics and Computer Science, 3-100 Cluj-Najmca. Romania

D VASARU

showing the relations between them and how can we use them in predicting the parallel

performance

S(>i,n) = , b\n,n) ■= —
T(n,n) flp

2. Preliminaries. The most common used measures of parallel performance are

speedup and efficiency [2,3] They aie both functions of problem size n and number of

processors n,, and formally can be described by
V

(!)

T(n,i) is the time spent to solve a problem of size n by i processors Because of the

overhead introduced by parallelization, T(n,i) is considered relative to the best senal

implementation

The influence that the two parameters n and n,, have on the speedup and efficiency is of

great practical importance By varying one or both parameters, different models of parallel

performance are coming out

In older to make more readable the article, we will not mention always the parameters

of a function For example, we will wnte S instead of It should be clear from the

context on which parameters a function depends In geneial, all the functions have two

parameters In the case that one of them is fixed we will not mention it

3. Amdahl’s Law Considei an algorithm solving a problem of given size n that has

one part inUmsically sequential and the other part, 100% parallelizable, can be distubuted

equally among the available processors Now, if s is the fraction of time spent by a

uniprocessor on the serial paît of the algorithm (senal fraction) and p is the fraction of time

118

ON SOME MODELS OF PARALLEL PERFORMANCE

spent on the parallelizable part by the uniprocessor then the time spent by n,. processors on

the same problem will be (s+p/n^TXl) So, the speedup will be given by

s - № П Р m » m
i + (l -*)/« ,

This is a steep function of s near s = 0 For a fixed number of processors the speedup is

increasing unbounded with the decreasing of s This case can be used in selecting the most

efficient parallel algorithm (in the sense of efficient use of processors) among different

algorithms solving the same problem the one with the minimum s is the best

What’s happening if we have a single algorithm for a fixed-problem size and an

increasing number of processors7 Then the speedup is assimptotically bounded by 1/s

S -* 1Л as np -* oo (3)

This is the performance forecast by Amdahl’s Law if a computer has two speeds or

modes of operation during a given calculation, the slow mode will limit overall performance

even if the fast mode is infinitely fast [1,4] It means that if an algorithm has 2% sequential

part, speedup greater than 50 one can not obtain even if it has thousands of processors

This result was used by Amdahl as an argument against building massively parallel

systems

The limitation of speed given by (3), as we will see in the next sections, is valid only for

the case under consideration, i e for fixed-size problems That’s the reason why the model

discussed is also called the fixed-size model
Г

4. Moler’s Law Moler was one of the firsts to show that Amdahl’s limit can be

beated [1] He had proved that parallelism can attain desned speedup for sufficiently large

119

D VASARU

computations

instead of considenng a fixed size problem'and an increasing number of processors, he

had study the case of a fixed number of processors and instances of the same problem but

with different sizes He had shown that the serial fraction s is dependent on the input size

S = s(ll) So, s isn’t constant (the main assumption in the fixed-size model) Even if S is

bounded by 1/s, this limit isn’t fixed He define an effective parallel algorithm as one for

which s(n) —* 0 when n - » » In this case, for a fixed number of processors n,>, one would

obtain

1
ä(h)+(1 -s(n))/nD

n , for n (4)

It follows that for problems large enough, it can be obtained the desned speedup (the

processors are used efficiently) In practice, n cannot grow to infinity but it can be made as

big as the available memory allows

S. Sandhi’s Model The researchers from Sandia Laboratories had studied the variation

of speedup starting from the following observation if one has more computing power, he

usually don’t use it to solve the same pioblem of fixed size but larger instances of the

problem [1,6] The reason is obvious there is no point in using more processors than the

concurrency of a problem because then, some of them will remain idle Also, by increasing

the number of processors the overhead due to communication is incieasing and if the problem

size is fixed, than the computational time will remain fixed, while the communication time

will grow, affecting the overall performance

By scaling the problem size proportionally with the number of processois, the serial

120

ON SOME MODELS OF PARAI LEI PERFORMANCE

fi action s can be made as little as we want The serial component of an algorithm is

deteimined by the startup time, serial bottlenecks and I/O, which are not dependent on the

problem size The parallelizable part of an algorithm vanes with the input size It follows that

s can be made to shrink under these circumstances

Adding more processors bnngs more memory and more speed How do we scale the

pioblem size with memory or with speed“7 Most scientists scale the problem in order to

occupy all the available memory This is called the scaled model and it is the one proposed

by Sandia They assumed as a first approximation that the parallel part grows proportionally

with the number of processors

The model proposed by Sandia as an alternative to the fixed-size model is, in fact, the

inverse of the Amdahl’s paiadigm Instead of asking how fast a given serial program will

run on n,, piocessors, it’s asked how long it will take to run a given paiallel piogram on an

uniprocessor

If s’ is the fraction of time spent by a multiprocessor machine with n,, processors on

senal pails of a parallel progiam and p’ the fraction ot time spent by the same multiprocessor

on the paiallel part, the time to run the program on an uniprocessor will be (s’+p’*n,,)AT(ii1,).

Then , the scaled speedup will have the foim
(л ' * / i)* ' / ' (> I)

S - ____ 1____ « s / + (| - л > „ (5)
(.s'+//)*?'(»)

It is easy to see that the scaled speedup is a function of modei ate slope l-nP of s’ (a line)

and it giows with increasing n,.

Another alternative is to scale the problem size in order to maintain constant execution

time This is called the fixed-time model An example for the use of this model is the

121

D VÀSARU

weather prediction It doesn’t make sense to have an execution time greater than 24 houis

in predicting the time for the next day

To illustrate the difference between these mortels (in fact, the fixed-time model is

intermediary between the fixed-size model and the scaled model), we will present an example

For the multiplication of two matrix (with dimensions nxn), the memory needed is 0 (n 2) but

the number of operations is 0 (n3) For the scaled model (pioblem size scales with memory)

na grows proportionally with nP but for the fixed-time model, n3 grows proportionally with

nP (i e u2 grows as nPM)

6. General Model of Parallel Performance Carmona and Rice proposed a general

model of parallel performance which capture the previous presented models [2]

They use the same criteria of characterizing the parallel algorithms, speedup and

efficiency, but with some slights modifications of (1) Instead of considering running time as

a measure of the complexity of algorithms, time beeing dependent on the architecture, they

use as a measure of work the computational counts or unit counts based on the size of an

indivisible task

If wa is the work accomplished by a parallel program and we the work expended by

the same progiam, the efficiency can be expressed by E = wa/we

The work accomplished is given by the number of operations done by the best serial

implementation and it’s not depending on the number of processors, only on the problem size

In general, wa < we because the parallelization introduces some overhead, redundant

operations, communication requirements not needed in the serial case

122

ON SOME MODELS OF PARALLEL PERFORMANCE

The difference ww = we-wa is called the wasted work It covers the time needed for

the following activities waiting for other tasks to complete work, communication delays

and/or memory contention (dependent on the particular architecture and the implementation

of the algorithm), operation redundancies introduced by the implementation, including task

activation/ termination and synchronization code Ww is a function of both problem size and

number of processors

Under these considerations, the expressions for efficiency and speedup will be

wa(n) wa(ii)E i n j i } _______
' we(n,u^ wa(n)+ww(n,n^)

S M - E * n =

(6)

. , . ___ _________ * ti (7)
p p wà(n)+ww(ti,nf) p

Using these work parameters, Rice and Carmona give also new interpretations for the

senat fraction s and the scaled senal fraction s’ From (2) and (7) it follows

(V 1)
w 1s = ___*___
wa и -1p

(8)

So, s can be interpreted as the distribution acioss the additional processors of the ratio

of work wasted to work accomplished Similarly, from (5) and (7)

• (" >D
ww +
we n -1

P

(9)

Therefore, s’ can be interpreted as a collective wasted effort nP*sl, where si is the

distribution across the additional piocessois of the ratio of work wasted to work expended

From eqs (8) and (9) it follows that s,s’,p,p’ are functions both of problem size and the

number of processors This modifies the previous points of view, î e s was considered

constant for fixed-size problems as the numbei of processors increases, s’ was considered

only for scaled problems, with n=n(n,,) a increasing function of nP These differences appear

from the fact that the new definitions of s and s’ incorporate wasted work

123

D VÄSARU

It is not difficult to see that the fixed size-model is a particular case of these new

definitions if the wasted work has the form ww = (nP- 1) * w(n), where w(n) is a function

only of n, then s will be constant for fixed-size problems Intuitively, ww has this form if

each one of the new nP-l processors contnbutes in equal part to the wasted work (with w(n))

and these contributions don’t depend on the number of processors In a similar way we can

show that the other described models are particular cases of this general one

Using eqs (6),(7),(8) and (9),it results the following law

ţs/s ' , ww>0

(10)

s -)s,s' ■ ww “ 0

£ B [P ' l P , W > 0
l 1 , M'w=0

This law relates s and s’ for different combinations of n and np, while the previous

models showed the trend in speedup when s and s’ are varied for a given number of

processors, or are held fixed and nP is varied The law (10) also gives an interesting relation

between the fixed-size and the scaled model, showing how can one predict the other From

(2),(5) and (10) it’s easy to denve

’ V • 0 0л+(1-л)/н,
S *» — ,----- — ------- (12)

s +(\ - s ,)*np
These relations can be used in two ways for a given speedup, one can determine from

the base scalar fraction the scaled senal fraction (or viceversa), secondly (and more

important), from the serial fraction of a base problem s one can denve the scaled serial

fraction s’ (and, therefore, the scaled speedup) for a larger problem, by simply making s’- s

in (5)

124

ON SOME MODELS OF PARALLEL PERFORMANCE

The general model proposed by Carmona and Rice is described by a group of assertions,

assertions stating how the parameters influence each other on the curves of the form n =

n(n,,) These curves represent all possible relations between the problem size and the number

of processors Given a function f(n,np), the notation ff (respectively f |) denotes that f

increases (decreases) on some fixed curve n ш n(nP) as nP increases Also, f f r (respectively

f j r) denotes that f approaches the limit r on the curve as nP -*■ »

The performance model is given by the following assertions

A1 s 'i =t> s j => Sf (for any curve n = n(nP))

A2 sf => s’t => E l (for any curve n = n(nP))

A3 Assume that n = n(n,,) defines a constant s-curve Then s ’= 0(1) and s ’f 1

Furthermore, Sf l /c and E |0 , where s(n(nP),nF)=c (constant s-curve)

A4 Assume that n = n(nP) defines a constant s’-curve Then s = 0 (l/n P) and s |0
, 4

Furthermore, S = 0(nP), Sţ and E j(l-c), where s’(n(nP),nP) = c (constant s’-curve)

This general model provides a framework in which the various performance parameters

can be compared and contrasted within a single unified view of speedup It is easy to see that

assumption A3 is a generalization of the fixed-size model (Amdahl) and the assumption A4

of the scaled model (Sandia)

Now, one question easily arises why these differences between the general model and

the previous ones with respect to the number of parameters on which s and s’ depend? One

reason it was given above The new definitions incorporate wasted work This is due to the

fact that m all the other models the speedup was interpreted as the gain in time of a parallel

implementation with respect to the serial implementation of the same algorithm, arid not over

125

D VASARI)

the implementation of the best serial algorithm that solve the problem, as it is the case in the

general model (best serial implementation)

7. Example To illustrate the use of these models in predicting the performance of the

parallel algorithms, we will give an example The problem to be solved is the evaluation of

a polynomial expression at a given point x
n

л *)c E crx ‘
/=0

It is well known that the standard serial algorithm takes 3n-l unit counts (n additions

and 2n-l multiplications, considering that an addition and a multiplication take each a unit

count) The best serial algorithm is the Homer scheme and it takes 2n unit counts (n additions

and n multiplications)

A parallel algorithm for solving this problem using p processors, p s n/2, is the following

(see [5,7]) each processoi i evaluates, using the Horner scheme, the following polynomial

«,(*) = E VA' " i =>0, j>-l
y=0

The value of the initial polynomial can be computed from the following expression
/>-1

A*) = E gJL*) * * 1
/’=0

This parallel algorithm takes (2n/p + 2*log p) unit counts (where the base of the logarithm

is 2) For more details on the analysis of the complexity see [5]

In order to study the performance of the algorithm, we have to determine the serial

fractions From above and from the general model of performance, we have

wa = 2n,

we = p(2n/p + 2*log p) = 2(n t p*log p) ,

126

ON SOME MODELS OF PARALLEL PERFORMANCE

WW = 2p*log p

S = (p*log p)/(n*(p-l))

s’ = (p2*log p)/((n + p*log p)*(p-l))

S = n/(n/p + log p)

E = n/(n + p*log p)

We can see that the parallel algorithm is efficient in the sense of Molei for a fixed

number of processors, s(n) -» 0 when n-»°° and S —» p It depends on oui interests and on

the available memory how much we will increase the dimension of the problem

From the restriction psm/2 it comes that we cannot increase to infinity the number of

processors without increasing the dimension of the problem, if we want to make an efficient

use of the processors

For a fixed problem size n, the speedup is an mcieasing function of p, when 1 < p s n/2

(it can be seen by studying the sign of the derivative) It follows that the optimal number of

processors (in order to obtain a maximum speedup) is p = n/2 and the maximum obtainable

speedup for fixed n is n/(l+log n) and the efficiency will be E = 2/(1 + log n) This

efficiency is not very good, especially for big problems

If we want to find the optimal number of processors in order to obtain a maximum

efficiency for a given problem size, we have to study the expression of E It is a decreasing

function of p and so, if we want an optimal efficiency, it will be obtained for p=2 I this case,

Епшх=п/(п+2) and S = 2n/(n+2)

We can see that maximizing the efficiency is not the same thing as maximizing the

speedup Sometimes is better to find a way in between these two extremes

127

D VASARU

If neither the dimension of the problem, nor the number of processors is fixed, we can

predict the performance of the parallel algorithm for various relations between these two

parameters For example, if n ■= c*p (with constant ca2, from the lestnctton on the number

of processors), we obtain

S = n/(c + log (n/c)) and E = c/(c + log(n/c))

It comes that the speedup is increasing with the dimension of the problem and the number

of processors, but the efficiency is deci easing

There are many interesting conclusions that can be find out from the expressions above

We will conclude with one of them

If we are interested in maintaining a fixed efficiency E, how do the parameters n and p

need to be corelated8 9 From the expression of the efficiency it comes out фа!

n = (E*p*log p)/(l-E)

It means that we have to grow the dimension of the problem proportionally with

p*logp (this is the isoefficiency function for the parallel algorithm, as defined in {4}) in order

to maintain an efficient use of the processors

8. Final Remarks In conclusion, we will give a summary of the most important

applications of these models:

- determining the best parallel algorithm for solving a fixed size problem on a given

architecture (the one with the least scalar fraction),

- as the scalar fraction of an algorithm depends on the architecture used, we can determine

the most appropriated architecture on which the parallel algouthm should be implemented or

128

ON SOME MODELS OF PARALLEL PERFORMANCE

viceversa (finding the minimum s),

- for a fixed size problem we can determine the optimal numbei of processors to be used in

order to maximize the speedup or the efficiency,

- we can find out what relation has to exist between the dimension of the problem and the

number of processors in order to maintain a fixed efficiency (called the isoefficiency

function)

There are also other models for predicting the parallel performance, for a general view

see [4] There isn’t a best model, it depends on our interests which one should we use, each

is appropriate for a different situation That is the reason why we had choose to present the

models that have in common the use of serial fractions in this case, the general model of

peiformance of Rice and Carmona is the best, as it is a generalization of all the others

R E F E R E N C E S

1 G F Carey (ed), Parallel SupercompuUng Metliods, Algorithms and Applications, WILEY Series
in Parallel Computing 1989

2 E A Carmona, M D Rice, Modeling the Serial and Parallel Fractions of a Parallel Algontlmi, Journal
of Parallel and Distributed Computing, vol 13, no 3, p 286-298, 1991

3 Gh C o n n u t, DL Johnson, Complexitatea algoritmilor, Universitatea "Oabes-Bolyni", Facultatea de
Matematica si Fizica, curs litografiat, 1987

4 V Kumar, A Gupta, Analyzing Scalability of Parallel Algorithms mid Arclutectuies, AHPCRC Preprint
92-020

5 D Väsaru, Calcul Paralel, Lucrare de Diploma, 1991, ümv "Babos-Bolyai", Fac de Matern , Cluj
6 HM Wacker, The Use of Amdahl's Scaled Law In Determining the Power of Vector Computers, 1989

CERN School of Computing, p 156-171
7 S Wilson, Numerical Recipes for Supercomputers, in Supcrcoinputational Science, R G Evans.S Wilson

(ed), Plenum Press, New-York and London, 1990, pp 81-109

129

