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REZUMAT, - Programare funcfiongldl si relajlonald cu PSP. Asticolul prozinth PSP
(Procesomul Simbolic Poisson), intr-o manieri ce unificd programarea relagionald cu clauze
Hom bazate pe predicale cu programarea functional bazath pe egalitifi Unificarca pleach de
1a o logich munimald, ce poseda att clauze Hom cit §i egalithy, numitdl logica clauzelor Horn
cu egatluaiti fn ipotezele teoremes Church-Roser, semantica operaionald a PSP constituie o
logicd completd Semantica se bazeazl pe unificarea a doufl aborddrl. una construitd pe baza
teonei modelelor, care foloseste relapia de satisfactie intre modele gi instructiuni, i una bazats
pe teoria demonstsiind, care folosegte relajia de partstionare (entallment) intre muljimi st
instructiuni PSP poseda tipuri abstracte de datc ce se pot defini de utilizator gi care pot fi
considerate module generice (parametrizate) Cu ajutorul subsortunfor se pot introduce
operatori polumorfici §i o relajie de mostenire pe tipunle de date Toate aceste caracteristici
concurd la defiturea nguroasi a semanticli cu ajutorul logicit substrat, ilustratd cu clieva
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter
called PSP, is the practical way in which 1t unifies relational programming with functional
one, by unifying the logics that underlie relational and functional programming, namely first
order Horn clause logic and many-sorted equattonal logtc, to get many-sorted first order Hom
clause logic with equality [8]) In addition, generic modules are available with a rigorous
logical foundation, and PSP also has a subsort facility that gieatly increases its expressive
power

PSP s intended to operate with Potsson sertes, which are a well-known too! n
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expressing celestial mechanics problems The motion of celestial bodies 1s described by means
of differential equations, 1n which the night-hand-side terms are 1n fact Poisson sertes Usually,
the solution of these difterential equations cannot be obtained 1n exact form There are two
alternatives numerical integration or analytic construction of an approximate solution (known
as "theory of motion") First was used extensively, being a "classical” solution of motion
problems “The second alternative seems to be more attractive, because one can obtain the
solution tn analytical form, which provide a qualitative study of motion There \a.re many
analytical methods for construcung the approxsmate solutton of differential equations, most
of them known as "perturbation theory" methods {2, 14]

The advantages claimed for PSP includes sumphicity, clanty, understandability,
reusability and mawntanability There 1s another ‘requlremem that we argue also be imposed
on our symbolic processor every program should have an inttial model {10, 12] An miual
model 15 charactenized, uniquely up to 1somorphism, by the property that only what ts
provable 1s true, and everything else 1s false The nitial model provides a foundation for
database manipulations, since you know exactly 1s true

We have found that neither of the approaches, the model-theoretic and the proof-
theoretic one, 1s by itself sufficient to axtomatize o PSP The model-theoretic approach
focuses on the satisfaction relation |

M -y
between a model M and a sentence y, and the proof-theoretic one tries to axiomatize the

+

entariment relation
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between a set of sentences I" and a sentence y ;ieﬁvablc from I' The model-theoretic approach
1s exemplified by Barwise’s axioms for abstract model theory [1] The framework of
tnstitutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof-
theoretic approach has a long tradition, dating back to wori; of Tarski {15) on "consequence
relations", and of Hertz and Gentzen on the entailment relation ~.

This paécr ;JTDPOSBS a practical approach tt;at integrates the two above-mentioned ones
(model-theoretic and proof—theo}ctic aspects) into a single axiomatization The a:lxiomatization
in question consists of an "entailment systqm", specifying an entailment relatioq +, together
with 8 “satisfactio;t system" (specifically, an insttution in the Goguen-Busstall sense),
specifying a satisfaction relation = [11] The enﬁllment and satisfaction relations are then
linked by a soundness axtom

The éntailment relation + says nothing about the internal structure of a proof To have
a satisfactory account of proof_'s, we use the additional concept of a proof calculus C fora L
The same logic may have, of course, many difierent proof calcult When we wish to include
a specific proof calculus as part of a logic, the 1esulting logic plus proof caleulus 1s called
logical system The axioms for & proof calculus C state that each stgnature 1n the logtc L has
an associated space of proofs, which is an object of an appropriate category, From such a
space we can then extract an actual set of proofs supporting a given entallmen; C'ry

In order to obtain some efficiency with respect to PSP, we use the more general
concept of proof subcalculus, where proofs are restncted to some given class of axioms and
conclusions are also restricted to some gliven class of sentences It is by systematically

exploiting such restrictions that the structure of proofs can be simplified In this way, we can
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obtatn efficient proof theories, which lead to the theoretical concept of varable operational

semantics o

2. The features of PSP Conceptual clarity and ease of understanding are facilitated
by breaking a program into modules This in tumn offers support for debugging and
reusability When there are many modules, 1t 18 helpful to design the s;tmcmm of module
dependencies in an hierarchical manner Whenever one module (client module) uses data
(state) or operations {gervices) declared in a second one (server module), the server mlust be
explicitly tmported to the client and also must be defined earlier in the program text A
program obtained 1n this way has the abstract stiucture of an acyclic graph with modules as
vertices and the module dependencies as edges

A PSP program 1s a sequence of modules (objects) Each module may define one or
more new data sorts, together with associated operations that may create, select, interrogate,
store, or modify data Such an module may use existing modules with their sorts of data and
operations The module concept includes both data types in the programming language sense
(that 18, a domain of values of vartables together with operations that access or modify those
values) and algorithms

PSP has the following syntax for tmport

<importing> <mod_list>,
where importing 1s keyword and <mod_list> 1s a hst o module names By convention, if a

module M imports a module M’, that imports a module M", then M" s also tmported Into

M, that 1s, "umporting” 15 a transitive relation
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Usually, programming systems provide a number of built-in data types, for example
numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and
RAT BOOL provides the expected syntax and semantics for Booleans NAT, INT, and RAT
define natural, integer and rational numbers (the last ones from the wntegers)

There 1s much work on providing user-defined abstract data types in programming
languages (e g [3, 4, 9] The essential 1dea is to allow users to introduce models that define
new sorts and their associated functions and give axioms in Horn clﬂuse‘ logic with equality
or rules of computation It can also be very helpful to have available subsorts and their
associdted predicates, as we will see later

Note that PSP keywords are written tn bold, module names are all CAPITALS, while
vartable names begin with a capital letter and that relation, function and constant names are
all lowercase Attnbutes can be given for operators, for example, assoc, comm, and id
indicate that a binary operator 1 associative, commutative, and idempdtent, respectively

PSP mux-fix notation allows any desired ordening of keywords and arguments for
operators, this 15 declared by giving a syntactic form consisting of a string of keywords and
underbar character "_" followed by a " *, followed by the anty as a string of sorts, followed
by "—‘>", followed by the value sort of the function Ssmilar conventions are used for
predicates An expression is considered well-formed in this scheme 1ff 1t has exactly one
parse, the pa;ser can interacttvely help the user to satisfy this condition

PSP operates with Poisson senes, which are of the form

;e Wb ds
‘5 ='Z:C‘, Nz Y gor;(klxl+kzx2+ +k"x“),

=0

where C, are numerical coefficients, y,, y,, .y,, are monomal vanables, x,, x,, ,x, are
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tngonometric variables, j,, 1, J. end k,, k, .k, are exponents, and, respectively,
coefficients, the summation index ¢ covers the set of all possible combinations of the
exponents J and coefficients & ( € Z", k € Z", Z being the set of integers)

In a concise form we wnte (1) as follows

L S=X1,
~Q
in which T, is a term of this senes
T=CFEP,
where the polynomial part P, has the form
] jl L]
Po=yys v,
while the tngonometric part F, 13

- Sin
1’1 = cos(klxl +klxl.’- +/{nr»)

In practice, oné does not operate with Poisson series, but with parfial sums of these

ones, called Poisson expresstons, of the fonn

N
§=Y 1, NeN

~0

The Poisson expression can be defined 1n an hierarchical way The complete
specification of trigonometric and polynomial part of a Poisson term (Ttr, and Pi)ol,
respectively) can be found 1n [‘13] Now we define the Poisson tetm as following

psp TERM is
importing Rat Tir Ppol
sorts Rat Ttr Ppo! Terni
op
_-_* Rat Ttr Ppol -> Term [nssoc comm)
= Term -> Bool
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vars
X Rat
Y T
Z Ppol
XYZXYZ Term
€q
0YZ=0
X0Z=0
XY0=0
INMYZ=YZ
X1Z=X2Z
XY1l=XY
XYZ=X'YZ -X=X,Y=Y,Z2=2
endpsp.

The above keyword impcr(ii=3 indicates that the sorts, subsorts, predicates, functions, and
axioms of the listed models are imported into the module being defined The equation

XYZ=XY'2 -X=X,Y=Y,2=0

1s & Horn clause with equality, where "=" represents equahty predicate defined on types,

respectively
In the same way, we define EXP, that 15 based upon TERM, and specify the Potsson
expresston, viewed as a list of terms, tn which the symbol "." 1s separator

psp EXP is
imparting Term
sorts Term NeExp Exp
subsorts Term < NeExp < Exp
op
_+_ Term Term -> Exp {assoc comm id 0]
_-_ Term Term -> Exp [id 0]
_*_ Term Term -> Exp [assoc comm id 1]
_ _ Exp Exp -> Exp [assoc id ml]
_==_ Exp Exp -> Bool
head  NeExp -> Term
tait_ NeExp -> Exp
empty?_ Exp -> Bool
vars
T Term
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E Exp
sinX;
NM-{ }-Y;, Tem
cosX,
sinX,
PQ-{ }'Y, Tem
cosX,
sinX,
PIQ-{ 1} Y, Tem
cosX,
€q
sinX, smX,
NM-{ }:Y,#PQ-{ }-Y,=
cosX, cosX,
sinX,
=(NM=PQ)-{ }-Y,
cosX,

(NM - cosX, - YY) *(P/Q -smnX, - Yy)=

=((1/2 * N/M * P/Q) * sin(X,+X;) * Y, Y, ,
(1/2 * N/M * PIQ) - sin(Xy-X,) * Y, * Y)

(N/M -sinX, - Y,)) * @/Q - sinX, - Y,) =

=((1/2 * NIM * P/Q) * cos(X,-X,) - Y, * Y,
«1/2 * NM * P/Q) - cos(X,+X,) * Y; Y5)

(NM - cosX; " Y)*(P/Q cosX,Y,)=

=((1/2 * N/M * PIQ) - cos(X+Xy) - Y, ' Y, ,
(12 * N/M * P/Q) - cos(X;-X,) - Y, - Y,)

head(TE)=T

tatl(TE) = E

empty? E = E == nil
endpsp.

In additon, we define two modules for differentiating and integrating of Poisson

expressions
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psp DERIV is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp

op
Tf:.. _ Term Set --> Exp
d
5 - Exp Set —> Exp
vars
E Exp
T Term

cos(N, XN, K+ +NX))
NM - { }oY M- v,M Term
sin(Ny Y, HNy Yo+ ANeX)

€q

d cos(N; X, +N, X+ +N Y, + +N-X)

—— (N/M . { } . YlMl, ,Ylbﬂ(_ Yth) =
oY, stn(Ny X+ N, Xo+ +NY + +NX)

cos(N "X, +N, X+ +N Y, + +NX)
= (N*M,/M - { I O A A
sin(N XN, Xt AN Y+ +N-X)

sin(N; X +N, X+ +N Y, + +N,X)
FN*N/M - ( Joy MLy My My
cos(Ny X +N, X b +NY et +NpX)

0
—(0)=0
7 ©

0
— () =0
-

i, 0 d '
—_—(E)= head E) + tail E
aYk( ) aYk( ead E) aYk(a )

endpsp.

In the specification of INTEG module given below, we use the following abreviations
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IP =] fN/M * Sln(Nl'Xl+N2'x2+ +NL.Yk+ +NI'X|) ¢
M, M, P M. M,
Yyt Y YooY 0, dY,,

and
J, = SNM - cos(Np XN X+ +NY + +NPX)

MI Mk-l p Mkll Mh
Yy YooY Yea o 0Y, dY,,

where p Int, p=-1 (the case p=1 does not preserve the form of Poisson expressions, because
the integration leads to loganthms)
psp INTEG is
importing Exp

sorts Term Exp NeExp
subsorts Term < NeExp < Exp

op
fd_ Term Set —> Exp
Jf d_ Exp Set —> Exp
Vars
E Exp
T Term
P Nat

NM - sin(N XN, X+ +NX)Y M Y™ Term
NM - cos(N, X, Ny Xt +NPX) Y, M VM Term

eq
IO = ("]/Nk*N/M) * COS(Nl.X|+N2'X2+ +NK.YK+ +N|.Xl).
M, M., 0 M, M,
R (PR AR (IR 1

I = (1NN - cos(N, XN, Xt AN+ +NX):

M, M, 1 M, M,
Yy Yo Y Yt 0 Yy,

(VIN,™N) - sin(Np X AN, X+ +NY+ +N0X)-

M, M, 0 M, M,
Yoo Y Y Yt 0 Yy, )

I, = (C(INNM) - cos(N, X, +N, X+ +N Y+ +N,X)-
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M, M., P M. M,
D CRE (WD (R (IR (A

(N/M* SN FND) (N X, +N, X+ +NY( N X))

Ml Mlt-l P‘l Mbl Mh
D R (R AR (LI (A

-(INM*p/N*(p-)/NY) - L,) -p> 1
Jo = (UNSNM) * sinN, XN X+ +NY+ +NPX)-

M M, 0 M, M,
Yot Yo oYY, Y,

1, = (I/N*NM) - sinN, XN X+ +NCY o+ +HNpX):

M M, I M, M,
Yoo Yo Yo Yt oY,

(V(NGNY) < cos(N XN X+ N Y+ +NPX)-

Ml Mi-l 0 M‘lul Mh
Yoo Yo Yo Yoo -Y,)

5, = ((UNFN/M) - sin@N XN, X+ +NCY,+ +NeX)-

M, Mo M, M,
Yy Yoo Yo, Y,

(NM*p/(N*N))cos(Ny X Ny Xyt N Y+ +NpX))

M, Mo p-l My, M,
Yy Yo Yo Yo Y,

-(NIM*p/NAp-1N) “ T,5) - p > 1

dX, =0

S dX, =0

JE dX, = fhead(E) dX, + ftail(E) dX,
endpsp.

The NORMAL module provides a normal form of Poisson expressions
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psp NORMAL is
importing Exp
sorts Term Exp
snbsorts Term < Exp
op
normahised_  Exp -> Bool
normalising_  Exp > Exp

vars
TT Tem
EE Exp
eq

normalised(ml) = True
normalised(T) = True
normalised(2T E) - T = T’, normalised(T" )
normelising(E T T° B’) = normalising(E 2T E’) - T=T"
normalising(E) = E - normalised(E)

endpsp

The basic building blocks of parameterized programming are parametenzed modules
Parametenzed programming is a powerful technique for the reliable 1euse of software In this
technique, modules are parameterized over very general interfaces that describe what
properttes of an environment are required for the module to work correctly.

Here 15 an example of a parametenzed module, intitulated SUBST, over the theories
SORTI1 and SORT2 In our example, SUBST module provides the symbolic substitution
operation

psp SUBST [S1  SORT1,S2 SORTZ] is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op
_sub__ Term S1 82 -> Teim
-sub_ _ Exp S1 82 -> Exp
vars
E Exp
T Term
X 81
Y 52
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eq
sub0OXY)=0
sub(nil X Y) = ml
sub(T X Y) = sub(T X > Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)
eadpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORT! and SORT2 are theories defined as follows

Th SORTI is Th SORT2 1s
sorts Sorl sorts Sor2
endth. endth.

The following spectfication

view SUBS is (Sorl as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORT1 and SORT2 to the other sorts
already defined, that preserves the subsort relatton, and a mapping from the operations of
SORT! and SORT?2 to the operations of Kat and Set, preserving anty, value sort, and
attributes

To actually use a parameterized module, 1t 13 necessary to tnstantiate (t with an actual
parameter The Make command apphes a parameterized module to an actual one, by use of
a view For example,

Make SUBSTITUTION is SUBST[SUBS] endin.

uses the view SUBS to instantiate the parameterized module SUBST with the actual
parameters Rat and Set

In the same way, one can construct new PSP modules, which implements new

opeiations on Poisson senies, like power expanston (including exponents integer numbers or
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1ational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson
sertes, binomial expansion and so on (see, for example, [2]) Also, on the basts of PSP we
can realize new specialized modules, Itke Kepler or Taylor ones In Keplenan module, for
example, the polynomial and trigonometnc varnables are the well-known elliptic elements For
these elements, there are transformation rules, which can be considered, from our point of
view, as rewnting rules The next lgvel of abstiaction consists of modules for constructing the
approximate solutton of differential equations up to an desired order One can construct
different modules for each "perturbation method", each of them using operations defined in
previous modules Using different methods applied to the same problem, one can compare the
obtaining solutions, keeping in mund the fE}ct that many of methods are assimptotically
equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP 1s intended to be a symbolic processor, with features of
theorem proving, dedscated to the study of the motion of celesttal bodies From the
unplementation point of view, theie are some modules that are not so efficient, this dim;:ulty
remains to be considered later Taking into account the built-in abstract data types, the
denotational semantics of initial models, the opeiattonal semantics based on rewriting rules,

PSP, considered as open system, can be helpful in other fields, too
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