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REZUMAT. - Programare funcţională ţi relaţională cu PSP. Articolul prezintă PSP 
(Procesorul Simbolic Poisson), intr-o manieră ce unifică programarea relaţională cu clauze 
Horn bazate pe predicate cu programarea funcţională bazată pe egalităţi Unificarea pleacă de 
la o logică minimală, ce posedă atât clauze Horn cât şi egalităţi, numită logica clauzelor Horn 
cu egalităţi în ipotezele teoremei Church-Roser, semantica operaţională a PSP constituie o 
logică completă Semantica se bazează pe unificarea a două abordări, una construită pe baza 
teoriei modelelor, caro folosesc relapa de satisfacţie Intre modele şi instrucţiuni, şi una bazată 
pe teoria demonstrării, care foloseşte relaţia de partiponare (cntailmcnt) Intre mulţimi şi 
instrucţiuni PSP posedă tipuri abstracte de date ce se pol defini de utilizator şi care pot fi 
considerate module generice (parametrizate) Cu ajutorul subsortunlor se pot introduce 
operatori polunorfici şi o relaţie de moştenire pe tipurile de date Toate aceste caracteristici 
concură la definirea riguroasă a semanticii cu ajutorai logicii substrat, ilustrată cu câteva 
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter 

called PSP, is the practical way in which it unifies relational programming with functional 

one, by unifying the logics that underlie relational and functional programming, namely first 

order Horn clause logic and many-sorted equational logic, to get many-sorted first order Horn 

clause logic with equality [8] In addition, generic modules are available with a rigorous 

logical foundation, and PSP also has a subsort facility that gieatly increases its expressive 

power

PSP is intended to operate with Poisson senes, which are a well-known tool in
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expressing celestial mechanics problems The motion of celestial bodies is described by means 

of differential equations, in which the right-hand-side terms are in fact Poisson series Usually, 

the solution of these differential equations cannot be obtained in exact form There are two 

alternatives numerical integration or analytic construction of an approximate solution (known 

as "theory of motion") First was used extensively, being a "classical" solution of motion 

problems The second alternative seems to be more attractive, because one can obtain the 

solution in analytical form, which piovide a qualitative study of motion There are many 

analytical methods for constructing the approximate solution of differential equations, most 

of them known as "perturbation theory" methods [2, 14]

The advantages claimed for PSP includes simplicity, clarity, understandability, 

reusability and maintanability There is another requirement that we argue also be imposed 

on our symbolic processor every program should have an initial model [10, 12] An initial 

model is charactenzed, uniquely up to isomorphism, by the pioperty that only what ts 

provable is true, and everything else is false The initial model provides a foundation for 

database manipulations, since you know exactly is true

We have found that neither of the approaches, the model-theoretic and the pioof- 

theoretic one, is by itself sufficient to axiomatize oui PSP The model-theoretic approach 

focuses on the satisfaction relation

M у

between a model M and a sentence /, and the pi oof-theoretic one tries to axiomatize the 

entailment relation

T h y
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between a set of sentences Г and a sentence у derivable from Г The model-theoretic approach 

is exemplified by Barwise’s axioms for abstract model theory [1] The framework of 

institutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof- 

theoretic approach has a long tradition, dating back to work of Tarski [15] on "consequence 

relations", and of Hertz and Gentzen on the entailment relation к

This paper proposes a practical approach that integrates the two above-mentioned ones 

(model-theoretic and proof-theoretic aspects) into a single axiomatization The axiomatization 

in question consists of an "entailment system", specifying an entailment relation i-, together 

with a "satisfaction system" (specifically, an institution in the Goguen-Burstali sense), 

specifying a satisfaction relation и [Ц] The entailment and satisfaction relations are then 

linked by a soundness axiom

The entailment relation ь says nothing about the internal structure of a proof To have 

a satisfactory account of proofs, we use the additional concept of a proof calculus C for ,a L 

The same logic may have, of course, many different proof calculi When we wish to include 

a specific proof calculus as part of a logic, the lesulting logic plus proof calculus is called 

logical system The axioms for a pi oof calculus C state that each signature in the logic L has 

an associated space of proofs, which is an object of an appropriate category. From such a 

space we can then extract an actual set of proofs supporting a given entailment Г н у

In order to obtain some efficiency with respect to PSP, we use the more general 

concept of proof subcalculus, where proofs are restricted to some given class of axioms and 

conclusions are also restricted to some given class of sentences It is by systematically 

exploiting such restrictions that the structure of proofs can be simplified In this way, we can

77



I PARPUCEA, B PARV

obtain efficient proof theories, which lead to the theoretical concept of variable operational 

semantics <•

2. The features of PSP Conceptual clarity and ease of understanding are facilitated 

by breaking a program into modules This in turn offers support for debugging and 

reusability When there are many modules, it is helpflil to design the structure of module 

dependencies in an hierarchical manner Whenever one module (client module) uses data 

(state) or operations (services) declared in a second one (server module), the server must be 

explicitly imported to the client and also must be defined earlier in the program text A 

program obtained in this way has the abstract stiucture of an acyclic graph with modules as 

vertices and the module dependencies as edges

A PSP program is a sequence of modules (objects) Each module may define one or 

more new data sorts, together with associated operations that may create, select, interrogate, 

store, or modify data Such an module may use existing modules with their sorts of data and 

operations The module concept includes both data types in the programming language sense 

(that is, a domain of values of variables together with operations that access or modify those 

values) and algorithms

PSP has the following syntax for import

<iniporting> <mod_list>,

where importing is keyword and <mod_hst> is a list о module names By convention, if a 

module M imports a module M’, that imports a module M", then M" is also imported into 

M, that is, "importing" is a transitive relation

78



FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Usually, programming systems provide a number of built-in data types, for example 

numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and 

RAT BOOL provides the expected syntax and semantics for Booléens NAT, INT, and RAT 

define natural, integer and rational numbers (the last ones from the integers)

There is much work on providing user-defined abstract data types in programming 

languages (e g [3, 4, 9]) The essential idea is to allow users to introduce models that define 

new sorts and their associated functions and give axioms in Horn clause logic with equality 

or rules of computation It can also be very helpful to have available subsorts and their 

associated predicates, as we will see later

Note that PSP keywords are written in bold, module names are all CAPITALS, while 

variable names begin with a capital letter and that relation, function and constant names are 

all lowercase Attributes can be given for operators, for example, assoc, comm, and id 

indicate that a binary operator is associative, commutative, and idempotent, respectively

PSP mix-fix notation allows any desired ordering of keywords and arguments for 

operators, this is declared by giving a syntactic form consisting of a string of keywords and 

underbar character followed by a " followed by the anty as a string of sorts, followed 

by followed by the value sort of the function Similar conventions are used for 

predicates An expression is considered well-formed m this scheme iff it has exactly one 

parse, the parser can interactively help the user to satisfy this condition
t

PSP operates with Poisson senes, which are of the form

J, J, J. siny, cos +* Л + +k X ),Л П'*

where C, are numencal coefficients, у,, y2, ,ym are monomial vanables, x„ x2, ,xn are
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trigonometric variables, j,, j2> j ra and k,. k2, ,kn are exponents, and, respectively, 

coefficients, the summation index t covers the set of all possible combinations of the 

exponents j  and coefficients к (j €E Zm, к E. Z", Z being the set of integers)

In a concise form we write (1) as follows

S
CO

0

in which T, is a term of this senes

T, = C, F, P, ,

where the polynomial part P, has the form

while the tngonometnc part F, is

f  -  S i n ( k . x , + k j c  + + k  X  )» CO S l 1 2^2 Я п*

In piactice, onő does not operate with Poisson series, but with partial sums of these 

ones, called Poisson expressions, of the fonn

N

s  “ E 7;. N eNi-O

The Poisson expression can be defined in an hierarchical way The complete 

specification of tngonometnc and polynomial pan of a Poisson term (Ttr, and Ppol, 

respectively) can be found in [13] Now we define the Poisson teim as following

psp TERM is
importing Rat Ttr Ppol 
sorts Rat Ttr Ppol Terni 
op

Rat Ttr Ppol -> Term [assoc comm]
= Term -> Bool
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vars
X Rat 
У Ttr 
Z Ppol
X Y Z  X’-Y’ Z’ Term 

eq
0-Y-Z ■= 0 
X-O-Z = 0 
X-Y-0 = 0 
1/1 YZ = YZ 
X I Z  = XZ 
X-Y-l = X Y
X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z ■= Z’

endpsp.

The above keyword im p a i r }  indicates that the sorts, subsorts, predicates, functions, and 

axioms of the listed models are imported into the module being defined The equation 

X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z = Z’

is a Horn clause with equality, where H=" represents equality predicate defined on types, 

respectively

In the same way, we define EXP, that is based upon TERM, and specify the Poisson

expression, viewed as a list of terms, m which the symbol is separator

psp EXP Is
imparting Term 
sorts Term NeExp Exp 
subsorts Term < NeExp < Exp 

op
_+_ Term Term -> Exp [assoc comm id 0]

Term Term -> Exp [id 0]
Term Term -> Exp [assoc comm id 1 ]
__ Exp Exp -> Exp [assoc id ml]
j = _  Exp Exp -> Bool 

head_ NeExp -> Term 
tail_ NeExp -> Exp 
empty7 Exp -> Bool 

vars
T Term
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E Exp

sinX,
N/M • { } * Y, Term

cosX,

smX,
P/Q • { } • Y, Terni

cosX,

sinX2
P/Q • { } • Y2 Term

cosXj 
eq

sinX, 8UlX,
N/M • { } • Y, ± P/Q • { } • Y, =

cosX, cosX,

sinX,
= (N/M ± P/Q) • { } • Y,

cosX,

(N/M • cosX, • Y,) * (P/Q • smX2 • Y2) =

=((1/2 * N/M * P/Q) • sin(X,+X2) • Y, ■ Y2 ,
(1/2 * N/M * P/Q) • sin(X2-X,) • Y, • Yj)

(N/M • sinX, • Y,) * (P/Q • sinX2 • Y,) =

=((1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Yj,
-(1/2 * N/M * P/Q) • cos(X,+X2) • Y, -,Y2)

(N/M • cosX, • Y,) * (P/Q cosX2 • Y2) =

=((1/2 * N/M * P/Q) • cos(X,+X2) • Y, • Y2 ,
(1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Y2) 

head(T E) = T 
tail(T E) = E 
empty 9_E = E == nil 

endpsp.

In addition, we define two modules for differentiating and integrating of Poisson 

expressions
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psp DERIV is 
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

—  Term Set —> Exp
d -

—  Exp Set —> Exp
d -

vars
E Exp 
T Term

cos(N,-X,+N2-X2+ +N.-X,)
N/M • { } • Y,M1 • •YhMh' Term

sin(N,-Y,+N2-Y2+ +N.-X,)

eq
d cos(N,-X,+N2-X2+ +Nk,Yt+ +N.-X,)

— (N/M • { } • Y,M1- -Y^”1* •YhMh) =
dYy sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)

cosCN.-X^Nj-XjL +Nk-Yk+ +N|’X|)
= (N*Mk/M • { } • Y,M1- -Y^'1- ■YhMh ,

sm(N,-X,-lN2-X2+ +Nk-Yk+ +Ц-Х,)

sin(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)
iN*Nk/M • { } • Y,M1- .-Y^0, •YhN,lh)

cos(N,-X1+N2-X2p +Nk-Yk+ +N,-X,)
d (0) -  0

a
3Y,

(nil) m 0

^ ( E í - ^ í h e a d  E ) ._ L ( .a , l  E)

endpsp.

In the specification of INTEG module given below, we use the following abréviations
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/N /М • sin(N1-X1+N2,X2+ +Nk-Yk+ +N.-X,) • 
Mk.| p MkH Mh 

Y ,- Yk.j • Yk • • • Yh dYk ,

and
jN /M -cos(N ,-X 1+N2-Xa+ +Nk-Yk+ +N,*X,) •

where p Int, p^-l (the case p=-l does not preserve the form of Poisson expressions, because 

the integration leads to logarithms)

psp INTEG is
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

E Exp 
T Term 

P Nat
N/M ■sin(N,-X1+N2-X,+ .+N|-XI)-Y1M1- ■YhMh Term 
N/M ■cos(N,-X1+N2->4+ +N,-Xi)'Y,mi- •YbMh Term

I0 = (-l/Nk*N/M) • cos(N1,X,+N2-X2+ +Nk-Yk+ +N,-X,)-

Mt Mk_t 0 Mk+1 Mh

/_d_ Term Set ->  Exp 
/_d_ Exp Set —> Exp

vars

’ Y, • Yk.j • Yk • Yk+1 • • Y,

= ((-l/Nk*N/M) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

IVI, ivt l кл M,

(l/(Nk*Nk)) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N,-X,)-

M, MkI 0 M 
Y, ■ Yk. , - Y k -Y

M,

= ((-l/N k*N/M) ■cos(N,-X1+ N /X 2+ +Nk-Yk+ +N,-X,)-
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Mi p Mk(I M„
■ Y, Yk., • Yk • Yk+1 • ‘ Yh ,

(N/M*p/(Nk*Nk))-sin(N1,X1+N2,X3+ +Nk-Yk+ +N.-X,)-

M, Mk., p-1 Mk<1 Mh
• Y, * Yk., • Yk • Yk+I • • Yh ,

-(N/M*p/Nk*(p-1 )/Nk) • lp.2 ) - p > 1

J0 = (l/Nk*N/M) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N.-X,)-

M, Мы 0 МкИ Mh
• Y , -  Yk. , - Y k -Yw - ' Yh

J, = ((l/Nk*N/M) • sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

M, Mk., 1 М|ц.) Mh
■Y, • YM -Yk -Ykt l - • Yh ,

(l/O V N J) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X|)-

M, M,., 0 M*, Mh
•Y,* Yk., • Yk • Yk„ • • Yh )

■Ip = ((l/Nk*N/M) • sin(N,-X,+N2-X2+ +Nk% +  +N.-X,)-

M, Mk_! p Mktl M„
■ Yt • Yv„ • Yk • Yktl • • Yh ,

(N/M*p/(Nk*Nk)),cos(N, •X^Nj-XjT +Nk-Yk+ +N,-X,)-

M, Mk_, p-1 Mkfl M„
• Y, • YM • Yk • Yk+1 • ■ Yh ,

-(N/M*p/Nk*(p-1)/Nk) • Jp.2 ) - p > 1

JÖ dXk = 0 
Дш1) dXk = 0
JE d \  = Jhead(E) dXk + Jtail(E) dXk

endpsp.

The NORMAL module provides a normal form of Poisson expressions
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psp NORMAL is 
importing Exp 
sorts Term Exp 
subsorts Term < Exp 
op

normalised_ Exp -> Bool 
normalising_ Exp -> Exp 

vars
T Г  Term 
E E’ Exp 

eq
normalised(ml) = True 
normali3ed(T) ■- True
normalised(2T E) - T = T’, normalised(T’ E) 
normalising(E T T’ E’) = normalising(£ 2T E’) - T=T’ 
normalising(E) = E - normalised(E) 

endpsp

The basic building blocks of parameterized programming are parameterized modules 

Parameterized programming is a powerful technique for the reliable leuse of software In this 

technique, modules are parameterized over very general interfaces that describe what 

properties of an environment are required for the module to work correctly.

Here is an example of a parameterized module, intitulated SUBST, over the theories 

SORTI and SORT2 In our example, SUBST module provides the symbolic substitution 

operation

psp SUBST [SI SORTI,  S2 SORT2] is 
importing Exp 
sorts Term Exp NeExp 
subsorts Term < NeExp < Exp 
op

_sub__  Term SI S2 -> Teim
-sub__ Exp Si S2 -> Exp

vars 
E Exp 
T Term 
X SI 
Y S2
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eq
sub(0 X Y) = 0

sub(nil X Y) = nil
sub(T X Y) = sub(T X -> Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)

etulpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORTI and SORT2 are theories defined as follows

Th SORTI is Th SORT2 is
sorts Sori sorts Sor2

endtli. endth.

The following specification

view SUBS is (Sori as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORTI and SORT2 to the other sorts 

already defined, that preserves the subsort relation, and a mapping from the operations of 

SORTI and SORT2 to the operations of Rat and Set, preserving anty, value sort, and 

attributes

To actually use a parameterized module, it is necessary to instantiate it with an actual 

parametei The Make command applies a parameterized module to an actual one, by use of 

a view For example,

Make SUBSTITUTION is SUBST[SUBS] endm, 

uses the view SUBS to instantiate the parameterized module SUBST with the actual 

parameteis Rat and Set

In the same way, one can construct new PSP modules, which implements new 

opeiations on Poisson series, like power expansion (including exponents integer numbers or
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îational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson 

series, binomial expansion and so on (see, for example, [2]) Also, on the basis of PSP we 

can realize new specialized modules, like Kepler or Taylor ones In Keplenan module, for 

example, the polynomial and trigonometric variables are the well-known elliptic elements For 

these elements, there are transfoimation rules, which can be considered, from our point of 

view, as rewriting rules The next level of absti action consists of modules for constructing the 

approximate solution of differential equations up to an desired order One can construct 

different modules for each "perturbation method", each of them using operations defined in 

previous modules Using different methods applied to the same problem, one can compare the 

obtaining solutions, keeping in mind the fact that many of methods are asstmptottcally 

equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP is intended to be a symbolic processor, with features of 

theorem proving, dedicated to the study of the motion of celestial bodies From the 

implementation point of view, theie are some modules that are not so efficient, this difficulty 

remains to be considered later Taking into account the built-in abstract data types, the 

denotations! semantics of initial models, the opeiational semantics based on rewriting rules, 

PSP, considered as open system, can be helpful in othei fields, too
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