
STUDIA UNIV BABEŞ-B0LYA1, MATHEMATICA, XXXVIII, 3, 1993

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Ule PARFUCEA“ end Razii PÂRV"

Received February 26, 1994

AA/b subject cUmtflcaUon 68Q0S

REZUMAT. - Programare funcţională ţi relaţională cu PSP. Articolul prezintă PSP
(Procesorul Simbolic Poisson), intr-o manieră ce unifică programarea relaţională cu clauze
Horn bazate pe predicate cu programarea funcţională bazată pe egalităţi Unificarea pleacă de
la o logică minimală, ce posedă atât clauze Horn cât şi egalităţi, numită logica clauzelor Horn
cu egalităţi în ipotezele teoremei Church-Roser, semantica operaţională a PSP constituie o
logică completă Semantica se bazează pe unificarea a două abordări, una construită pe baza
teoriei modelelor, caro folosesc relapa de satisfacţie Intre modele şi instrucţiuni, şi una bazată
pe teoria demonstrării, care foloseşte relaţia de partiponare (cntailmcnt) Intre mulţimi şi
instrucţiuni PSP posedă tipuri abstracte de date ce se pol defini de utilizator şi care pot fi
considerate module generice (parametrizate) Cu ajutorul subsortunlor se pot introduce
operatori polunorfici şi o relaţie de moştenire pe tipurile de date Toate aceste caracteristici
concură la definirea riguroasă a semanticii cu ajutorai logicii substrat, ilustrată cu câteva
exemple

1. Introduction. A main feature of the processor described in this paper, hereafter

called PSP, is the practical way in which it unifies relational programming with functional

one, by unifying the logics that underlie relational and functional programming, namely first

order Horn clause logic and many-sorted equational logic, to get many-sorted first order Horn

clause logic with equality [8] In addition, generic modules are available with a rigorous

logical foundation, and PSP also has a subsort facility that gieatly increases its expressive

power

PSP is intended to operate with Poisson senes, which are a well-known tool in

‘ "Rnbey/jolyai" University, Faculty o f Economic Silences, 3400 Cluj-Napoca, Romania

"RabeyRolyat" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Nojioca, Romania

I PARPUCbA U PARV

expressing celestial mechanics problems The motion of celestial bodies is described by means

of differential equations, in which the right-hand-side terms are in fact Poisson series Usually,

the solution of these differential equations cannot be obtained in exact form There are two

alternatives numerical integration or analytic construction of an approximate solution (known

as "theory of motion") First was used extensively, being a "classical" solution of motion

problems The second alternative seems to be more attractive, because one can obtain the

solution in analytical form, which piovide a qualitative study of motion There are many

analytical methods for constructing the approximate solution of differential equations, most

of them known as "perturbation theory" methods [2, 14]

The advantages claimed for PSP includes simplicity, clarity, understandability,

reusability and maintanability There is another requirement that we argue also be imposed

on our symbolic processor every program should have an initial model [10, 12] An initial

model is charactenzed, uniquely up to isomorphism, by the pioperty that only what ts

provable is true, and everything else is false The initial model provides a foundation for

database manipulations, since you know exactly is true

We have found that neither of the approaches, the model-theoretic and the pioof-

theoretic one, is by itself sufficient to axiomatize oui PSP The model-theoretic approach

focuses on the satisfaction relation

M у

between a model M and a sentence /, and the pi oof-theoretic one tries to axiomatize the

entailment relation

T h y

76

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

between a set of sentences Г and a sentence у derivable from Г The model-theoretic approach

is exemplified by Barwise’s axioms for abstract model theory [1] The framework of

institutions, given by Goguen and Burstall [6, 7] also belongs to this approach The proof-

theoretic approach has a long tradition, dating back to work of Tarski [15] on "consequence

relations", and of Hertz and Gentzen on the entailment relation к

This paper proposes a practical approach that integrates the two above-mentioned ones

(model-theoretic and proof-theoretic aspects) into a single axiomatization The axiomatization

in question consists of an "entailment system", specifying an entailment relation i-, together

with a "satisfaction system" (specifically, an institution in the Goguen-Burstali sense),

specifying a satisfaction relation и [Ц] The entailment and satisfaction relations are then

linked by a soundness axiom

The entailment relation ь says nothing about the internal structure of a proof To have

a satisfactory account of proofs, we use the additional concept of a proof calculus C for ,a L

The same logic may have, of course, many different proof calculi When we wish to include

a specific proof calculus as part of a logic, the lesulting logic plus proof calculus is called

logical system The axioms for a pi oof calculus C state that each signature in the logic L has

an associated space of proofs, which is an object of an appropriate category. From such a

space we can then extract an actual set of proofs supporting a given entailment Г н у

In order to obtain some efficiency with respect to PSP, we use the more general

concept of proof subcalculus, where proofs are restricted to some given class of axioms and

conclusions are also restricted to some given class of sentences It is by systematically

exploiting such restrictions that the structure of proofs can be simplified In this way, we can

77

I PARPUCEA, B PARV

obtain efficient proof theories, which lead to the theoretical concept of variable operational

semantics <•

2. The features of PSP Conceptual clarity and ease of understanding are facilitated

by breaking a program into modules This in turn offers support for debugging and

reusability When there are many modules, it is helpflil to design the structure of module

dependencies in an hierarchical manner Whenever one module (client module) uses data

(state) or operations (services) declared in a second one (server module), the server must be

explicitly imported to the client and also must be defined earlier in the program text A

program obtained in this way has the abstract stiucture of an acyclic graph with modules as

vertices and the module dependencies as edges

A PSP program is a sequence of modules (objects) Each module may define one or

more new data sorts, together with associated operations that may create, select, interrogate,

store, or modify data Such an module may use existing modules with their sorts of data and

operations The module concept includes both data types in the programming language sense

(that is, a domain of values of variables together with operations that access or modify those

values) and algorithms

PSP has the following syntax for import

<iniporting> <mod_list>,

where importing is keyword and <mod_hst> is a list о module names By convention, if a

module M imports a module M’, that imports a module M", then M" is also imported into

M, that is, "importing" is a transitive relation

78

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Usually, programming systems provide a number of built-in data types, for example

numbers and identifiers PSP has the following built-in modules BOOL, NAT, INT, and

RAT BOOL provides the expected syntax and semantics for Booléens NAT, INT, and RAT

define natural, integer and rational numbers (the last ones from the integers)

There is much work on providing user-defined abstract data types in programming

languages (e g [3, 4, 9]) The essential idea is to allow users to introduce models that define

new sorts and their associated functions and give axioms in Horn clause logic with equality

or rules of computation It can also be very helpful to have available subsorts and their

associated predicates, as we will see later

Note that PSP keywords are written in bold, module names are all CAPITALS, while

variable names begin with a capital letter and that relation, function and constant names are

all lowercase Attributes can be given for operators, for example, assoc, comm, and id

indicate that a binary operator is associative, commutative, and idempotent, respectively

PSP mix-fix notation allows any desired ordering of keywords and arguments for

operators, this is declared by giving a syntactic form consisting of a string of keywords and

underbar character followed by a " followed by the anty as a string of sorts, followed

by followed by the value sort of the function Similar conventions are used for

predicates An expression is considered well-formed m this scheme iff it has exactly one

parse, the parser can interactively help the user to satisfy this condition
t

PSP operates with Poisson senes, which are of the form

J, J, J. siny, cos +* Л + +k X),Л П'*

where C, are numencal coefficients, у,, y2, ,ym are monomial vanables, x„ x2, ,xn are

79

I PARPUCEA. B PÂRV

trigonometric variables, j,, j2> j ra and k,. k2, ,kn are exponents, and, respectively,

coefficients, the summation index t covers the set of all possible combinations of the

exponents j and coefficients к (j €E Zm, к E. Z", Z being the set of integers)

In a concise form we write (1) as follows

S
CO

0

in which T, is a term of this senes

T, = C, F, P, ,

where the polynomial part P, has the form

while the tngonometnc part F, is

f - S i n (k . x , + k j c + + k X)» CO S l 1 2^2 Я п*

In piactice, onő does not operate with Poisson series, but with partial sums of these

ones, called Poisson expressions, of the fonn

N

s “ E 7;. N eNi-O

The Poisson expression can be defined in an hierarchical way The complete

specification of tngonometnc and polynomial pan of a Poisson term (Ttr, and Ppol,

respectively) can be found in [13] Now we define the Poisson teim as following

psp TERM is
importing Rat Ttr Ppol
sorts Rat Ttr Ppol Terni
op

Rat Ttr Ppol -> Term [assoc comm]
= Term -> Bool

80

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

vars
X Rat
У Ttr
Z Ppol
X Y Z X’-Y’ Z’ Term

eq
0-Y-Z ■= 0
X-O-Z = 0
X-Y-0 = 0
1/1 YZ = YZ
X I Z = XZ
X-Y-l = X Y
X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z ■= Z’

endpsp.

The above keyword im p a i r } indicates that the sorts, subsorts, predicates, functions, and

axioms of the listed models are imported into the module being defined The equation

X Y Z = X’ Y’ Z’ - X = X’, Y = Y’, Z = Z’

is a Horn clause with equality, where H=" represents equality predicate defined on types,

respectively

In the same way, we define EXP, that is based upon TERM, and specify the Poisson

expression, viewed as a list of terms, m which the symbol is separator

psp EXP Is
imparting Term
sorts Term NeExp Exp
subsorts Term < NeExp < Exp

op
+ Term Term -> Exp [assoc comm id 0]

Term Term -> Exp [id 0]
Term Term -> Exp [assoc comm id 1]
__ Exp Exp -> Exp [assoc id ml]
j = _ Exp Exp -> Bool

head_ NeExp -> Term
tail_ NeExp -> Exp
empty7 Exp -> Bool

vars
T Term

81

I PARPUCEA, B PÀRV

E Exp

sinX,
N/M • { } * Y, Term

cosX,

smX,
P/Q • { } • Y, Terni

cosX,

sinX2
P/Q • { } • Y2 Term

cosXj
eq

sinX, 8UlX,
N/M • { } • Y, ± P/Q • { } • Y, =

cosX, cosX,

sinX,
= (N/M ± P/Q) • { } • Y,

cosX,

(N/M • cosX, • Y,) * (P/Q • smX2 • Y2) =

=((1/2 * N/M * P/Q) • sin(X,+X2) • Y, ■ Y2 ,
(1/2 * N/M * P/Q) • sin(X2-X,) • Y, • Yj)

(N/M • sinX, • Y,) * (P/Q • sinX2 • Y,) =

=((1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Yj,
-(1/2 * N/M * P/Q) • cos(X,+X2) • Y, -,Y2)

(N/M • cosX, • Y,) * (P/Q cosX2 • Y2) =

=((1/2 * N/M * P/Q) • cos(X,+X2) • Y, • Y2 ,
(1/2 * N/M * P/Q) • cos(X,-X2) • Y, • Y2)

head(T E) = T
tail(T E) = E
empty 9_E = E == nil

endpsp.

In addition, we define two modules for differentiating and integrating of Poisson

expressions

82

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

psp DERIV is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

— Term Set —> Exp
d -

— Exp Set —> Exp
d -

vars
E Exp
T Term

cos(N,-X,+N2-X2+ +N.-X,)
N/M • { } • Y,M1 • •YhMh' Term

sin(N,-Y,+N2-Y2+ +N.-X,)

eq
d cos(N,-X,+N2-X2+ +Nk,Yt+ +N.-X,)

— (N/M • { } • Y,M1- -Y^”1* •YhMh) =
dYy sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)

cosCN.-X^Nj-XjL +Nk-Yk+ +N|’X|)
= (N*Mk/M • { } • Y,M1- -Y^'1- ■YhMh ,

sm(N,-X,-lN2-X2+ +Nk-Yk+ +Ц-Х,)

sin(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)
iN*Nk/M • { } • Y,M1- .-Y^0, •YhN,lh)

cos(N,-X1+N2-X2p +Nk-Yk+ +N,-X,)
d (0) - 0

a
3Y,

(nil) m 0

^ (E í - ^ í h e a d E) ._ L (.a , l E)

endpsp.

In the specification of INTEG module given below, we use the following abréviations

83

I PARPUCEA, B PARV

/N /М • sin(N1-X1+N2,X2+ +Nk-Yk+ +N.-X,) •
Mk.| p MkH Mh

Y ,- Yk.j • Yk • • • Yh dYk ,

and
jN /M -cos(N ,-X 1+N2-Xa+ +Nk-Yk+ +N,*X,) •

where p Int, p^-l (the case p=-l does not preserve the form of Poisson expressions, because

the integration leads to logarithms)

psp INTEG is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

E Exp
T Term

P Nat
N/M ■sin(N,-X1+N2-X,+ .+N|-XI)-Y1M1- ■YhMh Term
N/M ■cos(N,-X1+N2->4+ +N,-Xi)'Y,mi- •YbMh Term

I0 = (-l/Nk*N/M) • cos(N1,X,+N2-X2+ +Nk-Yk+ +N,-X,)-

Mt Mk_t 0 Mk+1 Mh

/_d_ Term Set -> Exp
/_d_ Exp Set —> Exp

vars

’ Y, • Yk.j • Yk • Yk+1 • • Y,

= ((-l/Nk*N/M) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

IVI, ivt l кл M,

(l/(Nk*Nk)) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N,-X,)-

M, MkI 0 M
Y, ■ Yk. , - Y k -Y

M,

= ((-l/N k*N/M) ■cos(N,-X1+ N /X 2+ +Nk-Yk+ +N,-X,)-

84

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

Mi p Mk(I M„
■ Y, Yk., • Yk • Yk+1 • ‘ Yh ,

(N/M*p/(Nk*Nk))-sin(N1,X1+N2,X3+ +Nk-Yk+ +N.-X,)-

M, Mk., p-1 Mk<1 Mh
• Y, * Yk., • Yk • Yk+I • • Yh ,

-(N/M*p/Nk*(p-1)/Nk) • lp.2) - p > 1

J0 = (l/Nk*N/M) • sin(N,-X1+N2-X2+ +Nk-Yk+ +N.-X,)-

M, Мы 0 МкИ Mh
• Y , - Yk. , - Y k -Yw - ' Yh

J, = ((l/Nk*N/M) • sin(N1-X,+N2-X2+ +Nk-Yk+ +N,-X,)-

M, Mk., 1 М|ц.) Mh
■Y, • YM -Yk -Ykt l - • Yh ,

(l/O V N J) • cos(N,-X,+N2-X2+ +Nk-Yk+ +N,-X|)-

M, M,., 0 M*, Mh
•Y,* Yk., • Yk • Yk„ • • Yh)

■Ip = ((l/Nk*N/M) • sin(N,-X,+N2-X2+ +Nk% + +N.-X,)-

M, Mk_! p Mktl M„
■ Yt • Yv„ • Yk • Yktl • • Yh ,

(N/M*p/(Nk*Nk)),cos(N, •X^Nj-XjT +Nk-Yk+ +N,-X,)-

M, Mk_, p-1 Mkfl M„
• Y, • YM • Yk • Yk+1 • ■ Yh ,

-(N/M*p/Nk*(p-1)/Nk) • Jp.2) - p > 1

JÖ dXk = 0
Дш1) dXk = 0
JE d \ = Jhead(E) dXk + Jtail(E) dXk

endpsp.

The NORMAL module provides a normal form of Poisson expressions

[PARPUCEA, B PARV

psp NORMAL is
importing Exp
sorts Term Exp
subsorts Term < Exp
op

normalised_ Exp -> Bool
normalising_ Exp -> Exp

vars
T Г Term
E E’ Exp

eq
normalised(ml) = True
normali3ed(T) ■- True
normalised(2T E) - T = T’, normalised(T’ E)
normalising(E T T’ E’) = normalising(£ 2T E’) - T=T’
normalising(E) = E - normalised(E)

endpsp

The basic building blocks of parameterized programming are parameterized modules

Parameterized programming is a powerful technique for the reliable leuse of software In this

technique, modules are parameterized over very general interfaces that describe what

properties of an environment are required for the module to work correctly.

Here is an example of a parameterized module, intitulated SUBST, over the theories

SORTI and SORT2 In our example, SUBST module provides the symbolic substitution

operation

psp SUBST [SI SORTI, S2 SORT2] is
importing Exp
sorts Term Exp NeExp
subsorts Term < NeExp < Exp
op

_sub__ Term SI S2 -> Teim
-sub__ Exp Si S2 -> Exp

vars
E Exp
T Term
X SI
Y S2

86

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

eq
sub(0 X Y) = 0

sub(nil X Y) = nil
sub(T X Y) = sub(T X -> Y)
sub(E X Y) = sub(head E X Y) + sub(tail E X Y)

etulpsp.

where the meaning of expression sub(T X -> Y) is all occurences of the symbol X are

replaced by the symbol Y in term T SORTI and SORT2 are theories defined as follows

Th SORTI is Th SORT2 is
sorts Sori sorts Sor2

endtli. endth.

The following specification

view SUBS is (Sori as Rat
Sor2 as Set)

define a view called SUBS, mapping fiom the sorts of SORTI and SORT2 to the other sorts

already defined, that preserves the subsort relation, and a mapping from the operations of

SORTI and SORT2 to the operations of Rat and Set, preserving anty, value sort, and

attributes

To actually use a parameterized module, it is necessary to instantiate it with an actual

parametei The Make command applies a parameterized module to an actual one, by use of

a view For example,

Make SUBSTITUTION is SUBST[SUBS] endm,

uses the view SUBS to instantiate the parameterized module SUBST with the actual

parameteis Rat and Set

In the same way, one can construct new PSP modules, which implements new

opeiations on Poisson series, like power expansion (including exponents integer numbers or

87

I PARPUCEA,B PÂRV

îational numbeis of the form 1/M or M/2 with M nonzero integer), inverse of a Poisson

series, binomial expansion and so on (see, for example, [2]) Also, on the basis of PSP we

can realize new specialized modules, like Kepler or Taylor ones In Keplenan module, for

example, the polynomial and trigonometric variables are the well-known elliptic elements For

these elements, there are transfoimation rules, which can be considered, from our point of

view, as rewriting rules The next level of absti action consists of modules for constructing the

approximate solution of differential equations up to an desired order One can construct

different modules for each "perturbation method", each of them using operations defined in

previous modules Using different methods applied to the same problem, one can compare the

obtaining solutions, keeping in mind the fact that many of methods are asstmptottcally

equivalent This can be another facility of theorem proving of PSP

3. Concluding remarks PSP is intended to be a symbolic processor, with features of

theorem proving, dedicated to the study of the motion of celestial bodies From the

implementation point of view, theie are some modules that are not so efficient, this difficulty

remains to be considered later Taking into account the built-in abstract data types, the

denotations! semantics of initial models, the opeiational semantics based on rewriting rules,

PSP, considered as open system, can be helpful in othei fields, too

88

FUNCTIONAL AND RELATIONAL PROGRAMMING WITH PSP

R E F E R E N C E S

1 Banvisc,K.J Axioms for Abstract Model Theoiy AnreMath Logic, 7, pp 221-265, 1974
2 Bramberg.V A Analytic Algorithms of Celestial Mechanics, Nauka, Moskow, 1980 (russ)
3 Futatsugi.K. ,Goguen,J ,Jouannaud,J P ,Meseguer,J Pnnci-ples of OBJ2 In Proc 1985 Syinp on

Principles of Programming Languages, ACM, pp 52-66, 1985
4 Goguen,J Parameterized Programming Tech Rep CSL1-84-9, 1984
5 Gogucn,J et al Introducting OBJ Oxford University Draft of January, 1993
6 GogueiU ,Buretall,R Introducing Institutions ln E Clarke and D Kozcn (eds), Logics of Programs,

Sponger, LNCS vol 164, pp 221-256, 1984
7 GoguenJ ,Burstall,R Institutions Abstract Model Theory for Computer Science Tech Rep CSLI-85-

30, Stanford University, 1985
8 Goguen,J ,Meseguer,J Models and Equality for Logical Programming In Proc '1APSOFT87, Springer,

LNCS vol 250, pp 1-22, 1987
9 Goguen,J ,Tardo,J An Introduction to OBJ A Language for Writing and Testing Software

Specifications In Specifications of Reliable Software, IEEE Press, pp 170-189, 1979
10 Goguen,J .Thatcher J ,Wagncr,E An Initial Algebra Approach to the Specification, Correctness and

Implementation of Abstract Data Types, Tech Rep RC 6487, IBM Watson Research Center, 1976
11 Meseguer.J General Logics H-D Ebbinghaus ct al (eds), Elsevier В V , 1989
12 Meseguer.J ,Goguen,J Imtiality, Induction and Computabi-lity, in Algebraic Methods in Semantics

(M Nival and J C Reynolds eds), Cambridge University Press, 1985
13 Parpucea,I ,Pârv3 Algebraic Specification of PSP, Studia, XXXVII, No 3, pp 99-110, 1992
14 Rand.R .Arnibiuster.D Perturbation Methods, BifuicaUon Theory and Computer Algebra, Springer,

1987
15 Tarski,A One Some Fundamental Concepts ol Metamalhematics In Logic, Semantics,

Metmnathematics, Oxford University Press, pp 30-37, 1956

89

