
STUDIA UNIV BABEŞ-BOLYAI, MATHEMATICA, XXXVIII, 3, 1993

FORMAL SPECIFICATION FOR SMALLTALK THROUGH
LAMBDA-CALCULUS. A COMPARATIVE STUDY

Simone MOTOGNA'

Dodiuitui to Profeuor trail Muntean on hia 60* anniversary

January 31. 1994H /.S’ \.tbject classification 6SN05, 6KQ55, 68Q60

REZUMAT. - Specificarea formală prin lambda-calcul a limbajului Smalltalk. Studiu
comparativ. In această lucram sunt discutate două modele de specificaţii prin lambda-calcul
ale limbajului Smalltalk Prin considerarea unei ierarhii în mediul Smalltalk au fost comparate
cele două modele din punctul de vedere al criteriilor pe care o specificaţie trebuie să lo
respecte

Introduction. Denotation^ semantics based on lambda-calculus has been it very used

specification method in some models for formalization of the object oriented languages

Cardellt [1] stated that the only notion critically associated with object oriented programming

is inheritance This paper tends to present a comparative study of some denotational

specification models for inheritance. All the models presented are based on the object oriented

language Smalltalk so the study will be somehow easily

Inheritance is the possibility to define a new class (named subclass) using the

definition of one or more existing classes (named superclass) A subclass can inherit instance

variables or methods from the parent class The meaning of this property can be understand

using a "look-up" method Suppose a message, containing the call of a method, is sent to an

object Then the look-up method search the class containing the method,

"Haheţ-Rolyai" University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

S MOrOGNA

procedure lookup (паше, class)
If паше = localname then do localaction

else If (inhented_module= NIL) then undefmedjiame
elee lookup (name, inheritedjnodule)

In Smalltalk there are two special variables which can appear in a message These two

variables are se lf and super When the message contains the variable self the search begins

in the instance class

lookup (name, instance class)

and if the message contains the variable super then the search begins in the superclass of the

instance class (which contains the method)

lookup (name, superclass of the instance class)

The mechanism of self and super supports the access of the methods which have the

same names either from the superclass and the subclass, although they have a different action

If a subclass redefines a method which was defined in superclass then this mechanism became

very useful

Knmin’s specification model

In [5], Samuel Kamin proposes a denotational Gnr Cmalltalk The major

characteristic of this definition is the simple way in which inheritance is handled and the

paper contains an version of this semantics in Standard ML which can be executed

The Smalltalk defined by Kamin has some modifications.

- only a few primitives are defined,

- the only literals which are permitted in the language are the integers and the arrays,

- the pools variables are omitted, excepting class variables,

66

FORMAL SPECIFICATION FOR SMALLTALK

- contexts are not objects,

- methods are not objects, so it isn’t possible to create methods dynamically,

- there is a special way in which the array constants are handled any time when an

array constant is evaluated a new array is created;

The definition is based on some semantic maps which assign meaning to syntactic

entities These maps models the hierarchy, the inheritance and message passing mechanisms

Let’s consider now the following example in The hierarchy H contains two

classes Point and Pointl, where Pointl Is a subclass of class Point In Point are defined two

methods, the first being redefined in Pointl and the second method invokes the first one

class Point
instunceVariableiNames

’ x y ’
method DistFrom Orig

sqrt(self X2 + self y3)
method CloserToOrig(py=

(self DistFromOrig < p.DistFromOng)
Point superclass Pointl
method DistFromOrig

(self X + self v)

Let 11 be the hierarchy containing Point and Pointl For an easy reading, we will denote

m l = method DistFromOrig

m2 =■ method CloserToOrig and

R - CIHJ

In this example D(H| = YR = sup{ 1, R±, R(R1), .}

For a complete understanding of the example we shall recall the notations used in the

specification model Kamin has defined some semantic maps to specify the behavior of the

object oriented mechanisms Inheritance is modeled by the two semantic maps C and D

67

S MOIOONA

D Hier —> Env
C Hier --> Env —> Env

D[HJ - Y(C[H])
CtHlp

a Х<С,Ш>
let H(c) = C S w X F
in if F(m) = no-def then p<S,m> else M(F(m)]p

where CJHJ defines an application from the environment (meaning of the hierarchy H) to

the environment (noted Env) which executes an "inheritance step" For example, if H is a

hierarchy containing the class Point 1 and it’s superclass Point, m2 is an attribute not defined

in Pomtl and p(<Pomt,m>) is defined, then (PolntllH]p)(<Pointl,m>) will be defined

equivalent with p(<Point,m>) So, Pointl has "inherited" the definition of m2 from Point

Pointl[H] executes only an inheritance step’ if 0 is a subclass of Pointl, which doesn’t

define the attribute m2, then (Point lCH}p)(<D,m>) is not defined, but

(Pointl[HJ(Pointl[H]p))(<D,m>) is All the inheritances are resolved here

We use ± to denote the primitive routines (e g machine arithmetic).

We will construct some of these environments to understand the inheritance

mechanism

Ri. = { <Point, ml> -> 1,
<Point, m2> -> 1,
<Pointl, ml> -> 1,
<Pointl, m2> -> 1,
<Smallinteger, + > - > . , }

R(R±) = { <Point, m l> -> euclidian distance,
<Point, m2> -> if the arguments are from the class

Point then compare the euclidian
distance, else 1,

<Pointl, ml> -> distance,
<Pointl, m2> -> R±(<Point,m2>) = _L, .}

68

FORMAL SPECIFICATION FOR SMALLTALK

At first, all the methods are undefined After one step (see Ri.) are defined only those

methods which send no messages (like * or +) or invoke primitive methods After two steps

(see R(R±)), in addition to RJ_, are defined the two versions of method DistFromOrig and

the method CloserToOng only for the class Point After three steps CloserToOng is defined

because it can see the definition of the method DistFromOrig from class Pomtl (at this step

the method can be applied only for aiguments from the Point class - the method is inherited)

Alter foui steps Pointl has inherited the complete definition of CloserToOrig (it can be

applied for arguments from Point or Pointl)

We will transcribe the denotational definition given above in Standard ML

val no methods Methods = fri m => no_def,

val HO Hierarchy -
fn P => (P, "Object", [], [J, no_methods),

val psiO = (fn obj ■=> (simple (intval Oj,"Object"), ■
fn P => null env),

val Point_methods Methods =
fn "ml"=>normal("ml",[],[],literal(intconst 10,10))=>no_def,
fn "m2"=>normaI("ni2",[],[], call(self,"ml",inconst 15,15))

val Pointclass ClassDef =
("Point", "Object", [], П, Point_methods)

val Pointl_mefnods Methods --
fn "ml"=>normal("ml",[],[],litera!(intconst 20 20))=>no_def,

val Point l_class ClassDef =
("Pointl", "Point", [], [], Pointl „methods),

val H Hierarchy = HO mod ("Point" ~> Point class)
mod ("Pointl" --> Pointl class),

val prog Prg = (call(new "Point", "m2", []), H),

69

S MOTOGNA

pp prog psiû,

val prog . Prg = (call(new "Pointl", "m2", []), H),

pp prog psiû,

This example illustrates how inheritance works In ML syntax fn x represents a

lambda abstraction If this program is executed and progl is evaluated then it returns (10,10)

because m2 representing the method CloserToOrig compare the points(10,10) and (15,15) by

the euclidian distance from origin The evaluation of prog2 returns (15,15) because 20+20 >

15+15 (the two points are compare by the distance defined in Pointl)

Cook’s specification model

Cook’s definition [2] is based on three essential aspects related to the inheritance

mechanism

- the addition of new methods or replacement of the inherited methods,

- the self reference must be redirectionated to access the modified methods,

- the super reference must be redirectionated to access the original methods

We will describe this definition using the same example The modifications are

expressed as a record, Point ©, Pointl The new methods from class Pointl are combined

with the original methods from the parent class Point, such that the method defined m Pointl,

in this case DistFromOrig, substitutes the corresponding method m class Point

The variable selfis used to refer to the Pointl version o f DistFromOrig and super can

be used to refer to the Point version of the same method So, the modifications can be

expressed as a two arguments function, self and super, and returning the record described

70

FORMAL SPECIFICATION FOR SMALLTALK

above These functions are called wrappers.

Also the self-reference must be changed in the inherited methods These methods are

contained in a function named generator The result is a new class definition, namely a new

generator This mechanism is providbd (by m-,

The generator associated with Point is .

GenPoint(x,y) = X self
{ DistFromOng *-*

sqrt(self X2 + self y2),
CloserToOng *-»

Xp (self DistFromOng < p DistFromOng)}

1 he V.tapper associated with Pointl is

PointlWrapper = Xx,y Xself
{ DistFromOng

(self X + self y)}

The wrappei application will be

PointlWrapper ► GenPoint(x.y) =
Xx,y Xself
I DistFromOng >-►

(self X + self y)
CloserToOng

Xp (self DistFromOrig < p DistFromOng)}

After presenting these two models of specification we shall make some comments The

greatest advantage of the Kamin’s model is the simple treatment of inheritance The related

papers appeared before seems to have some disadvantages Kamin resolved them using fixed

points to model inheritance He had defined the semantic maps we have talked a little earlier

Indeed, for our example it is a nice specification way But what happens when we have a

larger hierarchy? The specificátion will be sometimes not too easy to be followed. On the

other hand we haven’t used yet the definition of the E map, which is far more complicated.

71

S M 010GNA

The modei has it’s advantage the specification is concentrated on inheritance and it’s

mechanism is treated very simple and so it’s easy to understand Also, Kamin has described

all the mechanisms appeared in an object oriented program the meaning of the hierarchy, the

inheritance process, the message passing, the methods evaluations, the evaluation of the

primitive methods which provide access to low-level operations

What about Cook’s model? This model seems easier to understand maybe because it

is provided with an intuitive explanation of inheritance as a mechanism fór incremental

programming The whole specification is based on this motivation Also, Cook pioved the

correctness of his model demonstrating that it is equivalent with an operational semantics of

inhentance based upon a method-lookup algorithm This way of specifying the inheritance

shows that this is not only an object oriented features but a general mechanism that can be

applied to any form of recursive definition Although Kamin’s model is closely related, he

described inheritance as a global operation on programs, which blurs scope Issues and

inhentance Here is the most important difference between the two models

Kamin’s model versus Cook’s model

Every specification has to respect some well-known cnteria We will discuss how

these specifications lespect them

Fonmltzation verifies if the specification behaves conforming with the implementation

Kamin’s model can be transcubed in an executable version in Standard ML so this

cntenum is easy to venfy We must also notice that the language' had suffered some

modifications and omissions But Kamin’s goal was to specify the mechanism of inheritance

72

FORMAL SPECIFICATION FOR SMALLTALK

and the missing details are not essential related with this concept

Cook proved that his model is equivalent with an operational semantics and it’s

obvious that it respects this cntenum

Costructability A specification must be easy to construct even if the notation used is formal

The omitted details make Kamin’s specification easier to build, but even so if the

hierarchy is thick then the construction of the C and D maps seems to be hard to follow

Comprehensibility The specification must be easy to understand The specification given by

Kamin seems difficult to understand when we have to deal with the maps E and E

Minimality All the non-essential details had been omitted (we have already present the

omissions and the modifications of the language, because they are not direct related

with the inheritance process)

Applicability From the applicability point of view Cook’s model seems to be more

interesting since his definition of inhentance, although it was developed fust for object

oriented languages, shows that, in fact, inheritance is a general mechanism that can

be applied to any form of recursive definition

The major problem of object onented languages is that they lack a solid formal

fundamentation There have been some attemps in specifying object oriented features in

operational, axiomatic, denotational and algebraic semantics We have focus our attention on

denotational semantics because it provides a good mathematical instrument for specification

based on lambda-calculus and, on the other hand, an instrument which is not such

complicated and hard to understand as the algebraic theory used in algebraic specification

techniques 1 his comparative presentation of these two model tries to be a study for choosing

7.1

S MOTOGNA

the most suitable fonnál specification

R E F E R E N C E S

1 L Cardelli, P Wegner, On Understanding Types, Data Abstraction and Polymorphism, Computing
Surveys, vol 17, no 4, Dec 1985, pg.471-522

2 W Cook, J Palsberg, A Denotutional Semantics of Inheritance and its Correctness, OOPSLA’89
Proceedings, 1989, pg 433-444

3 W Cook, W L.Hill, P S Canning, Inheritance is not Sublyping, Proceedings of POPL’90, ACM Press
1990

4 A Goldberg, D Robson, Smalltalk-80 The Language and Its Implementation, Addison-Welsey, Reading,
MA, 1983

5 S Kamin, Inheritance in Smalltalk-80 A Dcnotational Definition, Proceedings of the 15th Annual ACM
SIGACT - SIGPLAN Symposium on Principles of Programming Languages, San Diego, Jan 1988,
pg 80-87

6 Soo Dong Kim, Formal Specification in Object-Oriented Software Development, Ph D Tliesis, The
University of Iowa, 1991

74

