STUDIA UNIV BABES-BOLYAI, MATHEMATICA, XXXV, 3, 1993

FORMAL SPECIFICATION FOR SMALLTALK THROUGH
LAMBDA-CALCULUS. A COMPARATIVE STUDY

Stiona MOTOGNA’
Dodicated to Profossor Emil Muntean on his 60* analversary

Kuceved January 31, 1994
1MS subject classtfication 68NOS, 68055, 68060

REZUMAT. - Specifiesrca formald prin jambda-caleul a Umbajulul Smalitallc Studiy

comparatly, fn aceastd lucrare sunt discitale doud modele de specificaii prin lambda-~caleul

ale mbajulu Smalttalk Prin considerarea unsl ierarhyi in mediut Smatltatk au fost comparate

cele douli modele din punctul de vedere at criterilor pe care o spepﬁlcqtto trebuie 83 lo

respecte

Introduction. Denotationa! semantics besed on lambda-catculus has been & very used
specification method in some models for formalization of the object oriented languages
Cardell [1] stated that the only notion critically associated with object oriented programming
1s inhentance This paper tends to present & comparative study of some denotationat
specificatton models for inheritanece. All the models presented are based on the object oriented
language Smalltalk so the study will be somehow \easily

Inhentance is the possibility to define o new class (named subelass) using the
definition of one or more existing classes (named superclass) A subclass can inherit instance
vanables or methods from the parent class The meaning of thts property can be understand

using a "[ook-up" method Suppose & message, containing the call of a method, is sent to'an

object Then the look-up method search the class containing the method.

" “Babes-Bolyal” University, Facully of Mathematics and Computer Science, 3400 Clyj-Napoca, Romania

S MOTOGNA

procedure lookup (name, class)
If name = local_name then do local_action
else if (inhented_module= NIL) then undefined_name .
else Jookup (name, inherited_module)

In Smalltalk there are two special variables which can appear in a message These two
vanables are self and super When the message contains the vanable self the search begins
in the 1nstance class

lookup (name, tnstance class)
and 1f the message contains the variable super then the search begins in the superclass of the
instance class (which contains the method)
lookup (name, superclass of the instance class)

The mechamsm of self and super supports the access of the methods which have the

same names either from the superclass and the subclass, although théy have a different action

If a subclass redefines a method which was defined in superclass then this mechanism became

very useful

Kamin’s specification model

In [5], Samuel Kamin proposes a denotational {<flzitien (o7 Caalitatk The major
characteristic of this definition is the simple way in which inheritance is handled and the
paper contains an version of this semantics in Stgndard ML which can be executed

The Smalitalk defined by Kamin has some meodifications.

- only a few priritives are defined,

- the only literals which are permitted in the language ‘are the integers and the arrays,

- the pools vanables are omutted, excepting class variables,

66

FORMAL SPECIFICATION FOR SMALLTALK

- contexts are not objects,
- methods are not objects, so it 1sn’t possible to create methods dynamically,
- there 18 a special way in which the array constants are handled any time when an
array constant is evaluated a new array is created;
The definition 1s based on some semantic maps which assign meaning to syntactic
entittes These maps models the hierarchy, the inkeritance and message passing mechanisms
Let’s consider now the following example in Ccnce", The hierarchy H contatns two
classes Point and Pointl, where Pointl 1s a subclass of class Polnt In Point are defined two
methods, the first being redefined in Point! and the second method invokes the first one
class Point
instanceVariablesNames
’ x y’
method DistFrom Orig
sqr(self x* + self y?)
method CloserToOrig(p)=
(self DistFromOrig < p.DistFromOng)
Point superclass Pointl
method DistFromOng
(self x + self)
Let H be the hierarchy containing Point and Pomntl For an easy reading, we will denote
ml = method DistFromOrig
m2 = method CloserToOrig and
R = C[H]}
In this example D[H} = YR = sup{ L, R4, RRL), .}
For a complete understanding of the example we shall recall the notations used in the

spectfication model Kamin has defined some semantic maps to specify the behavior of the

object onented mechanisins Inhentance is modeled by the two semantic maps C and D

67

S MOTOGNA

D Hier --> Env
€ Hier --> Env -—> Env

D[H] = Y(C[H])
CiHlp
a A<¢,m>
let Hc)=CSwxF
iy if F(m) = no-def then p<S,m> else M{F(m)]p

where C{H] defines an application from the environment (meaning of the hierarchy H) to
the environment (noted Env) which executes an "inhentance step” For example, if H ts a
hierarchy containing the class Point! and it’s superclass Point, m2 is an attribute not defined
in Potntl and p(<Pdnt,m>) is defined, then (Point1[H]p)(<Poinil,m>) will be defined
equivalent with p(<Point,m>) So, Point! has "inhented" the definition of m2 fﬂ;m Point
Point1[H] executes only an inheritance step’ if D} is 8 subclass of Pointl, which doesn’t
define the attnbute m2, then (PaintifHlp)(<D,m>) is not defined, but
(Point1[H}(Point1 [H}p))}(<D,m>) is All the inheritances are resolved here
We use L to denote the primitive routines (e g machine arithmetic).
We will construct some of these envirenments to undersiand the inhentance
mechanism
RL = { <Point, m1> -> 1,
<Potnt, m2> > 1,
<Pointl, mi> -> 1,

<Pointl, m2> -> 1,
<Smallinteger, +> > ., }
R(RL) = { <Point, m1> -> euclidian distance,
<Point, m2> -> if the arguments are fiom the class
Point then compare the euclidian
distance, else 1.,
<Paintl, m1> -> distancs,
<Pamntl, m2> -> Ri(<Point,m2>) = 1, .}

68

FORMAL SPECIFICATION FOR SMALLTALK

At first, all the methods are undefined After one step (see R1) are defined only those
methods which send no messages (ltke * or +) or invoke primttive methods After two steps
(see R(RL)), 1n addition to RL, are defined the two versions of method DistFromQOrig and
the method CloserToOrig only for the class Point After three steps CloserToOng 1s defined
because 1t can see the definition of the method DistFromOng from class Pointl (at this step
the method can’be apphied only for a1 g'uments from the Point class - the method 13 inhented)
After four steps Pointl has tnhenited the complete definition of CloserToOrig (it can be
applied for arguments from Point or Pontl)

We will transcnbe the denotanonal definition given above in Standard ML

val no_methods Methods = fin m => no_def,

val HO Hierarchy =
fn P => (P, "Object”, [], [, no_methods),

val psi0 = (fn obj => (simple (tntval 0),"Object"),
fn P => null env),

val Point_methods Methods =
fn "m1"=>normal("m1" [],{]literal(intconst 10,10))=>no_def,

fn "m2"=>normal("m?2" [1.{1, call(self,"m1" inconst 15,15))

val Pomt_class ClassDef =
("Pont", "Object”, [], [], Point_methods)

val Pointl_methods Methods =
fn "m1"=>normal("m1" [1,{]Iiteral(intconst 20 20))=>no_def,

val Pointl_class ClassDef =
("Pointl", "Pomnt", [}, [], Pointl_methods),

val H Hierarchy = HO mod ("Point” --> Point_class)
mod ("Pointl” --> Pointl_class),

val prog Prg = (call(new "Point", "m2", []), H),

69

S MOTOGNA

pp prog psi0,

val prog . Prg = (call(new "Point1”, "m2", [1), H),

pp prog psi0,

This example illustrates how mhentance works In ML syntax fn x represents a
lambda abstraction If this program is executed and progl is evaluated then 1t returns (10,10)
because m2 representing the method CloserToOrig compare the points(10,10) and (15,15) by
the euclidian distance from ongin The evaluation of prog2 returns (15,15) because 20+20 >

15+15 (the two potnts are compare by the distance defined in Pointl)

Cook’s specification model

Cook’s defimtion [2] 1s baséd on three essential aspects related to the inheritance
mechanism

- the addition of new methods or replacement of the inherited methods,

- the self reference must be redirectionated to access the modified methpds,

- the super reference must be redirectionated to access the original methods

We will describe this defimtion using the same example The modifications are
expressed as a record, Point @ Point! The new methods from class Pointl are combined
with the onginal methods from the parent class Point, such that the method defined m Pomnt1,
in this case DistFromOrig, substitutes the correspond;ng method tn class Point

The vanable self 15 used to refer to the Point1 version of DistFromOrig and super can

be used to refer to the Point version of the same method So, the modifications can be

expressed as a two arguments function, self and super, and returning the record described

70

FORMAL SPECIFICATION FOR SMALLTALK

above These functions are called wrappers.
Also the self-reference must be changed tn the inhented methods These methods are
contaned in a function named gepegator The result is a new class defimtion, namely a new

generator This mechanism 18 providcd by popemri cmalve e

The generator associated with Point is .
GenPoint(x,y} = A self
{ DistFromOng ~
sqri(self x* + self y?),
CloserToOng ~
Ap (self DistFromOng < p DistFromOng)}
[he wiapper associated with Pointl is
Point1Wrapper = Ax,y Aself
{ DistFromOng r+
(self x + self y)}
The wrappe:r application will be
Point1Wrapper » GenPoint(x,y) =
Ax,y Aself
{ DistFromOng »
(self x + self y)
CloserToOrig
Ap (self DistFromQrig < p DistFromOrig)}

After presenting these two models of specification we shall make some comments The
greatest advantage of the Kamin’s model is the simple treatment of inheritance The related
papers appeared before seems to have some disadvantages Kamin resolved them using fixed
points to model inheritance He had defined the semantic maps we have talked a little earlier
Indeed, for our example tt is a nice specification way But what happens when we have a

larger hierarchy? The specification will be sometimes not too easy to be followed. On the

other hand we haven’t used yet the definition of the E map, which 1s far more complicated.

71

S MOTOGNA

The moder has 1t’s advantage the specification 1s concentrated on inhentance and 1t's
mechamsimn 1s treated very simple and so 1t’s easy to understand Also, Kamin has descnibed
all the mechanisms appeared in an object oriented program the meamng of the hterarchy, the
inheritance process, the message passing, the methods evaluations, the evaluation of the
primitive methods »;fhlch provide access to low-level operations

What about Cook’s model? This model seems easier to understand maybe because it
1s provided with an tntuitive explanation of wnheritance as a mechanism for tneremental
programming The whole spectfication 13 based on ths motivation Also, Cook pioved the
correctness of his model demonstrating that it 13 equivalent with an operational semantics of
inhentance based upon a method-lookup algonthm This way of specifying the inheritance
shows that this 1s not only an object onented features but a general mechanism that can be
applied to any form of recursive defimtion Although Kamin's model is closely related, he
described inheritance as a global operation on programs, which blurs scope issues and

inhentance Here 1s the most important difference between the two models

Kamin’s model versus Cook’s model

Every spectfication has to respect some well-known cniteria We will discuss how
these specifications respect them
Formalization verifies 1f the specification behaves conforming with the implementation

Kamin’s model can be transciibed in an executable version 1n Standard ML so this
catenum 18 easy to venfy We must also notice that the language had suffered some

modifications and omisstons But Kamin's goal was to specify the mechanism of inherttance

72

FORMAL SPECIFICATION FQR SMALLTALK

and the missing details are not essentiai related with this concept
Cook proved that his model 13 equivalent with an operational semantics and 1t’s

obvious that 1t respects this cntenum

Costructability A specification must be easy to construct even if the notation used is formal
The omitted details make Kamin’s specification easter to build, but even so 1If the

hserarchy is thick then the construction of the C and D maps seems to be hard to follow

Comprehensibllity The specification must be easy to understand The specification given by
Kamin seems difficult to understand when we have to deal with the maps E and E

Minimality All the non-essential details had been omitted (we have already present the
omissions and the modifications of the language, because they are not direct related
with the inhenitance process) ‘

Applicability From the applicability point of view Cook’s model seems to be more
interesting since his definition of inhentance, afthough 1t was developed fiist for object
oriented languages, shows that, in fact, inheritance 1s a general mechanism that can
be applied to any form of recursive definition
The major problem of object onented languages 1s that they lack a solid formal

fundamentation There have been some attemps in specifying object oriented features in

operational, axtomatic, denotational and algebraic semantics We have focus our attention on
denotational semantics because 1t provides a good mathematical instrument for specification
based on lambda-calculus and, on the other hand, an mnstrument which s not such
complicated and hard to understand as the algebraic theory used 1n algebraic specification

techniques This comparative presentation of these two model tries to be a study for choosing

73

S MOTOGNA

the most suitable formal specification

74

REFERENCES

L Cardelli, P Wegner, On Understanding Types, Data Abstraction and Polymorphism, Computing
Surveys, vol 17, no 4, Dec 1985, pg.471-522

W Cook, JPalsberg, A Denotational Semantics of Inhertance and its Correctness, OOPSLA’89
Proceedings, 1989, pg 433-444

W Cook, W L.Hill, P S Cannng, Inheritance 1s not Subtyping, Proceedings of POPL’90, ACM Press
1990

A Goldberg, D Robson, Smalltaik-8¢ The Language and Its Implementation, Addison-Welsey, Reading,
MA, 1983

S Kamin, Inheritance 1n Smalltalk-80 A Denotational Definition, Proceedings of the 15 Annual ACM
SIGACT - SIGPLAN Sympostum on Pninciples of Programmung Languages, San Diego, Jan 1988,
pg 80-87

Soo Dong Kim, Formal Specification 1n Object-Onented Software Development, Ph D Thesis, The
University of lowa, 1991

