
STUDIA UNIV BABEŞ-BOLYAI, MATHEMA1 ICA, XXXVIII, 3, 1993

PROGRAMMING PROVERBS REVISITED

M. KREN J IU und B. i*ÂUV'

DvdietiltJ to Proltbsor Emil Munlean on lus 60л anniversary

Received February 17, 1994 M/.S urbjecl ctüMiJication 6SN05

REZUMAT. - Proverbe ale programăm revăzute. în lucrare ье pre/mtă metode, principii
şi reguli considerate importante in activitatea de programare Se subliniază importanta acestora
în once curs de învăţare a piogramăni

Computer programming is still m a state of crisis, at least for two reasons the

haidware changes, and the appearance of new problems winch can be solved by computer

The complexity of programs is incieasing continuously, and it generates ntajoi changes in

piogiam design techniques The notion of "good program" can be considered from two

different points of view piogiammer’s view, and usei’s one Fiom the user’s point of view

one can distinguish 10 so-called "external quality factors" [10J correctness, robustness,

extensibility, reusability, compatibility, efficiency, portability, venficabilily, integrity, and ease

of use from programmer’s viewpoint, one can enumeiate two major criteria for a good

progiam modulanty, and complete documentation Of course, the external quality factois

must be taken into account as final goals in the software development process

All these quality cntena must find their place in the formation of new programmers

There is a continuous need to teach programming foi obtaining a better productivity, i e to

"liabeţ-llolmi" Uinversilv, hut ullv o/Maiheinalit s niiil Computet Science, 3-WO Clttj-Napoca, Romania

M FRENŢIU, В PÁRV

teach the students the methods that allow us to obtain correct programs from the first

execution As Floyd [4] pointed out in his Turing Award Lecture, there "is possible to

explicitly teach a set of systematic methods for all levels of piogiam design" Methods,

principles, and rules considered important in programming are given below Also the

bibliographical source is indicated m the brackets
/

1 Define the problem completely [7, 9] One cannot write a correct program if the

problem to be solved is not known exactly Бу this we mean to write the specifications of the

problem As it is known [11], this is not an easy problem, but a very serious one Often the

beginners start to write the program but they do not know what are the results that must be

obtained

2 Think first, program later [9] This may be interpreted to design the algorithms

correctly Think to them, try to prove their coirectness, and write the program later, when you

are sure that everything is correct

3 Use Top-Down Design [4, 7, 9] This is a veiy well known, and important

programming paradigm [4] It is also met as step-wise refinement method [13], or Divide and

compter principle [7]

4 Use Modulat ity as much as possible [9] A function, a procedure, a Turbo-Pascal

unit, a Modula module, or an Ada package are considered modules Each module of a

progiam is more understandable than the entire program Also, using modules, the logical

structure of the program is improved Build up libraries of your modules for reusability

5 Use hbraiy routines whenever it is possible [9] This rule is a consequence of rule

4 Certainly, the existing routines are leady to be used, no time needed for writing and testing

50

PROGRAMMING PROVERBS REVISITED

these routines Thus the productivity, and the probability of correctness will increase

6 Design the algorithms by Structured Programming paradigm [2, 4, 9, 13] This rule

asks to design first the algorithms in a Pseudocode language, and only then to tianslate them

in a programming language Also, it lequires to think to the structure of the product, at each

level

7 Define a new data type as an Abstract Data Type (ADT) [6] The above rule asks

the designer to think generally, not in the context of the solved problem An ADT may be

viewed as a module that defines a data structure and the operations on this structure This

independence of the context has beneficial effect foi the reusability of modules Also, an ADT

is an open system, i e one can add new operations, not affecting the old ones, and not

affecting the programs that already use this ADT

8 Design input-output routines for each abstiact data type [5, 6] These Input-Output

operations are veiy usefbl in general Often, when a standardized interface is recommended,

for these operations one uses videoformat, such as Turbo Vision from Borland This rule is

one way of achieving rule 21

9 Use object-oriented design [1 , 10] This technique permits to obtain flexible, and

easy modifiable programs The programs obtained by this technique are easy to maintain

since, by using the hierarchy of classes in libraries of components, a massive reusability of

these components becomes possible Also, adding new components does not affect the

programs that already use the old components On the othei side, the other feature of object-

oriented piogramming, the polymorfism, simplifies communication protocol between objects

A program in OOP sense is considered as a structured collection of objects which

51

M FRENŢIU, В PARV

communicate by message passing

10 Strive for continuing invention, and elaboration o f new paradigms to the set o f

your own ones [4] This idea, due to Floyd, is very well presented In his Turing Lecture He

recommended to "identify the paradigms you use, as fUlly as you can, then teach them

explicitly"

1 1 Prove the correctness o f algorithms during their design [7] The errors must be

eliminated аз soon as possible. Trying to prove correctness, some wrong parts may be

discovered And this can be done much earlier than running it on a computer Also, if we

succeeded to prove it, the confidence in its correctness grows up significantly Gnes [7]

insists on developing correct programs from the beginning His words are "A program and

its proof should be developed hand-in-hand, with the proof usually leading the way"

12 Concentrate to the important things o f the moment, postpone the details later [9,

13] This rule is connected to the stepwise refinement method But it has some other aspects

At all levels give attention to the main things, for example do not lose time to print the

results nicely if you are not sine these lesults are correct

13 Nevertheless the details are important [6, 13] First, the software products must

respect rigorously the specifications Second, the form of the printed results are moie

important for users than the entire work done for developing the product These must please

the usera 1

14 Choose suitable and meaningful names for variables [7, 13] The readability of a

program may be one of its very important quality It is very useful during maintenance phase,

when many other programmers have to work on the program More, Gries [7] recommends

52

PROGRAMMING PROVERBS REVISITED

to define rigorously the meaning of a variable by an assertion that remains true during the

execution of the algonthm

15 For every variable o f a program make sure that it is declared, initialised, and used

[12] A variable may appeared in a program accidentally, other variable may not be initialised

since a line of a program was not typed

16 Use symbolic constants [6, 13] This rule is a consequence of a Murphy like rule

The constants must be considered variables I

One recommends to define symbolic constants at the beginning of a program (module)

procedure and to use the names inside Any modifications means small changes in the

definition of the constants, and eliminates fiirther errors

17 Use names for all data types o f the program [6] We consider that all properties

of a type are concentrated m its name Using names, the modifiability of the program is

easier Also, the clarity is higher

18 Use intermediate variables only i f it is necesmiy [9] ,

The unconti oiled utilization of auxiliary variables, by breaking expressions, just complicated,

in subexpressions assigned to new variables, diminishes the clarity of the program, and makes

more difficult the program verification

19 Declare all auxiliary variables o f a procedwe as local vat tables [6] This rule is

connected with the autonomy of the corresponding procedure It offers the following

advantages easier testing of the procedure, procedure independence of the context m winch

it is used, no secondary effects due to unexpected changing of the values of global variables

20 Be carefid at the parameters o f the called procedure [6, 13] Each module must

53

M. FRENŢIU, В. PÂRV

be used only through its interface, that is, the actual parameters passed to the module, which

must correspond to the formal parameters (dummy variables) Respect their meanings, and

be careful to the correct usage of the procedure calling mechanism

21. Verify the value o f a variable immediately it was obtained [6] A variable receives

a value by an assignment or by an input operation. In both cases the value must be correct,

it is worthwhile to check it Especially for input operation, a variable must be protected from

wrong values

22 Think to pretty writing the text o f the program [9,13].

Most of the programming languages allow free format, i e. the blank spaces may be used

freely Use them when writing the text of the program, to improye the darity of this text It

must leap to the eyes the beginning and the end of each statement Use indentation for this

purpose Make the structure of your program visible.

23 Use the FOR statements properly; do not change the value o f the counting

variable, or the limits inside the cycle [9] This rule ask to respect the semantics of the For

statement Do not use For when Repeat or While control structures are most appropiate

Changing the limits, or the value of the counting vanable may cause invisible errors, very

difficult to discover

24 Do not leave a FOR cycle through a Goto statement [9] This rule is specific to

Fortran programmers, but may be met in those languages that possess GOTO statements The

reasons for respecting this rule are the same as for the rule 23

25 Avoid GOTO statements {3} The Goto controversy [3, 8] is well known Using

umestneted Goto statements destroys the good structure of that module These statements

54

PROGRAMMING PROVERBS REVISITED

must be used only if the programming language does not possess the standard computing

structures

26 Avoid tricky programming [9] A program must be maintained, oftenly, by other

persons different from the people who wrote it And tricks are not compatible with good

structure, clarity, and flexibility. Also, for the portability of the program, one must avoid the

implementation dependent features.

27. Use comments [9, 13]. The text erf a program (module) must be understood easily

and unambiguously by all the other programmers who have to read it For this purpose the

comments can be very useful. We think that each module must contain comments saying at

least what it is doing, i e the specifications of the module, and the meaning of the used
9

variables

28 Verify (test) the correctness o f a module soon after it was obtained [7], The rule

10 ask us to prove formally the correctness of a program (module) But, just if we have done

it, we still have to test this module After all, the proof may be wrong, or the implementation

of a correct algorithm may be incorrect. Ledgard [9] recommended "to hand-check the

program before running it" We find this very useful for the beginners, some students better

understand their errois running themselves their wrong programs

29 At each phase verify the programm correctness [6, 13] The verification of

program correctness means the verification of specifications, the formal proof of algorithm

correctness, the inspection of the text of the program, and the testing of it Remove any error

as soon as possible I

30 Use assertions to document programs and verify their conectness during

55

M FRENŢ1U, В PÂRV

dèbnggmgprocess [7] If one has proved the partial correctness of the algorithms he has used

assertions in воте points of the algorithms These assertions must be invariantly true during
s , } ,

execution They reflect the meaning of the corresponding variables. In the debugging process

verify their correctness. If they are not true some errors have oecured, and they must be

eliminated
r > - ‘ * ? t (

31. Write good documentation simultaneously with program budding [13] The users

need a documentation manual, and the maintenance activities need information about all levels

of program dévelopment Often, there is no documentation at all. The above mentioned rule

asks to write the documentation simultaneously with the development of the program. The

program itself must be selfdocumented by comments But it is not enough There must be

written documents that show all the decisions at each level of the development process. There

must exist documents for specification, design, implementation, and testing. Also, a user

manual is heeded Í“ '

32, Use the existing debugging techniques [9] We hope to obtain error-free programs

But errors may arise, and finding and correcting these errors is an important, and very often,

an unpleasant job Every operating system has built in it some debugging aids Use them to

assist you m finding the errors

33 Ask for computer assisted software development [7, 13] Computers can help

people to carry out their unpleasant works Particularly, they can help in program

development m different ways Many of them are mentioned in the excellent book of Schach
r ' ! ’ . t ‘ *

[13] planning the activities, and many activities done by Software' Development

Environments, known as CASE (Computer-Aided Software Development) There are many

56

PROGRAMMING PROVERBS REVISITED

activities that have to be performed during the development of the program, such as

computations [4], or various decisions

34 Think to the program portability [9] A program must be portable, i e to be able

to be run directly on a different machine, other than the original one Portability is not usually

an issue to worry about But it may be an important quality of a program Isolate into

modules those parts of the program that,usually change from computer to computer (such as

mput/output operations). All other modules can be built portable, using statements

corresponding to the "standard specification" of the implementation language, and avoiding

the particular extensions which are dependent on the compiler implementation

R E F E R E N C E S

1 Coad,P, Yonrdon,E O b je c t-o r ie n te d D es ig n , Prentice-Hall, 1991
2 Dahl,O J , E W Difkstra, CAR Hoarc. Structured/mogramnnng, Academic Press, London, New-York,

1972
3 Di|kstra,h \V GOTO Statement Considered Ihvmfid, Comm AC M, 11(1968),no 3, p 148
4 FlovcLR W The Paradigms o f Programming, Comm ACM, 22(1979), no 8, pp 455-460
5 FrenţiUjM , B Pdrv, V Prcjmerefinu Abstract data types Jor tna easing the pi oiluctivity in p ogrammmg,

Seminar on Computer Science, "Babeş-Bolyai" University, Prepnnt no 5, 1992, pp 8-13
6 Fien(iu,M , and B Pàrv, Me iade şi leírnia in elaborai ea progiamelor, Piomedia, Cluj-Napoca, 1994
7 Gncs,D The Science o f Programming, Spnngci Verlag, Berlin, 1985.
8 Knulli.D Structured Piogiamming with GO TO Statements, ACM CompuUng Surveys, 6(1974),

no 12, pp 2til-301
9 Ledgard.H F , Programming proverbs jo> Fortian programme! s, Hayden Book Company, Inc , New-

Jersey, 1975
10 Meyer,В Object Oriented Sofhvare Construction, Prenuce-Hall, Englewood Cliffs, 1988
11 Myers, A 4 Cotitiolled Experiment in Program 'lasting and Code' Walkthoughs Inspection,

Comm ACM, 21(1978), no 9, pp 760-768.
12 Naur.P lb oo f of algorithms by general snapshots, BIT, 6(1966), pp3l0-316
13 Scluch,S R Sofiwaie Engmeenng, IRWIN, 1990, USA

57

