STUDIA UNIV BABES-BOLYAIL MATHEMATICA, XXXVIIL, 3, 1993

PROGRAMMING PROVERBS REVISITED

M. FREN J1U und B. PARV’

Dedicated 1o Professor Emil Muntean on his 60® anntversary

Heveved February 17, 1994
1ALS subject chasification 68N0O5

REZUMAT. - Proverbe ale programérm revismte. in lucrare se presintd metode, principi

si regull considerate impontante in activitatea de prograisare Sc sublinia2s imporianja acestora

in once curs de invijare a programint

Computer programming is still 1n a state of crists, at least for two reasons the
hardware changes, and the appearance of new problems which can be solved by computer
The complexity of programs 18 incieasing conhnuously, and 1 generates majoi changes 1n
progiam design techmques The notion of "good program” can be considered from two
different points of view progiammer’s view, and user’s one From the user’s pomnt of view
one ¢an distinguish 10 so-called "external quality factors" [10] correctness, robustness,
extensibility, reusabtlity, compatibibity, efficiency, portability, venficabuity, integnity, and ease
of use krom programmer’s viewpomnt, one can enumetate two major criterta for a good
progiam modulanty, and complete documentation Of course, the external quality factors
must be taken into account as final goals 1n the software development process

All these quality cntenia must find their place 1n the formation of new programmers

There 15 a continuous need to teach programming for obtaiing a better productivity, 1 e to

" "Babey-Bohwt" Umversity, Paculty of Mathemancs and Computer Science, 3400 Clyg-Napoca, Romama

M FRENTIU, B PARV

teach the students the methods that allow us to obtain correct programs from the first
execution As Floyd [4] pointed out 1n his Turing Award Lecture, there "1 possible to
explicitly teach a set of systematic methods for all levels of piogiam design” Methods,
principles, and rules considered important in programming are given below Also the
bibliographical source 1s indicated 1n the brackets

v Define the problem compleiely {7, 9] 'One cannot write a correct program if the
problem to be solved is not known exactly By thiz we mean to write the specifications of the
problem Aﬂ it is known [11], this {s not an easy problem, but a very serious one Often the
beginners start to write the program but they do not know what are the results that must be
obtained

2 Think first, program later [9] This may be interpreted to design the algorithms
correctly Think to them, try to prove their correctness, and write the program later, when you
are sure that everything 1s correct

3 Use Top-Down Design [4, 7, 9] This is a very well known, and 1mportant
programming paradigm [4] It 1s also met as step-wise refinement method [13], or Divide and
conguer principle [7]

4 Use Modularity as much as possible [9] A funcuon, a procedure, a Turbo-Pascal
unit, a Modula module, or an Ada package are considered modules Each module of a
progitam 15 more understandable than the entire program Also, using modules, the logrcal
structure of the program 1s improved Build up hbraries of your modules for reusability

S Use hibrary routines whenever it 1s possible [9] This rule 15 a consequence of rule

4 Certainly, the existing routines are teady to be used, no time needed for writing and testing

50

PROGRAMMING PROVERBS REVISITED

these routines Thus the productivity, and the probability of correctness will increase

6 Design the algornthms by Structured Programming paradigm [2, 4, 9, 13] This rule
asks to design first the algonthms in a Pseudocode language, and only then to tianslate them
in a programming language Also, it requires to think to the structure of the product, at each
level

7 Define a new data type as an Abstract Data Type (ADT) [6] The above rule asks
the designer to think generally, not 1n the context of the solved problem An ADT may be
viewed as a module that defines a data struciure and the operations on this structure This
independence of the context has beneficial eftect for the reusability of modules Also, an ADT
1s an open system, i e one can add new operalions, not affecting the old ones, and not
affecting the programs that already use this ADT

8 Design mput-output rontines for each absh act data type {5, 6] These Input-Output
operations are very useful in general Ofien, when a standardized interface 1s recommended,
for these operations one uses videoformat, such as Turbo Vision from Borland Thits rufe is
one way of achieving rule 21

9 Use object-orwented design [1, 10] This techmque permits to obtain flexible, and
easy modifiable programs The programs obtatned by this techmique are easy to mamtain
since, by using the hierarchy of classes in libraries of components, a masstve reusability of
these components becomes possible Also, adding new compénents does not affect the
programs that already use the old components On the other side, the other feature of object-
oniented programming, the polymorfism, simplifies commumication protocol between objects

A program m OOP sense 1s considered as a structured collection of objects which

51

M FRENTIU, B PARV

communicate by message passing

10 Strive for continuing wvention, and elaboration of new paradigms to the set of
your own ones [4] This 1dea, due.to Floyd, is very well presented in his Turing Lecture He
recommended to "identify the paradigms you use, as fully as you can, then teach them
explicitly”

11 Prowe the correctess of algorithins during their design [T} The errors must be
eliminated as soon as possible. Trying to prove correctness, some wrong parts may be
discovered " And this can be done much earlier than running it on a computer Also, If we
succeeded to prove it, the confidence in its correctness grows up significantly Gnes [7]
inststs on developing correct programs from the beginning His words are "A program and
its proof should be developed hand-in-hand, with the proof usually leading the way"

12 Concentrate to the important things of {hé momenl, postpone the details later {9,
13] This rule 1s connected to the stepwise refinement method But it has some other aspects
At all levels give attention to the main tlungs, for example do not lose time to pnnt the
results nicely 1f you are not suie these 1esults are correct |

13 Nevertheless the details are mportant {6, 13] Furst, the software products must
respect ngorously the spegtﬁcatxons_ Second, the form of the pnntéd results are more
tmportant for users than the entire work done for developing the product These must please
the users !

14 Choose sum,rb!e and meaningful names for variables [1, 13] The readability 01: a
program may be one of its very important quality It 1s very useful duning maintenance phase,

when many other programmers have to work on the program More, Gries [7] recommends

PROGRAMMING PROVERBS REVISITED

to define ngorously the meaning of a vanable by an assertion that remains true during the

execution of the algorithm

15 For every variable of a program make sure that it 1s declared, iinalised, and used
[12] A variable may appeared tn a program eccidentally, other va'nable may not be initralised
since a line of a program was not typed

16 Use symbolic constants [6, 13} This rule is a consequence of a Murphy like rule

The constants must be considered variables |

One recommends to define symbolic constants at the beginning of a program (module)
procedure and to use the names inside Anry modifications means small changes in the
definmtion of the constants, and eliminates further errors

17 Use names for all data types of the program [6] We consider that all properties
of a type are concentrated tn its name Using names, the modifiability of the program 1s
easter Also, the clanty 1s mgher

' 18 Use mtermediate variables only 1f 1 ts necessary |91 |

The uncontiolled uttlization of auxihary vanables, by breaking expressions,]ugt complicated,
in subexpressions assigned to new vanables, dimimishes the clanty of the program, and makes
more difficult the program. verification

19 Declare all auxiliary variables of a procedine as local variables [6] This rule 1s
connected with the autonomy of the corresponding procedure It offers the following
advantages easier testing of the procedure, procedure independence of the context in wluch/
it 1s used, no secondary effects due to unexpected changing of the values of global vanables

20 Be careful at the parameters of the called procedure {6, 13] Each module must

53

M. FRENTIU, B, PARV

be used only through its interface, that 1s, the actual parameters passid to the module, which
must correspend to the formal parameters (dummy varisbles) Respect their meanings, and
be careful to the correct usage of the procedure calling mechanisin

21, Verify the value of a variable immediately 1t was obtaned [6] ~A variable receives
a value by an assignment or by an input operation, In both cases the value must be correct,
it is worthwhile to check it Especlally for input operation, a variable must be protected from
wrong values

22 Think to pretty writing the text of the program {9,13].

Most of the programming languages allow free format, i e. the blank spaces may be used
freely Use them when wnting the text of the program, to improve the clarity of this text It
must leap to the eyes the beginning and the end of each statement Use indeatation for this
purpose Make the structure of your program visible.

23 Use the FOR statements properly; do not change the value of the comﬁing
variable, or the limits inside the cycle [9] This rule ask to respect the semantics of the For
statement Do not use For when Repeat or While control structures are most appropiate
Changing the limuts, or the value of the counting vanable may cause invisible errors, very
difficult to discover

24 Do not leave a FOR cycle through a Goto statement [91 This rule is specific to
Fortran programmers, but may be met in those languages that possess GOTO stajements The
reasons for respecting this rule are the same as for the rule 23

25 Avold GOTO statements {3} The Goto controversy [5, 8] is well known Using

untestricted Goto statements destroys the good structure of that module These statements

34

PROGRAMMING PROVERBS REVISITED

must be used only if the programming language does not possess the standard computing
structures

26 Avoid tricky programming {91 A program must be maintained, oftenly, by other
persons different from the people who wrote it And tricks are not compatible with good
structure,)clarity, and flexibility. Also, for the portability of the program, one must avoid the
implementation dependent features.

27. Use commenis [9, 13}. The text of a program (module) must be understood easily
and unambiguously by all the other programmers who have to read it For this purpose the
comments can be very useful. We think that each module must contain comments saying at
least what it is doing, i e the specifications of the module, and the meaning of the used
vani;bles

28 Vertfy (test) the correctness of a module soon after it was obtained [T}, The rule
10 ask us to prove formally the correctness of a program (module) But, just if we have done
it, we still have to test this module After all, the proof may be wrong, or the imp!ementa@ron
of a comrect algonthm may be incorrect. Ledgard [9] recommended "to hand-check the
program before running 1t" We find this very useful for the beginners, some studente; better
understand their errois running themselves thetr wrong. programs

29 At each phase verify the programm correciness {6, 13] The verification of
program correctness means the venfication of specifications, the formal proof of algonthm
correctness, the inspection of the text of the program, and the testing of 1t Remove any error

as soon as possible !

30 Use assertions fo document programs and verify their coriectess during

55

M FRENTIU, B PARV

debugging process [1] If one has proved the partia:l correctness of the algorithms he has used

r
'

assertions in some points of the algorithms These assertions must be invariantly true dunng_

execution They reflect the meaning of the corresponding vanables In the debugging process

i)

venfy their correctness. If they are not true some errars have occured and they must be

ehmmated

r . T '

31. Write good docunentation .s?multanemtsly wiih program budding [13] The users

need a documentation manual and the mamtenance acnvit:es need information about all levcis

of program development Often, there is no documentation at n!l The nbove mentioned rule

.

asks to wiite the documentanon aimultaneously with the developmem of the pmgram The
program itselt must be selfdocumented by comments But lt is uat enough There must be
wnitten documents that show all the decistons at each level of the development process. There

must exist documents for specification, design, implementation, and testing. Also, a user

3 " . LN T .8

LETE !

manual i8 needed

32, Use ‘the existing debugging teéhniques [9] We hope to obtzim eiror—free programs

But errors may arise, and finding and correctmg these errors is an important, and very often,

4 ’

an unpleasant job Every operating system has built in it some debuggmg alds Use them to

v

assist you in finding the errors
33 Ask for computer assisted soﬁﬁaré developnment [7, 13] Computers can help
people to‘can:y out their unpleasant works Particularly, theyf can help in program

development in different \ways Many of them are mentioned in the excelient book of Schach

[13] planning the activities, and many activites done by Software’ Develbpment

Enwronménts, known as CASE (Computer-Aided Software bevelopment) There are many

36

PROGRAMMING PROVERBS REVISITED

activities that have to be performed duning the development of the program, such as

computations {4], or various decisions

34 Thmk to the program portability [9] A program must be portable, i e to be able

to be run directly on a different machine, other than the onginal one Portability is not usually

an 1ssue to worry about But 1t may be an important quality of a program Isolate into

modules those parts of the program that usually change from computer to computer (such as

input/output operations). All other modules can be built portable, using statements

corresponding to the "standard specification” of the implementation language, and avoiding

the particular extensions which are dependent on the compiler implementation

-~3

9

11

12
13

REFERENCES

Coad,P, YourdonE Obsect-oriented Design, Prenttce-Hall, 1991

Dahl,O J, E W Dijkstra, C A R Hoare. Structured programming, Asademic Press, London, New-York,
1972

Dijkstral W GOTO Statement Considered Harmful, Comm A CM, 11(1968),50 3, p 148

Flovd R W The Paradigms of Programmmg, Conun A C M, 22(1979), no 8, pp 455-460

Frenjiu,M , B Pdrv, V Prejmercanu Abstract data types for incr easmg the productivity in progranining,
Seminar on Computer Science, "Babes-Bolyat" Unnemsity, Prepnnt no 5, 1992, pp 8-13

Frenf,M , aud B Pérv, Metode g1 tehnicy in elaborarea programelor, Promedia, Cluj-Napoca, 1994
Gries, D The Science of Programimng, Spnnget Verlag, Berhin, 1983,

KnuthD Structured Progammmg with GO TO Statements, ACM Computing Surveys, 6(1974),
no 12, pp 201-301

Lodpard H ¥, Programming proverbs jon Fornan programmer s, Hayden Book Company, Inc , New-
Jersey, 1973

Meyer, B Object Oriented Sofhware Construction, Prenuce-Hall, Englewood Cliffs, 1988

Myers, A 4 Connolled Expermment i Program Testng and Codes Walktlnonghs Inspection,
Comim A C M, 21(1978), no 9, pp 760-768 .

Naur.P Proof of algorithms by general snapshots, BIT, 6(1966), pp 310-316

Schach, SR Sofware Engieermg, IRWIN, 1990, US A

57

