
STUDIA UNIV DABEŞ-BOLYAI, MATIIEMATICA, XXXVIII, 3, 1993

GENERATING CONTROL STRUCTURES

V. CIOBAN, S. MOTOGNA, V. PREJMEREAN'

Dedicated to Professor Emil Muntean on hb 60k anniversary

Received November 18, J992

‘IMS subject classification 68N20, 68Q52

REZUMAT. - Generarea structurilor dc contrai. Lucrarea prezintă o modalitate de a defini
specificaţiile formale cu ajutorul unei gramatici necontextualc

l. Introduction. The aparitton of the ptogramming environments generates an

accentuated grow of programmers productivity With such a software instrument many actions

can be performed editing a source file, compiling and linkediting of a progtam, execution,

debugging even otheis facilities for files viewed as entities In fact, the apantion of

microcomputers and programming envuonments made a combination of the programming

work with the operating work in a calculus system The abandon of the "batch" working style

and working interactively impose a specific training in operating a computer If the first

programming environment have had restricted functions, the lecent ones, as TURBO PASCAL

oi BORLAND C (considered in top of the classification), are veiy complex and are few

specialists who can handle them completely However, the programming languages from these

envuonments (PASCAL, C, C++) may be considered universal languages (solve a great

numbei of problems technical, scientifical problems, problems which had to work with many

informations and so, with files, graphical problems, object-oirented programming) and, that’s

' "Babe$~lSolytu" Umvetsity, Faculty o f Mathematics anti Computer Science, 3400 Cluj-Napoca, Romania

V CIOBAN, S MOrOGNA, V PREJMIÍRtiAN

why handling all of the language facilities became difficult From another point of view

languages as PASCAL, C++, COBOL or DBASE IV have thicker instructions, from the

syntactical aspect, as FORTRAN We though that an instrument foi automatic generation of

control structures in a fixed language may be added as an important function in a

programming environment

The problem of automatic generation of programs is not recent, and program generators

exist in some systems and software products As an example we mention DBASE IV system

which has a program generatoi based on graphical specification

We propose a model for generating some control structures of a program using context

free grammars (1) A problem which hasn’t been solved efficently is the specification of the

structures

2. Control structures. Foi Dijkstra structures (see for example (2))and for other

structures we will intioduce the following operators

a) C(s,,s2) - operatoi for concatenation structures s, and s2 m this order ,

b) A(b,s,,s2) - operator associated to the complete alternative structure (complete IF) with

the semnification

IF b THEN
, ■ 8,

ELSE
■ s2 *

ENDIF,

c) t-(b,s) - operator associated to the alternative structuie with one alternative (simple IF)

with semnification IF b THEN s ENDIF,

14

GENERATING CONTROL STRUCTURES

d) *(b,s,, .s j - operator associated to the generalized alternative structure (CASE)

e) U(b,s) - operator associated to pretested loop with the semnification

WHILE b DO
s

ENDWHILE,

I) Q(s,b) - operator associated to posttested loop with the semnification

REPEAT
s

UNTIL b.

Are required some explanations

the three Dijkstra arc D={ C, A, Ö) and are considered fundamental, with them any

algonthm can be described,

we asociate operators for structures D’={ C, A, b_, *, Ö, Q} which are in fact the

structuies from the PASCAL language,

any other structure to which a similar operator can be asociated may be simulated with

D or D‘ (for example LOOP-EXIT or LOOP-EXITJF-ENDLOOP stiuctures),

we may intioduce the к symbol for the empty stiucture

3. Proprieties of the asociated operators

1 C(s,,s2) ?■ C(s2,s,) - concatenation of structures s, and s2 isn’t comutative

2 C(s,,C(s2,s3)) = C(C(s,,s2),s3) - concatenation is asociative

3 C(sA) = C(X,s) = s - the symbol of the empty structure is playing the role of the neutral

element for concatenation

A CfAfb.s^SjI.Sj) = A(b,C(shs3),C(s2,s3)) - concatenation is nght distributed to alternative

35

V CIOBAN, S MOTOGNA, V PREJMhREAN

structure

5 C(s1,A(b,s2,s3)) = Afb.CXsLBjXCXs^Sj)) - concatenation is distnbuted to left to alternative

structure if and only if s, structure doesn’t have any effect on b predicat

6 U(b,s) = A(b,C(b,U(b,s)),X) = A(b,C(s,A(b,C(s,U(b,s)),X)),X) = - this propriety shows that

the three D structure can be reduced to only two structures concatenation and the

alternative structure

7 Reducing D’ structures to D structures

a) Mb,s) = A(b,sA)

b) b-(b,s) = A(b,s,U(c,s))

c) *(Ь,8„ s j = AO^SLAibj^Ai .A O v ^ ^ s J)

where b is formed from b,, ,bn.,

d) Q(s,b) = C(s,U(_,b,s)), wheie _,b is the negation of b

8, Some equivalence proprieties

a) A(b,3l)s2) = C(b1=’T,,C(U(bAb1,C(bI=,F,,s1)), О ф л-Ь 1,С’(Ь1= Т ,,з2))))

A could be reduced to the operators C by introducing a new boolean variable b, ('T

is the value TRUE and ’F is the value FALSE)

b) Aib.SjjSj) = СХЦЬ.зАЦ-Ь.з,)) mentioning that s, doesn’t modify b

4. Generating grammars for control structures. With the introduced notation we

try to define a grammar which geneiates programma containing only contiol structuies whose

associated operators have been described One may give more than one grammar but we’ll

leffer only to the structures С, А, Ь_, Ö and Q

16

GENERATING CONTROL STRUCTURES

H aving n structures s„ ,s„ (which may be considered the sim plest ones, nam ely

attributing) and 2k predicates b ,, bk and A > A we give a gram m ar w hich generates all

Program m s over the objects considered above

Let G = (N,£,P,S), w here

N = {S,B} is the neterminals set

2 = {С Л b. ü Q (,) s, \ b, bk А A }

is the alphabet of the grammar

P S ~> C(S,S)|U(B,S)|Q(S,B)|b.(B,S)|A(B,S,S)|s1| |sn

в -> b.i |bkhb,| I A

is the set of production rules

S - as the source symbol, S E N

We consider the following examples

Example 1 The word

C(s„C(s2,C(t,(b1,s3),C(s2,U(-b2,s4)))))

which belongs to L(G) over s,,s2,S3,s4,b1,b2,-’b1,“,b2 may be obtained through "=>" in this way

S => C(S,S) => C(S,C(S,S» ■=> C(S,C(S,C(S,S))) =>

C(S,C(S,C(tu(B,S),C(S,S)))) => C(s„C(s2,C(t,(b1,sJ),C(s2, D'(-b2,s4)))))

and it is equivalent with the following program

s„
9„
IF b, THEN s3,
h,
WHILE A DO

S4
ENDWHILE,

37

V CIOBAN, S MOTOGNA, V, PREJMEREAN

Example 2 Let’s consider the following word ■

C(sp A(b,, (b2,s2), ii(s3,-b2)))

e L(G), which is obtained in this way
S =>C(S,S) =>C(S,A(B,S,S)) ">C(S,A(B, (B,S),Q(S,B)))=>
'=,>C(s1,A(b1> (b2,s2),ü(s3,-,bi)))

and it is equivalent to the following program

si>
IF b, THEN

WHILE b2 DO
s,

ENDWH1LE
ELSE

REPEAT S3
UNTIL -b 2

ENDIF

The introduced grammar has the following properties ,

- is a simple precedence grammar

- theie aie no conflicts in grammar

We may prove that for any piogiam (written in any language) only with structures C,

A, k, Ö and Q exists one single woid from L(G), which ieproduces the program through

operators

Different generators may be construct now having as input a word from L(G) and as

output a program written in PASCAL, C, C++, COBOL, FORTRAN and so on The problem

which hasn’t been solved properly is the specification of the word from L(G) at input

R E F E R E N C E S

1 Aho.A V and UllinanJ D - The Theory of Parsing, Translation and Compiling, vol 1 and 2 Englewood
Cliffs, New Jersey, Prentice Hall, 1972

2 Dalü,0 J , Dijkstra E W, Hoare,C A R - Structured programming Academic Press, London, 1972

