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REZUMAT. - Algoritmi seriali şi paraleli pentru rezolvarea unei probleme de conveiltate 
In mediu poros. Scopul acestei lucrări este să se facă o comparaţie între algoritmii seriali şi 
paraleli, pentru a rezolva o problemă dată în mediu poros Sunt studiate în hierare 
performanţele algoritmilor paraleli care au ca scop creşterea vitezei de calcul şi a eficienţei lor

Abstract. The mam purpose of this paper is to make a comparison between a serial 

and a parallel algorithm for solving a given ptoblem of convection in porous medium The 

perfoimances of the parallel algorithm, established by means of speed-up and efficiency, are 

studied
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gravitational acceleration 
velocity of the fluid 
piessure of fluid 
temperature of fluid
permeability of the saturated porous medium
thermal conductivity of porous medium
rate of internal heat generation of porous medium
internal Rayleigh number
characteristic length of the porous medium
time
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I CHIORHAN

u,v velocity components
x,y coordinates

Greek symbols

p density of fluid
ji viscosity of fluid
(pc)/ beat capacity of fluid
(pc)p heat capacity of porous medium
ß thermal expansion coefficient
ijj dimensionless stream flmction
ф angular coordinate

Superscripts

dimensional variables

Subscripts

0 value at reference temperature and density

1. Introduction. The problem under consideraüon is that of 2D steady laminar 

convection in a porous layer bounded by an inclined squre box with four ngid walls of

constant temperature (fîg 1 ) Heat is 

generated by a uniformily distributed 

energy souices within the cavity The 

porous layer is isotropic, homogeneous 

and saturated with an mcompressibile 

fluid The heat genei ati on creates a

temperature gradient across the layer, and

thereby provides a driving mechanism for natural convection within the cavity

In the present study, the saturated porous medium is treated as a continuum, with the
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SERIAL AND PARALLEL ALGORITHMS

solid and fluid phases in local thermodynamic equilibrium Also, the saturated fluid and the 

porous matrix are supposed incompressible and all physical properties of the medium, except 

the fluid density are taken to be constant

2. Converning equations. The fluid motion obeys the equations Darcy-Qberbeck- 

Boussineq For the case of volumetric heating considered here, the governing equations can 

be written as

Ы
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Derivating (2’) after y  and (2") after x' and taking into account that the temperature function

has the form T(x 'y ') ,  it is obtained
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dv'  К
dx'  H 

Subtracting (6) from (5) we get

du'  _ dv'  _ К  
~dÿT И х7 T  

Using the dimensionless variables
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KL* S* 2Ü /Taking Ra  =■-------- JÜ -, where v = |i/p0 and a  = (pc)Jk  as the Rayleigh number, (7’)
a \ k  J

becomes

du dv „ ( , 8T  , 07м—  - —  » Ra  sind) -  cosd>__
dy dx у dy dx

Analogously, using the dimensionless vanables, (Г ) and (3‘) become

du dv „—  + ___ = 0 , 
dx dy

d 7 \  dT  dT  ,
dl dx dy

Equation (4") is verified by the streamfunction ф where

и dip н di()

(7")

( Г )

(4")

(8)dy dx
So, imtroducing (8) in (4") and (7") we get the finally system of two equations with two 

unknowns (the temperature function T and the stream function ф)

Ü  + Í 1 Í I  -  V2T  + }
dl dy dx dx dy

У72 , » l  I dT , 3TV 'i|j » Ra smф ----  -  cosq>___
 ̂ dy dx

(9)

We solve this system beeig situated in an enclosure with unit square section (L = l), eith the
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initial conditions

(1 0 )

and the boundary conditions

Г = т |)= 0  for ж = 0 and 1 , ^  = 0 and 1 (П )

Numerical results.

3.1. The Steady Problem In the steady case, our system of equations is

dip dT _ jhjji d7  = 
dy dx dx dy

02)

In order to obtain the solution for the system (12) with the conditions (10) and (11), we used 

the Multigrid method [4] with a Gauss-Seidel smoother The space derivatives were 

approximated in the following manner the fust order derivatives with the Euler forward 

foimula and the second order derivatives with the centered differences, accordind to [6] The 

discretized solution foi the temperature and stieam functions was obtained working on an 

equidistant grid Q, (where / indicates the level of grid), defined In the following manner

Denoting j = T( iht j h t ) , = ф ( /A,,yA, ) for every 0 з  /, j  л Nh I being one grid the

system becomes

Чуг-Ф,, % - ? ’</_ К  Тф Г Тч „ 
h, A, A, h,

T -T  T - T*  .  ,+  t *  ,  4 *  , * l  J 1  ,  i

(13)

Ra sin<j>._'i!i__^ - с о э ф __ '£
h, h,
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The solution of system (13) was obtained in two ways first, as the output of an serial 

algorithm and second, as the output of a parallel algorithm.

3 .U , The serial algorithm The algorithm which solves (13) by means of up to seven 

grids (/ = 7) contains the following steps

1 Solve the firet equation of system (13) using (10) and (I I); results T  new;

2 Solve the second equation of system (13) using T new just determined, tj>0 and -ip at 

the boundary; results ip new;

3 Solve the firet equation using ip new and (l 1); results T new;

4 Repeats Steps 3 and 4 until "CONDITION" {When it is accomplish, the steady 

solution is obtained)

Note In our case,' "CONDITION" means that the difference between two succesive 

approximation is less that 10-6 In other words, if we denoted, e g. F*1 anf F “* two succesive 

approximauons (where F  represents T or гр), "CONDITION" will be .

II p™* _ ss JO'4

where ||il denotes the Euclidean norm [4], Fig 2a and b indicate the decreasing o f error 

during ten repetitions of Steps 3 and 4 (Fig 2b detailes more the error at temperature 

ftinction) '

Concerning the results, our observations are the followings: the steady temperature has 

form like m Fig 3 and is not influenced by Ra number or ф angle Also, the general shape 

of the function (and this note is valable for the stream function, too) does not change with 

the numbers of grid points
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The stream function modifies according with the Rayleigh number and has the shape as in 

Fig 4

The stream function modifies also according with the angle of enclosure (see Fig 5a-c)

3.1.2. The parallel algorithm. The parallel algorithm was implemented on the INMOS 

Transputer System from University of Heidelberg, under PARIX operating system The main
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f u n c t io n  T ——

Fig 3 Temperature in steady casc with Ra=>500 and ф“0
function esi ac {U«0.01, p^i-o —-

2e -9 6  1 З9 - О 6 U-06 39-07 0- 5e -07  - l e -0 6  -i Зз-Об •29-06 -2 $9-06

0 ~~-- ^ —0.5
0 3*  '--■— 

Fig-4 Stream function m steady case with Ra=0 01 and ф-О 

tdeea in so lv ing our problem  is that o f  {3}, but w ith chages due to  the convective te rm s (first

equation) and the right-hand-side (second equation) from (12) We use a rectangular grid with

(Nt - 1 ) * (Nj - 1 ) unknowns, then each processor is assigned to a subset of unknowns (data

partitioning) In an one-dimensional arrangement of n processors caled a ring configuration

of length rt, processor p,p E  {0, , «-1} is assigned to the grid points {(i j) ( max (\,pNj\/i)

£ i £ (p+l)N^n, 1 s  j  á Ni) If the sidelength of the grid is not divisible by the number of
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Fig 5a Stream function, with Ra=0 01 and ÿsa&O

Fig 5b Stream tunccion uich Ra=Q 01 and o=>H5

Fig 5>- Stream Itinccton \wrli Ra=0 0l and e> = 270
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processors, then some of them will be assigned more unknowns than others, generating an 

unequal load balance, which is one source for loss of efficiency Taking into account the way 

of disposing the grid points on processors and denoting by xMn{p) and xmJ p )  the leftmost, 

respectively the rightmost grid point column stored by processor p, each processor will 

executes simultaneously the following steps

1 Computes the convective terms for the first equation of (12),

2 hi case of an overlapping, sends values to the leftside processor (if it exists) and 

receives values flom the nghside processor (if it exists),

3 For every j  from 1 to n, do

3 1 Receives values from the leftside processor (if it exists),

3 2 For every i from xmln(p) to x^Jp )  do 

Computes Gauss-Seidel iterations,

3 3 Sends values to the rightside processor (if it exists)

After processing the previous steps, with step 3 repetead till the steady solution for 

temperatuie is obtained (we have noticed that it happened after 10 iterations), we proceed 

analogously to solve the second ecuation of (12).

In order to compare the results obtained with the serial and the parallel code, we used, 

like m [1] and [3], the speed-up, defined as

S{n) -  (14)
*ШЫ (и)

where TMano is the time needed for obtaining the solution the with the serial code and is

the time took by the paiallel code, using n processors, and the efficiency which is defined

S(n)
m (15)
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Table I presents the execution times (in sec ) for the serial and the parallel code, when a 

different number of processors was used So, we can notice that the increasing of time for the 

serial code is deeply connected with the numbers of grid points (on a coarse grid, the 

execution takes a few seconds, the execution takes a few seconds, on a fine grid it takes more 

that an hourl) and the execution time decreases according with the number of processors used, 

with the observation that for the coarse grid 32 x 32 the situation is like in Fig 7

Table l Execution time

Nr proc/Nr pc 32*32 64*64 128*128 256*256 321*321

1 166029 67 9188 276 725 1116 65 1677 73
7 7 86234 19 2012 53 5307 167 708 240 032
11 7 472 17 1044 43 5171 126 039 173 89
15 7 59328 16.6198 396177 107 014 141814
»9 7 40141 16 0309 36 4428 95.6118 128 211
23 7 49709 15 6065 35 5842 89002 116 689

Fig 6 visualises the information from Tabel 1, meanwhile Fig 7 indicates only an 

unconcludent situation when more that one processors are used

Table 2 Speed-up

Nr proc/Nr pc 32*32 64*64 128*128 256*256 312*312

7 2 11 3 S3 5 16 6 65 6 98
II 221 3 97 6 35 8 85 95
15 2 18 4 08 6 95 10 43 11 8
19 2 24 4 23 7 59 1167 13 08
23 2 21 4 35 7 76 12 54 14 3

The speed-up for all operations earned out on a fixed grid depends heavily on the 

numbei of unknowns per processor, because a larger proportion of computing time is spent 

on communication and the effects of unequal load distnbution are more pronounced if the 

numbei of gnd points per processor is small This means that a high speed-up can be
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Fig 7 E\ecution time working with so e ra l  processors on a coarse g-al

achieved on the fine grids (assuming a large number of grid points per processor on the fine 

grids) like m Fig.9 whereas the speed-up deteriorates on the coarser grids (see Fig 10) Table 

2 contains the values which sustained these observations and on which Fig 8 and 9 are based 

Woiking with several processors on a coarse grid, the improving of speed-up is not
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concludent, as we can see from Fig 10 Next, accordind with (15), Table 3 contains the values

which indicate how efficiency depends on the number of processors and on the number of 

grids points
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Fig 10 Speed-up on a coarse grid, with several processors

Table 3 Efficiency evolution

Nrproc/Nrpc 64*64 128*128 256*256 312*312

7 0 50 0 73 095 099
11 0 36 0 57 080 086
15 0 27 0 46 069 0 78
19 0 22 0 34 061 068
21 0 18 0 33 0 54 062

Based on Table 3 , Fig 11 shows the increasing of efficiency when finer grids are

used

3.2.The Unsteady Problem Solving the unsteady problem means to solve the system
(I

in the original form (9) In order to do this, we use the same finite difference formulas to 

discretize the space derivatives, as in 3 1 The time denbatlve will be discretized with the 

backward Euler formula ([6)] We denote by dt the timestep, which is considered fix, by //"  

the Laplace operator and by GA and G} the gradient operators ([2]) Let 7* be the temperature 

flmction at the moment of time lk -  kell Then the first equation of system (9) can be written
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Fig 11 Efficiency

in the following manner
' f ' k + l  _  Ţ k

Ji G i Tk"  -  G q l " G  7’*’1 -  L Mr k' 1 + J
y  i X ж * V

(16)

For a fixed time interval denoting with 1 the Identity operator and based on

( 10), to solve the parabolic equation of system (9) means to solve the following bidiagonal

blok-sliuotuied system

As = b

wheie

~L/ + f/' i|>(7 ■ +G iL>(/ • - L rH- 
dl > “ y

Л --
- 1 /  J-/+ G  ti>G ■ *G ■ -I-*"
dl dl уГ '  >

0

0 - 1 /  -L l+ G yG  -+GyG • -L ‘n ■
dl dt '  * y
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Tk" ■ 1 + -LlTk 
dt
Tand b =

rj ’k+m
1

We observe that at every moment of time the relation which gives the temperature 

flmction is ftilly implicit and we have to solve, as the first equation of system (9), the 

following
rt,k+\ . . Л + 1 rr k*\ .fr+i . fc+1 /Tit+! /ri*+i
I и
dt h,

ri i Z  + r t Z + C ,  * C ,  -  4 r:

h?
1 +

f t
‘ tj

~dt
(17)

Equation (17) together with the second equation of system (13) will form the problem 

we have to solve m this case As in the paragraph 3 1 , the Multignd method was used and 

the general scheme of solving is the following'

Step 1 Solve equation (17) at the moment of time (k+l based on 7* (where 7°, the initial 

tempeiature is given), results У*’1

Step 2 Solve the second equation of system 9130 at the moment of time /*fl based on 7*’1 

just determined results iji*’1 

Step 3 Repeat Steps 1 and 2 until ’’CONDITION 1"

Note "CONDITION Г  indicates the number of time steps we have to execute until 

the steady solution'is obtained, normally, thi depends on the value of dt For instance, if dt 

= 0 1, the steady solution is attain in mostly 10 steps, but for dt = 0 001 we need almost 180 

time iterations to get it Fig 12a-2 show the evolution in time of the temperature function, 

for Ra -  500 , ф = 0 and dt = 0 001 Aftei 180 time steps, the temperature is stationary (in
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order to compare, see Fig 3)

T ’ er 26 tines Steps __

case

In the same conditions (but for Ra = 125), Fig I3a-c present the evolution m time of 

the Mi earn function
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Fig 12c The Temperature after 51 time steps

Fig 12d The Temperature after 131 time steps

i 1

Fig l i e  The  Tem peratur  • air.:i b O u m e a t e p s
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After 180 time steps, the stream function becomes steady (pig '1), as we can see from 

the following graphics

Fig 13d The Stream Function after 131 time steps

P8 I  a f t e r  140 t i n e  s t o p s  1

Fig 1 Je The  S u e a m  Function after 1 SO time steps

4.Condusions. The main goal of this research was to show that transputer system can 

efficiently solve laige computational problems with good performance We made study on a
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problem of interest in the computational fluid dynamics field, which generated a parabolic 

pioblem expressed by a PDE system In order to verify the results, we solve first, in serial 

and in parallel, the steady problem The outputs of this two different codes were almost the 

sama Based on the steady solution, we solved then the original problem, indicating by means 

of many graphics the evolution in time, up to the steady state, of the solution functions
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