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REZUMAT, - Algoritmi seriahi gl paraleli pentru rezolvares unel prableme de eonvesitate
in mediu paros. Scopul acostel lucrir este sl se facd o comparafte Intre algontmii seriali i
paralell, pentrs a ezelva o problemd dati in medw poros Sunt studiate in hicrare
performaniele algoritmilor pamaleli care au ca scop cregterea vitezei de caloul gi a efictentei lor

Abstract. The main purpose of this paper 12 10 make a comparisan between a serial
and a parallel algorithm for solving a given problem of convection in porous medium The
performances of the parallel algorithm, established by means of speed-up and efficiency, are

studied

NOMENCLATURE

gravitational acceleration

velocity of the flud

ptessure of fluid

temperature of fluid

permeabtlity of the saturated porous medium
thermal conductivity of porous medium

rate of internal heat generation of porous medium
Ru internal Rayleigh number

characteristic length of the porous medium

time

by oy T 0T

=~ o~

* "Babes-Bolyar" University, Facully of Mathematics and Computer Science, 3400 Cluj-Napoca, Romana
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uyv velocity components
Xy coordinates

Greek symbols

P density of flud

n viscosity of fluid

(pc), heat capacity of fhud

(po), heat capacity of porous medium
thermal expansion ceefficient

1 dimensjonless stream function

) angular coordinate

Superscripts

dimensional vanables
Subscripts

0 value at reference temperature and density

L Introduction. The problem under consideration s that of 2D steady laminar
convection 1n a porous layer bounded by an inchined squre box with four ngid walls of
constant temperature (figl) Heat 18
generated by a uniformily distributed
energy souices within the cavity The
porous layer iz 1sotropic, homogeneous

and saturated with an incompressibile

flud The heat geneiation creates a

Fig 1 Schemaue diagram of the enclosure

temperature gradient across the layer, and
thereby provides a driving mechanism for natural convection within the cavity

In the present study, the saturated porous medium is treated as a conttnuum, with the
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solid and fluid phases tn local thermodynamic equilibnum Also, the saturated flind and the
porous matnx are supposed incompressible and all physical properties of the medium, except

the fluid density are taken to be constant

2. Converning equations. The fluid motion obeys the equations Darcy-Oberbeck-
Boussineq For the case of volumeiric heating considered here, the goveming equations can

be written as

V-V =0, )

v’ =£:-(p’g-Vp’). @

(pe), ' ey (VT = kT 8 @)
o = poll- BT -1 @

The four equations may be written

ou’

d
=0, 1’
ax’ 7 )
/
u' = %(-p’gsmcp —%i)_’.] )
v = I; -p'gcos¢ - Of, ] @M
a1’ a’l’ a1’ ‘ a1 827"
(pe), +(pc) |u’ v/ =k +85', 3
¢ [ a’/ (p )f axl ayl ')xl? ayl'l ( )
o' = [1-B( - 1)) “)

Dertvaung (2°) after y” and (2") after x’ and taking 1nto account that the temperature function

has the form 7°(x’ y’), it i1s obtained

o' K or _ ap’
gsmn¢ f‘-———- T — | 5
Ay’ u[ Po ay’ ax’ay’] ©)
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v/ K 1o dT7 a*p’
—_— = | gCOS —_— 6
T 8cos¢ po f 5 a5y (6)
Subtracting (6) from (5) we get
du’ _av' _ K _ ol . 9T 8T
—— =g sind . ~cosd_—l @)
3y’ ax’  p Poﬁ[ ay’ ¢ ox' }
Using the dimensionless variables
' ! ), Ly’ ‘ / R(F -1,
(oM ;u=(Pc)fLu,yrn({)c)fv,x=;’f__,y=.¥_,7’= ( o)
{po),L* k k L L S'L?
(7) becomes
KL*8' o,
..a_ﬁ - _O_v_ = Pogﬁ(PC)f smnjz_a.z - costb.e}: )
dy ox pk? dy dx
LX)
Taking Ra = M , where v = pu/pj and a = {pc),/k as the Rayleigh number, (7°)
oy
becomes
on  ov aT ar
e = = Ra{sing - ~cosd —— 7"
dy Ox ( ¢ ay ¢ ax) 7
Analogously, using the dimensionless vanables, {17) and (3') become
o oy g )
ox  dy
AT w31, 8T Ly @)
i at ax dy
Equation (4") 18 ver}ﬁed by the streamfunction vy where
w=3¥ o -0% ®)

0 )7 ’ ox
So, imtroducing (8) 1n (4") and (7") we get the finally syatem of two equations with two

unknowns (the temperature function 7" and the stream function )

T, 0% 0T 93T oy,
] o1 dy dx ox dy

©)

We solve this system beetg sifuated in an enclosure with unit square section (I, = 1), eith the
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initial conditions
fy=19,=0 (10)
and the boundary conditions

T=9=0 forx=0 and 1, y=0 andl iy

Numerical results.
3.1. The Stendy Problem In the steady case, our system of equations is

b 3T _ oy o7

s Sl =Vif+1,
] dy ox  dx dy

(12)

ax

Vi = Ra(sm(p%z —cosd)ﬂ)
y

In order to obtain the solution for the system (12) with the conditions (10) and (11), we used
the Multigrid method [4] with 8 Gauss-Seidel smoother The space derivatives were
approximated in the following manner the first order derivatives with the Euler forward
formula and the second order derivatives with the centered differences, accordind to [6] The
discretized solution for the temperature and stieam functions was obtained working on an
equidistant gnid £, (where / indicates the level of gnd), defined in the following manner
Q, = {(1h,,jh)|0 51,15 N,k = UN,N, = 2}
Denoting 7, = T'(ih,,jh), y,, = Y (ih,h) for every 0 <4, y s N, I being one grid the

system becomes

1";_,.1_“’,‘, 1,0[‘]_1["_’4’“[‘/_1",!‘] T:,/ol_Tq = 111~IJ+II-1J+TI\/¢1+1'IJ-1_47!J

+1,
A, , ) ) B

13
‘P,.,I,*‘I’,-1J+‘l’,d.1+‘P1_,_1"'41p,., = R[I S|n¢ ]‘,Jvl-z‘] “COS¢ 7;'|‘/—7;J
h} A hl
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The solution of system (13) was abtained in two ways first, as the outp{xt of an senal

algorithm and second, as the output of a parallel algonthm,

3.1.1, The serial algorithm The algornthm which solves (13) by meana of up te seven
gnds (I = 7) contains the following steps
1 Bolve the fltst equation of system (13) using (10) and (11); results T new;
2 SBolve the second equation of system (13} using T new just determined, v, and ¥ at
* the boundary; results ¢ new;
"3 Solve the first equation using  new and (11); resutts 7 new;
4' Repeats Steps 3 and 4 until "CONDITION" {When‘ it fs aecomplish, the steady
solution is obtained) '
Note In our case, "CONDITION" means that the difference betw;:en two succesive
approximation is less that 10 In other words, 1f we denoted, ¢ g. F"“ anf F*” two succesive
approximations (where F represents 1 or ), "CONDiT!ON" will be . o
| Froow— frodf = 107
where |4| denotes the Euclidean norm [4]. Fig 2a ‘and b ina:llica‘te' the decreasing of ervor
during ten repetitions of Steps 3 and 4 (Fig 2b detailes more tllle efror at temperature
function) h
Concerming the results, our observations are the followings: the steady temperature };@s ‘
form like tn Fig 3 and is not influenced by Ra number or ¢ angle Also, the ge“neral shape
of the function (and this note is valable for the st-ream ﬁmction,‘too) does .not changre with

the numbers of grid points

16



SERIAL AND PARALLEL ALGORITHMS

§ | _ ' . Y Y T S—
erros at v ——
l\ ertos 4% PGL -
\
06l |
\
0.5 \\ |
0.4} |
01F |
02 |
0LF .
e
Q \ — P l ’
1 2 3 L} ] [] ! ) | )
Fig 2a. The er
LS M M . '
erzor 4t T ——
ecror at P8I we- ]
._\.
\ |
- e, teeerazencay
| z : ‘ . p ? ] ) 18
Fig.2b The ervor (detailed)

The stream function modifies according with the Rayleigh number and has the shape as in

Fig 4

The stream function modifies also according with the angle of enclosure (see Fig 5a-c)
3.1.2. The paralle] algorithm. The paralle! algorithm was implemented on the INMOS

Transputer System from Umiversity of Heidelberg, under PARIX operating system The main
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Fig.4 Stream function tn steady case with Ra=0 01 and ¢=0

ideea tn solving our problem 1s that of {3}, but with chages dus to the convective terms (first
equation) and the right-hand-side (second equation) from (12) We use a rectangular grid with
(N, - 1) % (&, - 1) unknowns, then each processor is assigned to & subset of unknowns (data
partitoning) In an one-dimensional arrengement of 1 processors caled a ring configuration
of length n, processor pp € {0, , -1} is assigned to the grid points {(15)] max (1,pN,w)

si=s(EtDhNw, 1 =<y s N} If the sidelength of the grid is not divisible by the number of
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processors, then some of them will be assigned more ;mknowns than others, generating an
unequal load balance, which 13 one source for loss of efficiency Taking into account the way
of disposing the grid pou.us on processors and denoting by x,,.(p) and x,_(p) the leftmost,
respectively the rightinost grid point column stored by processor p, each processor will
executes simultaneously the following steps
1 Computes the convective terms for the first equation of (12),
2 In case of an overlapping, sends values to the lefistde processor (if it exists) and
recerves values flom the nghside processor (if 1t exists),
3 For every j from 1 to n, do
3 1 Receives values from the lefiside processor (if it exists),
32 For every 1 from x,,(p) to x,_.(p) do
Computes Gauss-Seidel iterations,
33 Sends values to the rightside processor (if 1t exists)

After processing the previous steps, with step 3 repetead till the steady solution for
temperatute 13 obtained (we have noticed that it happened after 10 iterations), we proceed
analogously to solve the second ecuation of (12).

In order to compare the results obtained with the serial and the parallel code, we used,
like in [1] and [3], the speed-up, defined as

v TMonu

S = T (14)
where 7}, 15 the time needed for obtaiming the solution the with the serlal code and 7, 15
the time took by the paiallel code, using » processors, and the effictency which 1s defined

Ey = @) as)
n
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Table 1 presents the executton times (in sec ) for the senal and the parallel code, when a

different number-of processors was used So, we can nottce that the increasing of tume for the

senal code 1s deeply connected with the numbers of gnd points (on a coarse gnd, the

execution takes a few seconds, the execution takes a few seconds, on a fine grid it takes more

that an hour!) and the executton time decreases according with the number of processors used,

with the abservation that for the coarse grid 32 x 32 the situation 1s htke in Fig 7

Table 1 Execution thne

Nr proc/Nr pe 32x32 64x64 128x128 286%286 321x32)
1 16 6029 679188 276 725 1116 65 1671773
7 786234 192012 53 5307 167 708 240 032
1 7472 17 1044 435171 126 039 173 89
15 759328 16.6198 396177 107 014 141 814
19 740141 16 0309 36 4428 95,6118 128 211
23 749709 15 6065 33 5842 89 002 116 689

Fig 6 visuahses the information from Tabel 1, meanwhile Fig 7 indicates only an

unconcludent situation when more that one processors are used

Tuble 2 Speed-up

Nr proc/Nr pe 32x32 64x64 128x128 236x256 312x312
7 211 353 516 665 698
H 221 397 6135 885 95
15 218 408 695 1043 118
19 224 423 759 1167 1308
23 221 435 776 1254 143

The speed-up for all operations carried out on a fixed grid depends heavily on the

number of unknowns per processor, because a larger proportion of computing time 1s spent

on communication and the effects of unequal load distnibution are more pronounced if the

number of piid points per processor 18 sinall This means that a high speed-up can be
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achieved on the fine grids (assuming a large number of gnd points per processor on the fine

)

grids) like 1n Fig.9 whereas the spéed—up deteriorates on the coarser grids tsee Fig 10) Table

2 contains the values which sustained these observations and on which Fig 8 and 9 are based

[

Woiking with several processfom on a coarse gnid, the improving of speed-up 1s not

.
[
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concludent, as we can see from Fig 10 Next, accordind with (15), Table 3 contains the values

13
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which indicate how efficiency depends on the numbér of processors and on the number of

gnds points
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Table 3 Efficiency evolution

]

Nr proc/Nr pe 64%64 128x128 236x256 312x312
7 0350 073 095 099
11 036 057 080 086
15 027 046 069 078
19 022 034 06l 068
23 018 0133 054 062

Based on Table 3, Fig 11 shows the increasing of efficiency when finer gnds aie

used

3.2.The Unsteady Problem Solving the unsteady problem means to solve the system
mn the onginal form (9) In order to do this, we use the same finite difference formulas to
discretize the space denvatives, as in 31 The time denbative will be discretized with the
backward Euler formula ([6)] We denote by dr the timestep, which 1s considered fix, by 1
the Laplace operator and by G, and G, the gradient operators ([2]) Let 7* be the temperature

function at the moment of ttme 1, = kdt Then the first equation of system (9) can be wntien
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33 10 vy 139 %) M2 ERD)
Fig 11 Efficiency

m the following manner
Tl -k
dt
For a fixed time nterval {4,1,,,.], denoting with J the Identity operator and based on

GG T - GG T = L e (16)

(16), to solve the parabolic equation of gystem (9) means to solve the following bidiagonal

blok-stiuctured system

As=0b
where
L GG GG L 0
ot yoe o
—l ] 2l v b v i
. GG GG - L
g dar di e T
0 iy L1 G G GG - LT -
L dt a7r T
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. I,
7 L+ 17t
Jao dt

5= and b= 1
qrhktm
1 1

We observe that at every moment of time the relation which gives the temperature
function is fully implicit’and we have to solve, as the first equation of system (9), the

following , ‘ ' ‘

okl Eed kel guke) kel kel kvl kel Kot
1, +‘P:J.|“‘Pu T, -1, Wy %y La-T1, B

ar T, T T, 7

! !

RN IR AL T AT T
h? dr
Equation (17) together with the second equatton of system (13) will form the problem

an

we have to solve in this case As in the paragraph 3 1, the Muttignd method was used and
the ggneral sche;ne of solving s the following:
Step 1 Solve equation (17) at the moment of time /! based on 7* (where 7°, the imtial
tempetature 18 given), results #*'!
Step 2 Solve the second equation of system 9130 at the moment of time /*'' based on 7*"'
just determined results §*!
Step 3 Repeat Steps 1 and 2 unttl "CONDITION 1"
Note ”CONDITION 1" indicates the number of time steps we ha‘ve to execute unti)
the steady solutror 13 obtained, normally, thi depends on the value of df For instance, if o
=0 1, the steady solution 13 attain ;n mostly 10 steps, bult for dr = 0 001 we need almost 180

tme ierations to get 1t Fig 12a-2 show the evolution in time of the temperature function,

for Ra = 500, ¢ = 0 and d¢ = 0 001 After 180 time steps, the temperature is stationary (in
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order to compare, see Fig 3)
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Fig 12b The temperature atter 26 time steps
The following graphics show how the temperature function evoluates up to the steady

case

In the same conditions (but for Ra = 125), Fig 13a-¢ present the evolution in ttme of

the stieam function
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After 180 time steps, the stream function becomes steady (Fig 4), 8s we can see from
the following graphics
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Fig Lse The Stieam Function after 130 time sLeps

4.Conclusions. The main goul of this research was to show that transputer system can

efficiently solve large computational problems with good performance We made study on «
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problem of interest 1n the computational fluid dynamucs field, which generated a parabolic

pioblem expressed by a PDE system In order to venfy the results, we solve first, 1n senal

and 1n parallel, the steady problem The outputs of this two different codes were almaost the

sama Based on the steady solution, we solved then the onginal problem, indicating by means

of many graphics the evolution in time, up to the steady state, of the solution functions
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