
STUDIA UNIV BABEŞ-B0LYA1, MATHEMATIC A, XXXVIII, 3, 1993

AN IMPLEMENTATION SCHEME
FOR THE PARBEGIN-PAREND CONSTRUCTION

Florian Mircea BOJAN *nd Alexandru VANCEA*

Dedicated to Professor Emii Muntean on h U 60* enmveivary

Received February 25, 1994

AMS subject classification 6SQ45, 68Q1Ö

REZUMAT. - О schere il de Implementare pentru construcţia PARBEGIN-PAREND.
Lucrarea prezintă o schemă de translatare orientată spre sintaxă pentru construcţia PARBEGIN-
PAREND, schemă pe baza căreia se poate construi uşor un translator care generează cod în
limbajul C sub sistemul de operare UNIX.

The construction PARBEGIN P, | P2 | , | P„ PAREND [3] describes the

simultaneous execution of the processes Pl5 P2) ,Pn and their parallel evolution until all of

them terminate The n processes begin their execution at the same time and they function

synchronously

This control structure contains a single entry (PARBEGIN) and a single exit

(PAREND) and it is a static contiol structure, this meaning that all processing decisions are

taken at compile time

The fork-join instructions are frequently used in UNIX, these being implemented by

means of a. fork-wait mechanism These instructions piovide a direct mechanism for dynamic

piocess a cation and the possibility of multiple activations of the same process

The execution of a child process is made by calling the fork function which creates

■ "Uabc.yllolyai" University, b acuity o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

F M BOIAN, A VANCEA

the child process by duplicating the father’s image Fork returns in the father process the

child’s РШ and zero in the child.

The UNIX fork-wait mechanism [2] allows the synchronization of a father process

with its sons The wait function blocks the calling process until one o f its childs terminates

If at the moment of the call one of its childs it's already terminated the returning is

immediate The value returned by wait is an integer representing the terminated child’s РШ

p = wait (& status)

where status is an integer providing information about the process status.

The synchronization with a certain child (let’s say with the one having MENpidl) can ,

be done in the following way

while (wait(&status) != pull).

These functionalities suggest the possibility of expressing a PARBEG1N-PAREND

construction by means of the fork-wait mechanism

Let’s considei the independent processes P,, ,Pn as the subjects erf a PARBEGIN-

PAREND instruction, with the syntax

PARBEGIN P, PAR PAR P„ PAREND

(we introduced the word PAR instead of |, because the latter may be confused with the C

bitwise OR operation)

In these conditions the PARBEGIN entry point has its equivalent in the sequence

if (forkO) — 0) { P,; exit(O), },
else if (forkO) ■==()){ P2, exit(O), };
else

else if (forkO) ■== 0) { Pn> exit(0), },
else for (i- l, i<=n, i++) wait(&status),

8

AN IMPLEMENTATION SCHEME

Having these, we can express the PARBEGIN-PAREND construction through the

following syntax-directed translation scheme {!]

(1) <PARBEGIN_constr> PARBEGJN process <tail>,
if (forkO— 0) {process; cxk(0);} <tail>

(2) <tall> =■ PAR process <tail>,
else if (fork0“ 0) {process; eslt(i));} <tail>

(3) <tail> ' = PARENÖ,
for (i“ l; i<=n; 1++) wait{& status);

where we put the nonterminals between brackets

The process terminai designates one of the P,, P7, ,Pn processes

One of the issues that arise relatively to this scheme is how to handle nested

PARBEGIN-PAREND constructs The answer is simple once the deeper construct has been

identified and translated, it becomes a process

Production (1) will generate process P, The rest of the processes are generated by

production (2), which also increments the numbei of processes by one Production (3) uses

the number of processes for generating the PAREND waiting point correctly It’s easy to

write a translator for this mechanism

Let’s see a generation example with two processes

(<PARBEGIN_constr>,
^PARBLGIN^consti^) = >

(PARBEG1N process <Та|1>,
if (forkO^O) {process; exit(0);} < t a i l >) = >

(PARBEGIN process PAR process <tail>,
if (fork()=0) {process; exit(0);} else if (Ibrk0=e0)
{process; cxit(0);} <tail>) = >

9

F M BOIAN, A VANCEA

(PARPEGIN process PAR process PAREND ,
jf (fork()=Q) {process; px|t(Q);} else if (for(t()=0)
{process; exit(O);} else for (H{; f<=»5 i++) wait(Ästatus);)

R E F E R E N C E S

1 Aho A V, UUman J D - The Theory of Parsing, Translation and Compiling, Prentice Hall, 1973
2 Rochkind M J - Advanced Unix Programming, Prentice Hall, 1985
3 Tanenbaum A S - Modem Operating Systems, Prentice Hall, 1992

10

