STUDIA UNIV BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1993

AN IMPLEMENTATION SCHEME
FOR THE PARBEGIN-PAREND CONSTRUCTION

Florian Mircea BOIAN snd Alexandru VANCEA®
Dedioated to Proftssor Emil Muntean on hls 60 aaniversary

Received Fobruary 25, 1994
AMS subject classification 68045, 68010

REZUMAT, - O schemd de lmplemen'lare pentru construcila PARBEGIN-PAREND,

Lucmtea prezintl o schems de translatare onentatd spre sintaxi pentru construciis PARBEGIN-

PAREND, schemi pe baza ciireia se poate constnn ugor un translator care genereazil cod in

iimbajul C sub sistemul de operare UNIX.

The constructton PARBEGIN P, | P, |. | P, PAREND ({3] describes the
simultaneous execution of the processes P, P,, P, and their parallel evolytion until all of
them terminate The n processes begin their execution at the same time and they function’
synchronously

This control structure contains a single entry (PARBEGIN) and a single exit
(PAREND) and 1t 15 a static control structure, this meaning that all processing decisions are
taken at compile ttme

The fork-join instructions are frequently used 1n UNIX, these being implemented by
means of a fork-wait mechanmism These instructions provide a direct meéhm;ﬁm for dynamic

process creation and the possibility of multiple activations of the same process

The execution of a child process 1s made by calling the fork function which creates

" "Babes-Bolyat” Umversity, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romenia

FM BOIAN, A VANCEA

the child process by duplicating the father’s image Fork retums in the father process the
child’s PID and zero in the child.

The UNIX fork-wait mechanism [2] allows the synchronization of a father process
with Its sons The wait function blocks the calling process until one of its childs terminates
If at the moment of the call one of its childs it's already terminated the retuming is
immediate The value returned by wait is an integer representing the terminated child's PID

p = wait (&status}
where status is an integer providing informaticn about the process status.

The synchronization with a cenztain child (let’s say with the one having PID=pid1) can .

be done in the following way
whitle (wait(&status) = pid1),

These functionalities suggest the possibility of expressing a PARBEGIN-PAREND
construction by means of the fork-wait mechanism ‘

Let’s consider the independent processes P,, P, as the subjects of a PARBEGIN-
PAREND 1nstruction, with the syntax

PARBEGIN P,PAR PARP, PAREND
(we introduced the word PAR 1nstead of |, because the latter may be confused with the C
bitwise OR operation)

In these conditions the PARBEGIN entry point has its equtvalent in the sequence

if (fork()) == 0) { P,; exit(0), },

:;zz if (fork()) == 0) { P,, exat(0), };

else 1f (fork()) == 0) { P,, exit(0), },
else for (1=1, 1<=n, 1++) wart(&status),

AN IMPLEMENTATION SCHEME

Having these, we can express the PARBEGIN-PAREND construction through the
following syntax-directed translation scheme {1}

(1) <PARBEGIN_constr> .= PARBEGIN process <tail>,
if {(fork()==0) {process; exh(Q);} <tail>

(2) <tail> = PAR process <tail>,
elsz if (fork{)==0) {proccss; exit{D);} <all>

(3) <tail> - = PAREND,
for (i=1; i<=n i) walt{&siatus);

where we put the nontermuinalg between brackets

The process terminal designates one of the P,, P,, P, processes

One of the issues that anse retatively to this scheme is how to handle nested
PARBEGIN-PAREND censtructs The answer is simple once the deeper construct has been
1dentified and translated, it becomes a process

Production (1) will generate process P, Tho rest of the processes are generated by
production (2), which also increments the numbei of processes by one Production (3) uses
the number of processes for generating the PAREND waiting point_correctly It's easy to
write a translator for this mechanism |

Let’s see a generation example with two processes

(<PARBEGIN_constr>,
<PARBEGIN_constr>) ==

(PARBEGIN process <tail>, ’
if (fork()==0) {process; exit(0);} <tail>) ==

(PARBEGIN process PAR process <tail>,
if (fork()==0) {process; exit(0);} else if (fork()==0)
{process; exit(0);} <tail>) ==

FM BOIAN, A VANCEA

(PARBEGIN pracess PAR pracess PAREND |
if (fork()==0) {process; ex{t(0);} else if (fork()==0)
{process; exit(0);} else for (i=1j i<=ny i++) walt(&status);)

REFERENCES
I Aho AV, Ullman JD - Ths Theory of Parsing, Translation and Comptling, Prentice Hall, 1973

2 Rochkind M - Advanced Unlx Programming, Prentice Hall, 1985
3 Tancnbaum A 8 - Modem Operating Systems, Prentice Hall, 1992

0]

