A Compression Method for 3D Scenes

Radu-Lucian Lupsa
May 27, 2001

Abstract

The article presents a method for compressing the representations
of 3D scenes. It is a non-lossy compression, based on a variation of the
Huffman algorithm and some ideeas taken from the LZ77 compression
method. The method described has been succesfuly implemented and
used in a commercial application.

1 Introduction

3D graphics applications need a representation of 3D scenes they work
on, for storing or transmitting the information about the objects. A
3D representation must meet the following requirements:

e it must be able to represent the 3D scene with enough accuracy
for the application,

e one must be able to convert it fast enough to the representation
required by the 3D engine or by other parts of the aplication,

e it must be space-efficient.

There are two basic methods for describing 3D objects:
1. as geometric bodies

2. by voxels

As the second method leads to huge memory requirements, we will
use the first one.

In order to describe the bounding surface of a 3D body, two ele-
ments must be specified:

1. the shape of that surface



2. the optical properties of the surface

A body surface can be approximated by an union of elements (or
patches), each patch being a (finite) fragment of a plane, of a Bezier
surface, or of a B-spline surface.

The relevant optical properties of the patches are:

1. the color (or the texture of that surface)
2. the reflection model
3. the refraction model

The last two properties are omitted from the less elaborated repre-
sentations, as they can be used for rendering by very costly algorithms
only (such as ray-tracing).

If a patch has only one color, we can represent its components; if
there is a texture, we represent thar texture as a 2D image (using a
normal 2D image representation format) and that image is mapped
onto the patch.

Having the patches planar (that is, each patch is a polygon, and
the body is therefore a polyhedron) simplifies the computations but
the edges are far too visible in the rendering. There are rendering
methods for smoothing the rendering; the best known are the Gouraud
or Phong methods [1] [7]. Any of those requires an approximation for
the (real) normal vector in each of the vertices. However, computing
the normals from the patches corners only is peculiar because some
of the edges between the patches are to be smoothed, and others are
real edges. For that reason, some of the 3D representation formats
explicitly represent the normal vector of each patch in each corner.

2 Standard 3D formats

Several 3D formats (for instance, .obj (for a front end for OpenGL)
and .3ds (3D Studio) are constructed the following way

First of all, we have a list of 3D points, a list of 3D vectors, a list of
2D points, and a list of 2D images (the latter being represented using
a standard 2D format — for instance, gif, jpeg, tiff, and may even be
stored in different files). Next we have the description of the facets
(patches). Each facet description contains:

e the vertices list



e the list of the normals in each vertex (in case the face is not
planar so the rendering should be smoothed)

e the texturing image

e the 2D points on the texturing image, corresponding to the facet
vertices

Each of these pieces of information are in fact the index, in the list
at the beginning of the file, of the corresponding 3D point, 3D vector,
2D image, or, respectively, 2D point.

3 Compressing the 3D scene

The methods described above still contain a lot of redondancy. Elim-
inating this redondancy would lead to a better compression.

In the following we will start from a .obj-like 3D format and will
try to compress it.

The first source of redondancy consists in the fact that a typical
application will output the vertices and vectors in approximatively
the same order they are used by the facet descriptions. This sugests
us to write in the compressed file the list of differences between the
succesive vertex indices of each face, and to compress those differences
using the Huffman algorithm [4] [5], with some modifications inspired
from other compression techniques.

The first change will be to make an adaptative Huffman algorithm.
In the original algorithm, the coding table is computed in a first pass
over the input file and written into the compressed file; then the in-
formation is encoded using that table.

The modified algorithm will start with a fixed encoding table. As
it sees the input data, it computes the frequency table. At some pre-
defined moments (for instance, when the number of already-processed
symbols is a power of 2), the encoding table is regenerated based onto
the frequency table.

The decoder starts with the fixed encoding table. Relying on it, the
decoder can read and decode the first symbols, till the first encoding
table recomputing. At that time, the decoder will have exactly the
same frequency table as the encoder, and therefore it will generate
the same encoding table, so it will be able to continue the decoding
process.

The second modification concerns the handling of rarely-used sym-
bols. As we saw earlier in this section, the input symbols for the



Huffman compression are the differences between the indices of two
succesive points on a facet. These differences, if the indices are 32-
bit integers, lay in the interval —23! + 1..231 — 1, but values above a
few hundreds are rare. For that matter, statistical data are irrelevant
for predicting future occurences of those values. So, we will slightly
change the Huffman algorithm the following way: for the Huffman
algorithm, we will consider all values outside the interval, let’s say,
—127..127 as being equal. this way, the Huffman part sees 256 distinct
symbols, one for each number in the interval —127..127 and one for all
the other numbers. For the numbers outside the interval —127..127
we output the Huffman code of that symbol plus 32 bits representing
the actual value.

Sometimes we have a second source of redondancy in the point and
vector components. Let’s take the sequence of the z coordinates of
the points. If there are points grouped in planes orthogonal to the Ox
axis, we get repeating values in that sequence. So, instead of coding
the actual values, we will code the distance from the last appearance
of that value.

4 Conclusions

The method described in the previous section was implemented by the
author and is used in a commercial application for sending descriptions
of 3D scenes over the Internet. The scenes are output by a CAD-
like program and are between 300kB and 5MB in o0bj format. A
simple conversion from text to binary reduces the size to one half,
and a zip-like program reduces it to 1/4..1/5 of the original size. The
compression ratio aquired by the program using the method described
above is 1/8..1/10.

References

[1] P. BURGER, D. GILLES. Interactive Computer Graphics.
Addison-Wesley Publishing Company, 1990

[2] F. PREPARATA, M. SHAMOS. Computational Geometry.
Springer-Verlag, 1988

[3] R. GONZALES, R. WooDS. Digital Image Processing. Addison-
Wesley Publishing Company, 1993



[4]
[5]
[6]

[7]
8]

[9]

AL. SPATARU. Teoria transmisiunii informatiei — Information
Transmission Theory. Editura Tehnica, Bucuresti 1965

X. MARsAuULT. Compression et cryptage de l'information — In-
formation Compression and Encrypting.

R. LUupPsA. A Method for Compressing Static Images Using Spline
Functions. Proceedings of the “Tiberiu Popoviciu” Itinerant Sem-
inar of Functional Equations, Approximation and Convexity,
Cluj-Napoca, May 21-25, 1996

C. vAN OVERVELD, B. WYVILL Phong Normal Interpolation Re-
vised. ACM Transactions on Graphics, oct. 1997, vol. 16, no. 4

Hee CHEOL YUN, BRIAN GUENTER. Lossless Compression of
Computer-Generated Animation Frames ACM Transactions on
Graphics, Oct. 1997, vol. 16, no. 4

M. LounsBERY, T. D. DEROSE, J. WARREN. Multiresolution
Analysis for Surfaces of Arbitrary Topological Type. ACM Trans-
actions of Graphics, Jan. 1997, vol. 16, no. 1



