
1/43

Discrete Event

Simulation

C6 ~ 19.04.2018

Curs 6

2/43

In discrete-event simulation, the operation of a system is represented as a
chronological sequence of events. Each event occurs at an instant in time and
marks a change of state in the system [1]. For example, if an elevator is simulated,
an event could be "level 6 button pressed", with the resulting system state of "lift
moving" and eventually (unless one chooses to simulate the failure of the lift) "lift
at level 6".

A common exercise in learning how to build discrete-event simulations is to
model a queue, such as customers arriving at a bank to be served by a teller. In
this example, the system entities are CUSTOMER-QUEUE and TELLERS. The
system events are CUSTOMER-ARRIVAL and CUSTOMER-DEPARTURE.
(The event of TELLER-BEGINS-SERVICE can be part of the logic of the arrival
and departure events.) The system states, which are changed by these events, are
NUMBER-OF-CUSTOMERS-IN-THE-QUEUE (an integer from 0 to n) and
TELLER-STATUS (busy or idle). The random variables that need to be
characterized to model this system stochastically are CUSTOMER-
INTERARRIVAL-TIME and TELLER-SERVICE-TIME.

A number of mechanisms have been proposed for carrying out discrete-event
simulation, among them are the event-based, activity-based, process-based and
three-phase approaches (Pidd, 1998). The three-phase approach is used by a
number of commercial simulation software packages, but from the user's point of
view, the specifics of the underlying simulation method are generally hidden.

3/43

In addition to the representation of system state variables and the logic of what
happens when system events occur, discrete event simulations include the
following:

• Clock

•The simulation must keep track of the current simulation time, in whatever
measurement units are suitable for the system being modeled. In discrete-event
simulations, as opposed to real time simulations, time ‘hops’ because events are
instantaneous – the clock skips to the next event start time as the simulation
proceeds.

4/43

 Events List

•The simulation maintains at least one list of simulation events. This is sometimes

called the pending event set because it lists events that are pending as a result of

previously simulated event but have yet to be simulated themselves. An event is

described by the time at which it occurs and a type, indicating the code that will

be used to simulate that event. It is common for the event code to be

parameterized, in which case, the event description also contains parameters to the

event code.

•When events are instantaneous, activities that extend over time are modeled as

sequences of events. Some simulation frameworks allow the time of an event to

be specified as an interval, giving the start time and the end time of each event.

5/43

 Events List …

•Single-threaded simulation engines based on instantaneous events have just one
current event. In contrast, multi-threaded simulation engines and simulation
engines supporting an interval-based event model may have multiple current
events. In both cases, there are significant problems with synchronization between
current events.

•The pending event set is typically organized as a priority queue, sorted by event
time.[2] That is, regardless of the order in which events are added to the event set,
they are removed in strictly chronological order. Several general-purpose priority
queue algorithms have proven effective for discrete-event simulation,[3] most
notably, the splay tree. More recent alternatives include skip lists and calendar
queues.[4]

•Typically, events are scheduled dynamically as the simulation proceeds. For
example, in the bank example noted above, the event CUSTOMER-ARRIVAL at
time t would, if the CUSTOMER_QUEUE was empty and TELLER was idle,
include the creation of the subsequent event CUSTOMER-DEPARTURE to occur
at time t+s, where s is a number generated from the SERVICE-TIME distribution.

6/43

 Random-Number Generators

•The simulation needs to generate random variables of various kinds, depending on
the system model. This is accomplished by one or more Pseudorandom number
generators. The use of pseudorandom numbers as opposed to true random
numbers is a benefit should a simulation need a rerun with exactly the same
behavior.

•One of the problems with the random number distributions used in discrete-event
simulation is that the steady-state distributions of event times may not be known
in advance. As a result, the initial set of events placed into the pending event set
will not have arrival times representative of the steady-state distribution. This
problem is typically solved by bootstrapping the simulation model. Only a limited
effort is made to assign realistic times to the initial set of pending events. These
events, however, schedule additional events, and with time, the distribution of
event times approaches its steady state. This is called bootstrapping the simulation
model. In gathering statistics from the running model, it is important to either
disregard events that occur before the steady state is reached or to run the
simulation for long enough that the bootstrapping behavior is overwhelmed by
steady-state behavior. (This use of the term bootstrapping can be contrasted with
its use in both statistics and computing.)

7/43

 Statistics

•The simulation typically keeps track of the system's statistics, which quantify

the aspects of interest. In the bank example, it is of interest to track the mean

waiting times.

•Because events are bootstrapped, theoretically a discrete-event simulation could

run forever. So the simulation designer must decide when the simulation will

end. Typical choices are “at time t” or “after processing n number of events” or,

more generally, “when statistical measure X reaches the value x”.

• Ending Condition

8/43

The main loop of a discrete-event simulation is something like this:

• Start
 Initialize Ending Condition to FALSE.

 Initialize system state variables.

 Initialize Clock (usually starts at simulation time zero).

 Schedule an initial event (i.e., put some initial event into the Events List).

• “Do loop” or “While loop”

While (Ending Condition is FALSE) then do the following:

 Set clock to next event time.

 Do next event and remove from the Events List.

 Update statistics.

• End
 Generate statistical report.

9/43

1. Stewart Robinson (2004). Simulation - The practice of model development and use. Wiley.

2. Douglas W. Jones, ed. Implementations of Time, Proceedings of the 18th Winter Simulation
Conference, 1986.

3. Douglas W. Jones, Empirical Comparison of Priority Queue and Event Set Implementations,
Communications of the ACM, 29, April 1986, pages 300-311.

4. Kah Leong Tan and Li-Jin Thng, SNOOPy Calendar Queue, Proceedings of the 32nd Winter
Simulation Conference, 2000

5. Byrne, James; Heavey, Cathal; Byrne, P.J. (2006). "SIMCT: An Application of Web Based
Simulation.". Proceedings of the 2006 Operational Research Society (UK) 3rd Simulation Workshop
(SW06), 28-29th March, Royal Leamington Spa, UK..

Further reading
 Michael Pidd (1998). Computer simulation in management science - fourth edition. Wiley.

 Jerry Banks, John Carson, Barry Nelson and David Nicol (2005). Discrete-event system simulation -
fourth edition. Pearson.

 Averill M. Law and W. David Kelton (2000). Simulation modeling and analysis - third edition.
McGraw-Hill.

 Bernard P. Zeigler, Herbert Praehofer and Tag Gon Kim (2000). Theory of modeling and simulation:
Integrating discrete event and continuous complex dynamic systems - second edition. Academic Press.

 Roger W. McHaney (1991). Computer Simulation: A Practical Perspective. Academic Press.

 William Delaney, Erminia Vaccari (1988). Dynamic Models and Discrete Event Simulation. Dekker
INC.

10/43

1. Udo W. Pooch, James A. Wall, Discrete event simulation: a practical approach.

2. George S. Fishman, Discrete-event simulation: modeling, programming, and analysis.

3. Jerry Banks, Handbook of simulation: principles, methodology, advances, applications,

and Practice.

4. Paul Bratley, Bennett L. Fox, Linus E. Schrage, A guide to simulation.

5. Peter A. W. Lewis, Endel John Orav, Simulation methodology for statisticians,

operations analysts, and engineers.

11/43

1. Steve Park and Larry Leemis, College of William and Mary, Discrete-Event

Simulation: A First Course - PowerPoint Presentation.

www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt .

2. A. Udaya Shankar, Discrete-Event Simulation - Department of Computer

Science, University of MarylandCollege Park, Maryland 20742January, 1991.

http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps.

3. Thomas J. Schriber, Daniel T. Brunner, INSIDE DISCRETE-EVENT

SIMULATION SOFTWARE:HOW IT WORKS AND WHY IT MATTERS,

Proceedings of the 1997 Winter Simulation Conference, ed. S. Andradóttir, K. J.

Healy, D. H. Withers, and B. L. Nelson.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2215&rep=rep1&type=pdf

4. Bikram Sharda, Scott J. Bury, A DISCRETE EVENT SIMULATION MODEL

FOR RELIABILITY MODELING OF A CHEMICAL PLANT , Proceedings of

the 2008 Winter Simulation Conference.

http://www.extendsim.com/downloads/papers/sols_papers_chemPlant.pdf

http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt
http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt
http://www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt
http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps
http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps
http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps
http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps
http://www.cs.umd.edu/~shankar/711-S98/DE-simulation.ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.2215&rep=rep1&type=pdf
http://www.extendsim.com/downloads/papers/sols_papers_chemPlant.pdf

12/43

What do we mean by "Model Validation"?

There is no way in which we can PROVE that

our simulator (model) matches reality - all we

could prove is that it does NOT.

What are the stages that we go through in order

to determine that the simulator is - as far as we

can tell - acceptable?

Model Validation

13/43

Design Phase

This consists of using

A) our intuitive and mathematical understanding
of the process we are trying to model;

B) our experience in designing computer models
of reality;

C) techniques of software engineering developed
to aid the transition from A) and B) to a codable
specification. These might simply include modular
decomposition and top-down design, or more
sophisticated specification languages and
environments.

14/43

Validation of Design

a) Conceptual Phase: determine the logical flow of the

system, and formulate the relationships between the
various subsystems. Identify the factors likely to influence
the performance of the model and decide how you will
track them.

Validation by review: have a third party examine the
design in detail.

Validation by tracing from output to input: this is just
the opposite from the usual direction, and might indicate
gaps and misunderstandings.

15/43

Validation of Design

b) Implementation Phase: selecting procedures for the

model; coding the model; using the model.

Validation by checkpoints and milestones: at the end of

the model design phase; at the end of the implementation

of each module; at the integration of two or more modules.

The latter two require that individual module tests have

been identified and designed, and that the flow of

information between modules can be examined in detail.

This blends into the next phase...

16/43

Verification Phase

Does the system that has been coded meet the
specifications?

At this point, the design might well be "wrong",
and this phase is not meant to catch design
mistakes. It should catch any deviations of the
actual implementation from the design
specifications.

How: code walk-throughs, careful tracing of
module interfaces and module dependencies, tests
that were designed at specification time for this
purpose.

17/43

 Validation Phase
At this point we have a running program that we

believe satisfies the design specifications and -
because the design was achieved by people with
experience in designing such simulation models
using some design validation methods - is probably
close enough to reality so that its inputs and outputs
can be meaningfully compared with those of the "real
thing".

We want to establish that the model is an
"adequately accurate" representation of the reality we
are interesting in modeling. If this cannot be
established, our model will be useless for both
explanation and prediction - both of which are goals
of "good models".

 What does Validation Consist of?

A) Comparison of results of simulation model
with historical data;

B) Use of the simulation model to predict
behavior of the real system, and compare
prediction with actual behavior.

Both of these methods are standard when it
comes to validating a physical theory: the
theory must not contradict any "well-known
facts"; it must provide new predictions (not
available through established theory) that are
subject to falsification by experiment.

 How do you determine that the

system has been validated?

Even in Physics, theoretical predictions usually do not

match experimental results exactly.

Solution: run statistical tests, until you can

conclude, from statistical considerations, that the

probability of some competing explanation being true

is smaller than a preassigned quantity.

This means that the system must be designed for

multiple controlled observations and the collection of

all appropriate data (= measures of performance).

Simulation Run:

This is an uninterrupted recording of the simulation
system's performance given a specified combination
of controllable variables: range of values, values of
some parameter, queue arrival distributions, etc.

Simulation Duplication:

This is a recording of the simulation system's
performance given the same or replicated conditions
and/or combinations, but with different random
variates.

This is also related to "regression testing": a correct
model (or piece of software) must satisfy certain
input/output relations. Any time the software is
modified it must pass all the old tests; if it is
"improved", it must pass all the old tests plus
appropriate new ones.

Simulation Observation:

This is a simulation run or a segment of a simulation

run that is sufficient for estimating the value of each of

the performance measures.

Steady State or Stable State:

This state of a simulation system is achieved when
successive system performance measurements are
statistically indistinguishable - the second one provides
no new information about the future behavior of the
system.

Steady State corresponds, for example, to the constant
solution of a differential equation. A Stable Steady
State corresponds to a stable constant solution or, more
likely, to an asymptotically stable one.

How do we identify a steady state of

some performance measure?

By deciding on a "small" positive value, say e, and

deciding that we have reached steady state when,

over a "long" period of time, the performance measure

(or some appropriate function of it) has remained

within ±e of some value.

"small" and "long" are terms that are meaningful

only in the context of the particular model being

studied.

It may also be possible to actually predict, from the

model, the constant value.

Transient State:

The time (and set of performance measurements) that
correspond to the initial conditions becoming insignificant to
the future behavior of the system.

Some systems may have no Steady State, so that no
termination for a Transient State could be identified.

Most simulations appear to be interested in examining the
steady state behavior. This is appropriate under some
conditions - and in the case where modeling based on
discrete queueing theory is being used: most such queueing
theory results depend on our being able to obtain steady
state predictions.

There are other situations where the transient state may
be the most important, since that is where system queues
(or buffers) might be overloaded. The "usual solution" is to
provide enough system capacity to handle "most" transients.
This requires that we find good prediction for the size of all
"transients" in the measures of performance.

A further problem with transients is that the actual
behavior depends on the exact initial conditions of the
system.

As it turns out, some systems may have very complex
initial conditions - possibly extending over long periods of
time.

Some systems may exhibit very complex behavior - so that
some initial conditions will tend to one steady state (or, more
generally, an "attractor" which may exhibit a very complex
geometry) while others will lead to another all without
varying the parameters of the system. These are so-called
bistable (or multistable) systems.

Studying transient behavior will thus require a large
number of runs; a possibly complex geometric analysis of
the "phase-space" of the system; the ability to describe and
set arbitrary initial conditions for the system; and
sophisticated statistical techniques to determine means,
variances and other statistics of the relevant performance
measures.

If one wishes to avoid dealing with transient behavior,

one must be able to specify initial conditions near steady

state: this may require being able to "load the model"

with a specific history.

In simple cases this might just mean deferring data

collection for a period of time; in others it might mean

that consistent performance measure values have to be

synthesized over a long enough time period and that

these measures have to be "inserted" into the behavior

of the model.

What is Validation?

How accurately is the simulation model representing

the actual physical system being simulated?

Several terms have been introduced, corresponding

to techniques that help in answering this question.

One must always remember that there is no way to

prove that the model is a faithful reproduction of

reality.

All we can prove is that it is not. But we might be

able to set up enough different experiments so that

passing of all the experimental tests will allow us to

conclude that the probability the model is inaccurate

is very small.

Internal Validity.

This is affected by variability due to internal

"noise" effects: stochastic models with high

variance due to internal processing will provide

outputs whose analysis may not be very useful: are

the changes in the outputs due to the model or to

incidentals of the implementation? (e.g., numerical

approximation errors due to the presence of

singularities in some of the functions used).

Face Validity.

Compare model output results with actual output

results of the real system.

Variable-Parameter Validity.

Compare sensitivity to small changes in internal

parameters or initial values with historical data.

Compare model dependencies with historical data,

looking for the same dependencies.

Event or Time-Series Validity.

Does the model predict observable events, event

patterns and variations in output variables?

Some Ideas about Data Collection

(Sampling).

The text discusses ways to determine whether

the data collected are correlated or not. One

would like to obtain stochastically independent

data sets, or one would like, at least, to determine

the level of correlation between data sets.

This is where the covariance - or the coefficient

of correlation - comes in, since it allows us to

determine something about dependence.

Repetition: how many runs and how long should they
be?

Blocking: how do we avoid the contributions of
transient periods (this assumes we are interested in
steady-state behavior).

We can attempt to determine whether two runs are
independent in the following way.

Let the xi denote individual observations, n the number

of observations. Let the average estimated performance
measure be





n

i

i

n

x

1

̂

If each if the xi is independent, the confidence of this

performance measure is just the estimate of the
variance

ˆ 
2


 2

n

If {xi; i = 1,…,n/2}, {yi; i = 1,…,n/2} are two sets of

observations, we can try to find out whether they are
correlated. We observe that the mean of the union of
the two sets can be written as







2/

1 22/

1 n

i

ii yx

n


The variance can be written as

Where a is the replication correlation coefficient. The

formula can be derived through the following

observations:

ˆ 
2

 2

n
1 a 




































2
,

2
2

2222

YX
Cov

Y
Var

X
Var

YX
Var

 Where

and a is the coefficient of correlation. Using this in the

original formula, and under the assumption that the

two samples come from the same population (equal

population variance):

Cov X,Y  E X,Y  XY aX Y

Var
X

2

Y

2








1

4
Var X  

1

4
Var Y  2a X

2

 Y

2


1

4
 2 

1

4
 2  2a

1

2








1

2







 2 2 1a 

If two runs (replications) are independent, then a=0,

since they must behave exactly as one run of twice the

length (i.e. n). We now have a way to test whether two

successive runs are correlated or not.

ˆ 
2


1

n
2

 X

2

Y

2

2










1

n
2

2
2

1 a 
 2

n
1a 

Since the variance of the means is given by the

population variance divided by sample size, we have:

To see what negatively correlated runs can do,

assume we have obtained the following set of

observations:

X = [.3211106933, .3436330737, .4742561436, .5584587190, .7467538305,

.3206222209e-1, .7229741218, .6043056139, .7455800374, .2598119527,

.3100754872, .7971794905, .3916959416e-1, .8843057167e-1, .9604988341,

.8129204579, .4537470195, .6440313953, .9206249473, .9510535301]

from a uniform random number generator. The

"complementary" set (1 - r, for each r in the first

set) is

Y = [.6788893067, .6563669263, .5257438564, .4415412810, .2532461695,

.9679377779, .2770258782, .3956943861, .2544199626, .7401880473,

.6899245128, .2028205095, .9608304058, .9115694283, .395011659e-1,

.1870795421, .5462529805, .3559686047, .793750527e-1, .489464699e-1]

The coefficient of correlation is given by Maple V as

a = describe[covariance](X,Y)/sqrt(describe[variance](X)*

describe[variance](Y)) = -.9999999996

Very close to -1. What is the actual variance for the
joint population? The formula we use must lead us to a
run of 20 items where each item is the mean of the
corresponding two items in the separate populations.

But (xi + yi)/2 = (ri + (1 - ri))/2 = 1/2,  = 1/2 and the
sample variance is given by

xi  yi / 2   
2

n/ 21i1

n / 2

  0

Negative correlation leads to a smaller variance than
independence, while positive correlation leads to a
larger variance.

If we want to estimate means and variances of
different runs - i.e. runs with different conditions. We
have estimated sample means and variances to be

ˆ 1, ˆ 2 , ˆ 1
2
, ˆ 2

2

The mean and variance of the difference are

ˆ D  ˆ 1  ˆ 1, ˆ D
2
 ˆ 1

2
 ˆ 2

2
 2a ˆ 1 ˆ 2

Where a is the usual coefficient of correlation. The
difference in the formula is due to the difference for
the statistics - rather than the sum. It is immediate to
see that positively correlated runs will diminish the
variance of the difference. To check whether
 positively correlated runs will make the variance
small.

ˆ D  0

One of the problems is the elimination of transient

information. In this case it will be advisable to have

long runs, in which the early part has been ignored.

One method that helps find out a reasonable length

for the run involves computation of the autocorrelation

function. This is defined as:

 
   

2


a


 tt xxE

Where xt is an observation at time t;  is the mean of

the observations and 2 is their variance.

Note that = 0, gives that a(0) = 1.

The sample mean is computed in the usual manner,

while the variance of the sample means is given by the

formula

ˆ 
2

 2

n
1 2 1



n






a  

 1

n 1








.

Notice that a  0 for all  > 0 implies that the

observations are independent - and this is reflected in

the formula. Correlated observations will thus enlarge

the variance of the sample means.

The Blocking Method

This simply consists of

a) Wait until transients are over;

b) collect successive blocks of observations of length k

is such a way that the "block means" satisfy

independence conditions.

c) Use the block means as “observations” to compute

the sample mean and the variance of the sample

means.

The independence conditions can be checked via any

of the methods already mentioned.

40/43

În caz discret-simulare, operarea unui sistem este reprezentat ca o succesiune
cronologică a evenimentelor. Fiecare eveniment are loc la un moment în timp şi
marchează o schimbare de stare în cadrul sistemului [1]. De exemplu, dacă un lift
este simulat, un eveniment ar putea fi "nivelul 6 apasat", cu starea sistemului
rezultat de "ridicare în mişcare" şi în cele din urmă (cu excepţia cazului alege
pentru a simula un eşec a ascensorului) "ridica la nivelul 6" este. Un exerciţiu
comun în procesul de învăţare cum să-eveniment discret simulări pentru a construi
modelul de o coadă, cum ar fi clienţii care sosesc la o bancă să fie deservită de un
casier. În acest exemplu, entităţile sistemului sunt CLIENŢI-Coada şi observatori.
Evenimentele din sistem sunt client sosire şi client plecare. (Caz de povestitor-
incepe-serviciu poate fi o parte a logicii de sosire şi plecare evenimente) Sistemul
de state, care sunt modificate de către aceste evenimente,. Sunt NUMĂRUL DE
CLIENTI-IN-coada-(un număr întreg de la de la 0 la n) şi Teller-STARE (ocupat
sau inactiv).

Variabile aleatoare care trebuie să fie caracterizate de modelul de acest sistem
stochastic sunt client INTERARRIVAL-time şi Teller-SERVICE-TIME. Un
număr de mecanisme au fost propuse pentru efectuarea de simulare discret-
eveniment, printre ele sunt bazate pe evenimente, activitate bazate pe proces şi
bazate pe trei faze abordări (Pidd, 1998). Abordare în trei faze este utilizat de către
un număr de pachete de software comercial de simulare, dar din punctul de vedere
al utilizatorului, specificul metodei de simulare subiacente sunt, în general,
ascunse.

41/43

În plus faţă de reprezentarea variabilelor de stare sistem şi logică a ceea ce se
întâmplă atunci când au loc evenimente de sistem, simularile cu evenimente
discrete includ următoarele:

• Ceasul

•Simularea trebuie să ţină evidenţa timpului de simulare actual, în orice unităţi de
măsură sunt adecvate pentru sistemul modelat. În simulările cu evenimente
discrete, spre deosebire de simulările în timp real, timpul sare, deoarece
evenimentele sunt instantanee - ceasul sare la urmatorul eveniment.

42/43

 Lista de evenimente

•Simularea menţine cel puţin o lista de evenimente de simulare. Acesta este numita
the pending event set, deoarece listea de evenimente care sunt în aşteptarea
rezultatelor evenimentelor anterioare, dar nu au fost încă simulate. Un eveniment
este descris de la momentul la care apare aceasta, şi un tip, pentru indicarea
codului, care vor fi utilizate pentru a simula acest eveniment. Se obisnuieste ca
codul de eveniment să fie parametrizat, caz în care, descrierea evenimentului
conţine, de asemenea, parametrii de la codul evenimentului. Atunci când
evenimentele sunt instantanee, activităţile care se extind în timp sunt modelate ca
secvenţe de evenimente. Unele cadre de simulare permite timpul unui eveniment
să fie specificat ca un interval: ora de începere şi ora de încheiere a fiecărui
eveniment.

•Single threaded simulation engines based on instantaneous events have just one
current event. In contrast, multi-threaded simulation engines and simulation
engines supporting an interval-based event model may have multiple current
events. În ambele cazuri, există probleme semnificative cu sincronizare între
evenimentele curente..

43/43

 Random-Number Generators

•Simularea are nevoie pentru a genera variabile aleatoare de diferite feluri, în
funcţie de modelul sistemului. Aceasta se realizează prin una sau mai multe
generatoare de numărul pseudoaleatoare. Utilizarea de numere pseudoaleatoare,
spre deosebire de numere aleatoare adevarate este un beneficiu daca simularea are
nevoie de o reluare cu exact acelaşi comportament. Una din problemele cu
distribuţiile de numere aleatorii utilizat la eveniment de simulare discretă este că
the steady-state distributions of event times nu pot fi cunoscute în avans. Ca
urmare, setul initial de evenimente plasate în setul în aşteptare a evenimentului nu
vor avea sosire reprezentant ori de distribuţie la starea de echilibru. Această
problemă este rezolvată de obicei, de procesul de bootstrap modelul de simulare.
Numai un efort limitat se face pentru a atribui ori realist să setul initial de
evenimente în curs. Aceste evenimente, însă, evenimente programul suplimentare,
şi în timp, distribuirea ori eveniment abordări starea sa de echilibru. Aceasta se
numeşte procesul de bootstrap modelul de simulare.

• În colectarea de statistici de la modelul de funcţionare, este important să nu ţină
seama, fie evenimentele care au loc înainte ca statul echilibru este atins sau pentru
a rula de simulare pentru suficient de lungi pentru ca procesul de bootstrap
comportament este copleşit de comportament echilibru-stat.

