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In discrete-event simulation, the operation of a system is represented as a 
chronological sequence of events. Each event occurs at an instant in time and 
marks a change of state in the system [1]. For example, if an elevator is simulated, 
an event could be "level 6 button pressed", with the resulting system state of "lift 
moving" and eventually (unless one chooses to simulate the failure of the lift) "lift 
at level 6". 

A common exercise in learning how to build discrete-event simulations is to 
model a queue, such as customers arriving at a bank to be served by a teller. In 
this example, the system entities are CUSTOMER-QUEUE and TELLERS. The 
system events are CUSTOMER-ARRIVAL and CUSTOMER-DEPARTURE. 
(The event of TELLER-BEGINS-SERVICE can be part of the logic of the arrival 
and departure events.) The system states, which are changed by these events, are 
NUMBER-OF-CUSTOMERS-IN-THE-QUEUE (an integer from 0 to n) and 
TELLER-STATUS (busy or idle). The random variables that need to be 
characterized to model this system stochastically are CUSTOMER-
INTERARRIVAL-TIME and TELLER-SERVICE-TIME. 

A number of mechanisms have been proposed for carrying out discrete-event 
simulation, among them are the event-based, activity-based, process-based and 
three-phase approaches (Pidd, 1998). The three-phase approach is used by a 
number of commercial simulation software packages, but from the user's point of 
view, the specifics of the underlying simulation method are generally hidden. 
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In addition to the representation of system state variables and the logic of what 
happens when system events occur, discrete event simulations include the 
following: 

• Clock 

•The simulation must keep track of the current simulation time, in whatever 
measurement units are suitable for the system being modeled. In discrete-event 
simulations, as opposed to real time simulations, time ‘hops’ because events are 
instantaneous – the clock skips to the next event start time as the simulation 
proceeds. 
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 Events List 

•The simulation maintains at least one list of simulation events. This is sometimes 

called the pending event set because it lists events that are pending as a result of 

previously simulated event but have yet to be simulated themselves. An event is 

described by the time at which it occurs and a type, indicating the code that will 

be used to simulate that event. It is common for the event code to be 

parameterized, in which case, the event description also contains parameters to the 

event code. 

•When events are instantaneous, activities that extend over time are modeled as 

sequences of events. Some simulation frameworks allow the time of an event to 

be specified as an interval, giving the start time and the end time of each event. 



5/43 

 Events List … 

•Single-threaded simulation engines based on instantaneous events have just one 
current event. In contrast, multi-threaded simulation engines and simulation 
engines supporting an interval-based event model may have multiple current 
events. In both cases, there are significant problems with synchronization between 
current events. 

•The pending event set is typically organized as a priority queue, sorted by event 
time.[2] That is, regardless of the order in which events are added to the event set, 
they are removed in strictly chronological order. Several general-purpose priority 
queue algorithms have proven effective for discrete-event simulation,[3] most 
notably, the splay tree. More recent alternatives include skip lists and calendar 
queues.[4] 

•Typically, events are scheduled dynamically as the simulation proceeds. For 
example, in the bank example noted above, the event CUSTOMER-ARRIVAL at 
time t would, if the CUSTOMER_QUEUE was empty and TELLER was idle, 
include the creation of the subsequent event CUSTOMER-DEPARTURE to occur 
at time t+s, where s is a number generated from the SERVICE-TIME distribution. 
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 Random-Number Generators 

•The simulation needs to generate random variables of various kinds, depending on 
the system model. This is accomplished by one or more Pseudorandom number 
generators. The use of pseudorandom numbers as opposed to true random 
numbers is a benefit should a simulation need a rerun with exactly the same 
behavior. 

•One of the problems with the random number distributions used in discrete-event 
simulation is that the steady-state distributions of event times may not be known 
in advance. As a result, the initial set of events placed into the pending event set 
will not have arrival times representative of the steady-state distribution. This 
problem is typically solved by bootstrapping the simulation model. Only a limited 
effort is made to assign realistic times to the initial set of pending events. These 
events, however, schedule additional events, and with time, the distribution of 
event times approaches its steady state. This is called bootstrapping the simulation 
model. In gathering statistics from the running model, it is important to either 
disregard events that occur before the steady state is reached or to run the 
simulation for long enough that the bootstrapping behavior is overwhelmed by 
steady-state behavior. (This use of the term bootstrapping can be contrasted with 
its use in both statistics and computing.) 
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 Statistics 

•The simulation typically keeps track of the system's statistics, which quantify 

the aspects of interest. In the bank example, it is of interest to track the mean 

waiting times. 

•Because events are bootstrapped, theoretically a discrete-event simulation could 

run forever. So the simulation designer must decide when the simulation will 

end. Typical choices are “at time t” or “after processing n number of events” or, 

more generally, “when statistical measure X reaches the value x”. 

• Ending Condition 
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The main loop of a discrete-event simulation is something like this: 

• Start 
 Initialize Ending Condition to FALSE. 

 Initialize system state variables. 

 Initialize Clock (usually starts at simulation time zero). 

 Schedule an initial event (i.e., put some initial event into the Events List). 

• “Do loop” or “While loop” 

While (Ending Condition is FALSE) then do the following: 

 Set clock to next event time. 

 Do next event and remove from the Events List. 

 Update statistics. 

• End 
 Generate statistical report. 
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What do we mean by "Model Validation"? 

There is no way in which we can PROVE that 

our simulator (model) matches reality - all we 

could prove is that it does NOT. 

What are the stages that we go through in order 

to determine that the simulator is - as far as we 

can tell - acceptable? 

Model Validation 
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Design Phase 

This consists of using 

A) our intuitive and mathematical understanding 
of the process we are trying to model; 

B) our experience in designing computer models 
of reality; 

C) techniques of software engineering developed 
to aid the transition from A) and B) to a codable 
specification. These might simply include modular 
decomposition and top-down design, or more 
sophisticated specification languages and 
environments. 
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Validation of Design 

 
a) Conceptual Phase: determine the logical flow of the 

system, and formulate the relationships between the 
various subsystems. Identify the factors likely to influence 
the performance of the model and decide how you will 
track them. 

 

Validation by review: have a third party examine the 
design in detail.  

Validation by tracing from output to input: this is just 
the opposite from the usual direction, and might indicate 
gaps and misunderstandings. 
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Validation of Design 
 
b) Implementation Phase: selecting procedures for the 

model; coding the model; using the model. 
 

Validation by checkpoints and milestones: at the end of 

the model design phase; at the end of the implementation 

of each module; at the integration of two or more modules. 

The latter two require that individual module tests have 

been identified and designed, and that the flow of 

information between modules can be examined in detail. 

This blends into the next phase... 
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Verification Phase 
 

Does the system that has been coded meet the 
specifications? 

At this point, the design might well be "wrong", 
and this phase is not meant to catch design 
mistakes. It should catch any deviations of the 
actual implementation from the design 
specifications. 

How: code walk-throughs, careful tracing of 
module interfaces and module dependencies, tests 
that were designed at specification time for this 
purpose. 
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 Validation Phase 
At this point we have a running program that we 

believe satisfies the design specifications and - 
because the design was achieved by people with 
experience in designing such simulation models 
using some design validation methods - is probably 
close enough to reality so that its inputs and outputs 
can be meaningfully compared with those of the "real 
thing". 

We want to establish that the model is an 
"adequately accurate" representation of the reality we 
are interesting in modeling. If this cannot be 
established, our model will be useless for both 
explanation and prediction - both of which are goals 
of "good models". 



 What does Validation Consist of? 

A) Comparison of results of simulation model 
with historical data; 

B) Use of the simulation model to predict 
behavior of the real system, and compare 
prediction with actual behavior. 

Both of these methods are standard when it 
comes to validating a physical theory: the 
theory must not contradict any "well-known 
facts"; it must provide new predictions (not 
available through established theory) that are 
subject to falsification by experiment.   



 How do you determine that the 

system has been validated? 
 

Even in Physics, theoretical predictions usually do not 

match experimental results exactly.  

Solution: run statistical tests, until you can 

conclude, from statistical considerations, that the 

probability of some competing explanation being true 

is smaller than a preassigned quantity. 

This means that the system must be designed for 

multiple controlled observations and the collection of 

all appropriate data (= measures of performance). 



Simulation Run: 

This is an uninterrupted recording of the simulation 
system's performance given a specified combination 
of controllable variables: range of values, values of 
some parameter, queue arrival distributions, etc. 

Simulation Duplication: 

This is a recording of the simulation system's 
performance given the same or replicated conditions 
and/or combinations, but with different random 
variates. 

This is also related to "regression testing": a correct 
model (or piece of software) must satisfy certain 
input/output relations.  Any time the software is 
modified it must pass all the old tests; if it is 
"improved", it must pass all the old tests plus 
appropriate new ones. 



Simulation Observation: 

This is a simulation run or a segment of a simulation 

run that is sufficient for estimating the value of each of 

the performance measures. 

Steady State or Stable State: 

This state of a simulation system is achieved when 
successive system performance measurements are 
statistically indistinguishable - the second one provides 
no new information about the future behavior of the 
system. 

Steady State corresponds, for example, to the constant 
solution of a differential equation.  A Stable Steady 
State corresponds to a stable constant solution or, more 
likely, to an asymptotically stable one.   



How do we identify a steady state of 

some performance measure?  
 

By deciding on a "small" positive value, say e, and 

deciding that we have reached steady state when, 

over a "long" period of time, the performance measure 

(or some appropriate function of it) has remained 

within ±e of some value.  

"small" and "long" are terms that are meaningful 

only in the context of the particular model being 

studied. 

It may also be possible to actually predict, from the 

model, the constant value. 



Transient State: 
 

The time (and set of performance measurements) that 
correspond to the initial conditions becoming insignificant to 
the future behavior of the system.  

Some systems may have no Steady State, so that no 
termination for a Transient State could be identified. 

Most simulations appear to be interested in examining the 
steady state behavior.  This is appropriate under some 
conditions - and in the case where modeling based on 
discrete queueing theory is being used: most such queueing 
theory results depend on our being able to obtain steady 
state predictions. 

There are other situations where the transient state may 
be the most important, since that is where system queues 
(or buffers) might be overloaded.  The "usual solution" is to 
provide enough system capacity to handle "most" transients.  
This requires that we find good prediction for the size of all 
"transients" in the measures of performance. 



A further problem with transients is that the actual 
behavior depends on the exact initial conditions of the 
system.   

As it turns out, some systems may have very complex 
initial conditions - possibly extending over long periods of 
time.   

Some systems may exhibit very complex behavior - so that 
some initial conditions will tend to one steady state (or, more 
generally, an "attractor" which may exhibit a very complex 
geometry) while others will lead to another all without 
varying the parameters of the system.  These are so-called 
bistable (or multistable) systems. 

Studying transient behavior will thus require a large 
number of runs; a possibly complex geometric analysis of 
the "phase-space" of the system; the ability to describe and 
set arbitrary initial conditions for the system; and 
sophisticated statistical techniques to determine means, 
variances and other statistics of the relevant performance 
measures. 



If one wishes to avoid dealing with transient behavior, 

one must be able to specify initial conditions near steady 

state: this may require being able to "load the model" 

with a specific history. 

In simple cases this might just mean deferring data 

collection for a period of time; in others it might mean 

that consistent performance measure values have to be 

synthesized over a long enough time period and that 

these measures have to be "inserted" into the behavior 

of the model. 



What is Validation? 

How accurately is the simulation model representing 

the actual physical system being simulated? 

Several terms have been introduced, corresponding 

to techniques that help in answering this question.  

One must always remember that there is no way to 

prove that the model is a faithful reproduction of 

reality. 

All we can prove is that it is not.  But we might be 

able to set up enough different experiments so that 

passing of all the experimental tests will allow us to 

conclude that the probability the model is inaccurate 

is very small. 



Internal Validity. 

This is affected by variability due to internal 

"noise" effects: stochastic models with high 

variance due to internal processing will provide 

outputs whose analysis may not be very useful: are 

the changes in the outputs due to the model or to 

incidentals of the implementation? (e.g., numerical 

approximation errors due to the presence of 

singularities in some of the functions used). 



Face Validity. 

Compare model output results with actual output 

results of the real system. 

Variable-Parameter Validity. 

Compare sensitivity to small changes in internal 

parameters or initial values with historical data.  

Compare model dependencies with historical data, 

looking for the same dependencies. 

Event or Time-Series Validity. 

Does the model predict observable events, event 

patterns and variations in output variables? 



Some Ideas about Data Collection 

(Sampling). 
 

The text discusses ways to determine whether 

the data collected are correlated or not.  One 

would like to obtain stochastically independent 

data sets, or one would like, at least, to determine 

the level of correlation between data sets. 

This is where the covariance - or the coefficient 

of correlation - comes in, since it allows us to 

determine something about dependence. 



Repetition: how many runs and how long should they 
be? 

Blocking: how do we avoid the contributions of 
transient periods (this assumes we are interested in 
steady-state behavior). 

We can attempt to determine whether two runs are 
independent in the following way. 

Let the xi denote individual observations, n the number 

of observations. Let the average estimated performance 
measure be 
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If {xi; i = 1,…,n/2}, {yi; i = 1,…,n/2} are two sets of 

observations, we can try to find out whether they are 
correlated.  We observe that the mean of the union of 
the two sets can be written as 
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Where a is the replication correlation coefficient. The 

formula can be derived through the following 
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    Where 

and a is the coefficient of correlation.  Using this in the 

original formula, and under the assumption that the 

two samples come from the same population (equal 

population variance): 
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If two runs (replications) are independent, then a=0,  

since they must behave exactly as one run of twice the 

length (i.e. n). We now have a way to test whether two 

successive runs are correlated or not. 
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Since the variance of the means is given by the 

population variance divided by sample size, we have: 



To see what negatively correlated runs can do, 

assume we have obtained the following set of 

observations: 

X = [.3211106933, .3436330737, .4742561436, .5584587190, .7467538305, 

.3206222209e-1, .7229741218, .6043056139, .7455800374, .2598119527, 

.3100754872, .7971794905, .3916959416e-1, .8843057167e-1, .9604988341, 

.8129204579, .4537470195, .6440313953, .9206249473, .9510535301] 

from a uniform random number generator.  The 

"complementary" set (1 - r, for each r in the first 

set) is 

Y = [.6788893067, .6563669263, .5257438564, .4415412810, .2532461695, 

.9679377779, .2770258782, .3956943861, .2544199626, .7401880473, 

.6899245128, .2028205095, .9608304058, .9115694283, .395011659e-1, 

.1870795421, .5462529805, .3559686047, .793750527e-1, .489464699e-1] 



The coefficient of correlation is given by Maple V as 

a = describe[covariance](X,Y)/sqrt(describe[variance](X)* 

describe[variance](Y)) =  -.9999999996 

Very close to -1. What is the actual variance for the 
joint population? The formula we use must lead us to a 
run of 20 items where each item is the mean of the 
corresponding two items in the separate populations. 

But (xi + yi)/2 = (ri + (1 - ri))/2 = 1/2,  = 1/2 and the 
sample variance is given by  
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  0

Negative correlation leads to a smaller variance than 
independence, while positive correlation leads to a 
larger variance. 



If we want to estimate means and variances of 
different runs - i.e. runs with different conditions.  We 
have estimated sample means and variances to be  
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Where a is the usual coefficient of correlation. The 
difference in the formula is due to the difference for 
the statistics - rather than the sum. It is immediate to 
see that positively correlated runs will diminish the 
variance of the difference. To check whether
 positively correlated runs will make the variance 
small. 

ˆ D  0



One of the problems is the elimination of transient 

information.  In this case it will be advisable to have 

long runs, in which the early part has been ignored. 

One method that helps find out a reasonable length 

for the run involves computation of the autocorrelation 

function.  This is defined as: 
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Where xt is an observation at time t;  is the mean of 

the observations and 2 is their variance.   

Note that = 0, gives that a(0) = 1. 



The sample mean is computed in the usual manner, 

while the variance of the sample means is given by the 

formula 
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Notice that a  0 for all  > 0 implies that the 

observations are independent - and this is reflected in 

the formula.  Correlated observations will thus enlarge 

the variance of the sample means. 



The Blocking Method 

This simply consists of 

a) Wait until transients are over; 

b) collect successive blocks of observations of length k 

is such a way that the "block means" satisfy 

independence conditions.  

c) Use the block means as “observations” to compute 

the sample mean and the variance of the sample 

means. 

The independence conditions can be checked via any 

of the methods already mentioned. 



40/43 

În caz discret-simulare, operarea unui sistem este reprezentat ca o succesiune 
cronologică a evenimentelor. Fiecare eveniment are loc la un moment în timp şi 
marchează o schimbare de stare în cadrul sistemului [1]. De exemplu, dacă un lift 
este simulat, un eveniment ar putea fi "nivelul 6 apasat", cu starea sistemului 
rezultat de "ridicare în mişcare" şi în cele din urmă (cu excepţia cazului alege 
pentru a simula un eşec a ascensorului) "ridica la nivelul 6" este. Un exerciţiu 
comun în procesul de învăţare cum să-eveniment discret simulări pentru a construi 
modelul de o coadă, cum ar fi clienţii care sosesc la o bancă să fie deservită de un 
casier. În acest exemplu, entităţile sistemului sunt CLIENŢI-Coada şi observatori. 
Evenimentele din sistem sunt client sosire şi client plecare. (Caz de povestitor-
incepe-serviciu poate fi o parte a logicii de sosire şi plecare evenimente) Sistemul 
de state, care sunt modificate de către aceste evenimente,. Sunt NUMĂRUL DE 
CLIENTI-IN-coada-(un număr întreg de la de la 0 la n) şi Teller-STARE (ocupat 
sau inactiv).  

Variabile aleatoare care trebuie să fie caracterizate de modelul de acest sistem 
stochastic sunt client INTERARRIVAL-time şi Teller-SERVICE-TIME. Un 
număr de mecanisme au fost propuse pentru efectuarea de simulare discret-
eveniment, printre ele sunt bazate pe evenimente, activitate bazate pe proces şi 
bazate pe trei faze abordări (Pidd, 1998). Abordare în trei faze este utilizat de către 
un număr de pachete de software comercial de simulare, dar din punctul de vedere 
al utilizatorului, specificul metodei de simulare subiacente sunt, în general, 
ascunse. 
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În plus faţă de reprezentarea variabilelor de stare sistem şi logică a ceea ce se 
întâmplă atunci când au loc evenimente de sistem, simularile cu evenimente 
discrete includ următoarele: 

• Ceasul 

•Simularea trebuie să ţină evidenţa timpului de simulare actual, în orice unităţi de 
măsură sunt adecvate pentru sistemul modelat. În simulările cu evenimente 
discrete, spre deosebire de simulările în timp real, timpul sare, deoarece 
evenimentele sunt instantanee - ceasul sare la urmatorul eveniment. 
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 Lista de evenimente 

•Simularea menţine cel puţin o lista de evenimente de simulare. Acesta este numita 
the pending event set, deoarece listea de evenimente care sunt în aşteptarea 
rezultatelor evenimentelor anterioare, dar nu au fost încă simulate. Un eveniment 
este descris de la momentul la care apare aceasta, şi un tip, pentru indicarea 
codului, care vor fi utilizate pentru a simula acest eveniment. Se obisnuieste ca 
codul de eveniment să fie parametrizat, caz în care, descrierea evenimentului 
conţine, de asemenea, parametrii de la codul evenimentului. Atunci când 
evenimentele sunt instantanee, activităţile care se extind în timp sunt modelate ca 
secvenţe de evenimente. Unele cadre de simulare permite timpul unui eveniment 
să fie specificat ca un interval: ora de începere şi ora de încheiere a fiecărui 
eveniment.   

•Single threaded simulation engines based on instantaneous events have just one 
current event. In contrast, multi-threaded simulation engines and simulation 
engines supporting an interval-based event model may have multiple current 
events. În ambele cazuri, există probleme semnificative cu sincronizare între 
evenimentele curente.. 
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 Random-Number Generators 

•Simularea are nevoie pentru a genera variabile aleatoare de diferite feluri, în 
funcţie de modelul sistemului. Aceasta se realizează prin una sau mai multe 
generatoare de numărul pseudoaleatoare. Utilizarea de numere pseudoaleatoare, 
spre deosebire de numere aleatoare adevarate este un beneficiu daca simularea are 
nevoie de o reluare cu exact acelaşi comportament. Una din problemele cu 
distribuţiile de numere aleatorii utilizat la eveniment de simulare discretă este că 
the steady-state distributions of event times nu pot fi cunoscute în avans. Ca 
urmare, setul initial de evenimente plasate în setul în aşteptare a evenimentului nu 
vor avea sosire reprezentant ori de distribuţie la starea de echilibru. Această 
problemă este rezolvată de obicei, de procesul de bootstrap modelul de simulare. 
Numai un efort limitat se face pentru a atribui ori realist să setul initial de 
evenimente în curs. Aceste evenimente, însă, evenimente programul suplimentare, 
şi în timp, distribuirea ori eveniment abordări starea sa de echilibru. Aceasta se 
numeşte procesul de bootstrap modelul de simulare.  

• În colectarea de statistici de la modelul de funcţionare, este important să nu ţină 
seama, fie evenimentele care au loc înainte ca statul echilibru este atins sau pentru 
a rula de simulare pentru suficient de lungi pentru ca procesul de bootstrap 
comportament este copleşit de comportament echilibru-stat.  


