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What do we mean by "Model Validation"? 

 

There is no way in which we can PROVE that our 

simulator (model) matches reality - all we could 

prove is that it does NOT. 

What are the stages that we go through in order 

to determine that the simulator is - as far as we can 

tell - acceptable? 
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 Design Phase. 
 

This consists of using 

A) our intuitive and mathematical understanding 
of the process we are trying to model; 

B) our experience in designing computer models of 
reality; 

C) techniques of software engineering developed to 
aid the transition from A) and B) to a codable 
specification. These might simply include 
modular decomposition and top-down design, 
or more sophisticated specification languages 
and environments. 
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 Validation of Design 
 

A) Conceptual Phase: determine the logical flow of the 
system, and formulate the relationships between the 
various subsystems. Identify the factors likely to 
influence the performance of the model and decide 
how you will track them. 

 

Validation by review: have a third party examine the 
design in detail.  

Validation by tracing from output to input: this is just the 
opposite from the usual direction, and might indicate 
gaps and misunderstandings. 
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 Validation of Design 
B) Implementation Phase: selecting procedures for the 

model; coding the model; using the model. 
 

Validation by checkpoints and milestones: at the end of the 
model design phase; at the end of the implementation 
of each module; at the integration of two or more 
modules. 

The latter two require that individual module tests have 
been identified and designed, and that the flow of 
information between modules can be examined in 
detail. This blends into the next phase... 
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Verification Phase. 
 

Does the system that has been coded meet the 
specifications? 

At this point, the design might well be "wrong", 
and this phase is not meant to catch design mistakes. 
It should catch any deviations of the actual 
implementation from the design specifications. 

How: code walk-throughs, careful tracing of 
module interfaces and module dependencies, tests 
that were designed at specification time for this 
purpose. 
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 Validation Phase 
At this point we have a running program that we 

believe satisfies the design specifications and - 
because the design was achieved by people with 
experience in designing such simulation models 
using some design validation methods - is probably 
close enough to reality so that its inputs and outputs 
can be meaningfully compared with those of the 
"real thing". 

We want to establish that the model is an 
"adequately accurate" representation of the reality 
we are interesting in modeling. If this cannot be 
established, our model will be useless for both 
explanation and prediction - both of which are goals 
of "good models". 
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• What does Validation Consist of? 

A) Comparison of results of simulation model 
with historical data; 

B) Use of the simulation model to predict 
behavior of the real system, and compare 
prediction with actual behavior. 

Both of these methods are standard when it 
comes to validating a physical theory: the 
theory must not contradict any "well-known 
facts"; it must provide new predictions (not 
available through established theory) that are 
subject to falsification by experiment.   
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• How do you determine that the 

system has been validated? 

Even in Physics, theoretical predictions usually 

do not match experimental results exactly.  

Solution: run statistical tests, until you can 

conclude, from statistical considerations, that 

the probability of some competing explanation 

being true is smaller than a preassigned 

quantity. 

This means that the system must be designed 
for multiple controlled observations and the 
collection of all appropriate data (= measures of 
performance). 
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Simulation Run: 

This is an uninterrupted recording of the 

simulation system's performance given a 

specified combination of controllable 

variables: range of values, values of some 

parameter, queue arrival distributions, etc. 
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Simulation Duplication: 

This is a recording of the simulation 

system's performance given the same or 

replicated conditions and/or combinations, but 

with different random varieties. 

This is also related to "regression testing": a 

correct model (or piece of software) must 

satisfy certain input/output relations.  Any 

time the software is modified it must pass all 

the old tests; if it is "improved", it must pass 

all the old tests plus appropriate new ones. 



12/41 

Simulation Observation: 

This is a simulation run or a segment of 

a simulation run that is sufficient for 

estimating the value of each of the 

performance measures. 
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Steady State or Stable State: 

This state of a simulation system is 
achieved when successive system per-
formance measurements are statistically 
indistinguishable - the second one provides 
no new information about the future 
behavior of the system. 

Steady State corresponds, for example, to 

the constant solution of a differential 

equation. A Stable Steady State corresponds 

to a stable constant solution or, more likely, 

to an asymptotically stable one.   

(A condition of a system that does not change over time)  
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How do we identify a steady state 
of some performance measure?  

By deciding on a "small" positive value, say 
e, and deciding that we have reached steady 
state when, over a "long" period of time, the 
performance measure (or some appropriate 
function of it) has remained within ±e of 

some value.  

“Small" and "long" are terms that are 
meaningful only in the context of the 
particular model being studied. 

It may also be possible to actually predict, 
from the model, the constant value. 
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Transient (temporary / transitory) State:  

The time (and set of performance 

measurements) that correspond to the initial 

conditions becoming insignificant to the 

future behavior of the system.  

Some systems may have no Steady State, 

so that no termination for a Transient State 

could be identified. 
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Most simulations appear to be interested in 
examining the steady state behavior.  This is 
appropriate under some conditions - and in the 
case where modeling based on discrete 
queueing theory is being used: most such 
queueing theory results depend on our being 
able to obtain steady state predictions. 

There are other situations where the transient 
state may be the most important, since that is 
where system queues (or buffers) might be 
overloaded.  The "usual solution" is to provide 
enough system capacity to handle "most" 
transients.  This requires that we find good 
prediction for the size of all "transients" in the 
measures of performance. 
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A further problem with transients is that 
the actual behavior depends on the exact 
initial conditions of the system.   

As it turns out, some systems may have 
very complex initial conditions - possibly 
extending over long periods of time.   

Some systems may exhibit very complex 
behavior - so that some initial conditions will 
tend to one steady state (or, more generally, 
an "attractor" which may exhibit a very 
complex geometry) while others will lead to 
another all without varying the parameters 
of the system.  These are so-called bistable 
(or multistable) systems. 
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Studying transient behavior will thus 
require a large number of runs; a possibly 
complex geometric analysis of the "phase-
space" of the system; the ability to describe 
and set arbitrary initial conditions for the 
system; and sophisticated statistical 
techniques to determine means, variances 
and other statistics of the relevant 
performance measures. 

If one wishes to avoid dealing with 
transient behavior, one must be able to 
specify initial conditions near steady state: 
this may require being able to "load the 
model" with a specific history. 
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In simple cases this might just mean 

deferring data collection for a period of time; 

in others it might mean that consistent 

performance measure values have to be 

synthesized over a long enough time period 

and that these measures have to be 

"inserted" into the behavior of the model. 
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Validation: 

How accurately is the simulation model 
representing the actual physical system being 
simulated? 

Several terms have been introduced, 
corresponding to techniques that help in 
answering this question.  One must always 
remember that there is no way to prove that the 
model is a faithful reproduction of reality. 

All we can prove is that it is not.  But we might 
be able to set up enough different experiments so 
that passing of all the experimental tests will 
allow us to conclude that the probability the 
model is inaccurate is very small. 
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Internal Validity. 

This is affected by variability due to internal 

"noise" effects: stochastic models with high 

variance due to internal processing will 

provide outputs whose analysis may not be 

very useful: are the changes in the outputs 

due to the model or to incidentals of the 

implementation? (e.g., numerical approxi-

mation errors due to the presence of 

singularities in some of the functions used). 
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Face Validity: 

Compare model output results with actual 
output results of the real system. 

Variable-Parameter Validity: 

Compare sensitivity to small changes in 
internal parameters or initial values with 
historical data. Compare model dependencies 
with historical data, looking for the same 
dependencies. 

Event or Time-Series Validity: 

Does the model predict observable events, 
event patterns and variations in output 
variables? 
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Some Ideas about 

  Data Collection (Sampling). 

The text discusses ways to determine 
whether the data collected are correlated or 
not.   

One would like to obtain stochastically 
independent data sets, or one would like, at 
least, to determine the level of correlation 
between data sets. 

This is where the covariance - or the 
coefficient of correlation - comes in, since it 
allows us to determine something about 
dependence. 
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Repetition:  

How many runs and how long should 

they be? 

 

Blocking: 

How do we avoid the contributions of 

transient periods (this assumes we are 

interested in steady-state behavior). 
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We can attempt to determine whether two 

runs are independent in the following way. 
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observations. Let the average 

estimated performance measure be. 
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If {xi; i = 1,…,n/2}, {yi; i = 1,…,n/2} are two 

sets of observations, we can try to find 
out whether they are correlated.  We 
observe that the mean of the union of 
the two sets can be written as 
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Where 

and a is the coefficient of correlation.  Using 
this in the original formula, and under the 
assumption that the two samples come from 
the same population (equal population 
variance): 
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If two runs (replications) are independent, 
then a=0,  since they must behave exactly 
as one run of twice the length (i.e. n). We 

now have a way to test whether two 
successive runs are correlated or not. 
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Since the variance of the means is given 
by the population variance divided by 
sample size, we have: 



29/41 

To see what negatively correlated runs can 
do, assume we have obtained the following 
set of observations: 

X = (0.3211106933, 0.3436330737, 0.4742561436, 0.5584587190, 0.7467538305, 

0.3206222209e-1, 0.7229741218, 0.6043056139, 0.7455800374, 0.2598119527, 

0.3100754872, 0.7971794905, 0.3916959416e-1, 0.8843057167e-1, 0.9604988341, 

0.8129204579, 0.4537470195, 0.6440313953, 0.9206249473, 0.9510535301) 

from a uniform random number generator.  
The "complementary" set (1 - r, for each r in 
the first set) is 

Y = (0.6788893067, 0.6563669263, 0.5257438564, 0.4415412810, 0.2532461695, 

0.9679377779, 0.2770258782, 0.3956943861, 0.2544199626, 0.7401880473, 

0.6899245128, 0.2028205095, 0.9608304058, 0.9115694283, 0.395011659e-1, 

0.1870795421, 0.5462529805, 0.3559686047, 0.793750527e-1, 0.489464699e-1) 
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xi  yi / 2   
2

n/ 2 1i1

n / 2

  0

The coefficient of correlation is given by Maple V as 

a = describe[covariance](X,Y)/sqrt(describe[variance](X)* 

describe[variance](Y)) =  -.9999999996 

Very close to -1. What is the actual variance for the 

joint population? The formula we use must lead us to 

a run of 20 items where each item is the mean of the 

corresponding two items in the separate populations. 

But (xi + yi)/2 = (ri + (1 - ri))/2 = 1/2,  = 1/2 and the 

sample variance is given by  

Negative correlation leads to a smaller variance 

than independence, while positive correlation leads 

to a larger variance. 
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If we want to estimate means and variances of 
different runs - i.e. runs with different conditions.  We 
have estimated sample means and variances to be  
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Where a is the usual coefficient of correlation. The 
difference in the formula is due to the difference for 
the statistics - rather than the sum. It is immediate 
to see that positively correlated runs will diminish the 
variance of the difference.  To check whether    
positively correlated runs will make the variance 
small. 

ˆ  D  0
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One of the problems is the elimination of transient 

information.  In this case it will be advisable to have 

long runs, in which the early part has been ignored. 

One method that helps find out a reasonable 

length for the run involves computation of the 

autocorrelation function.  This is defined as: 
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Where xt is an observation at time t;  is the mean 

of the observations and 2 is their variance. Note 

that  = 0, gives that a(0) = 1. 
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The sample mean is computed in the usual 

manner, while the variance of the sample means 

is given by the formula 
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Notice that a  0 for all  > 0 implies that the 

observations are independent - and this is 

reflected in the formula.  Correlated observations 

will thus enlarge the variance of the sample 

means. 
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The Blocking Method 

This simply consists of 

A) Wait until transients are over; 

B) collect successive blocks of observations 
of length k is such a way that the "block 
means" satisfy independence conditions.  

C) Use the block means as “observations” to 
compute the sample mean and the variance of 
the sample means. 

The independence conditions can be checked 
via any of the methods already mentioned. 


