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Mathematical models used in scientific computing are becoming 
large and complex. In order to handle the size and complexity, the 
models should be better structured (using object-orientation) and 
visualized (using advanced user interfaces). Visualization is a 
difficult task, requiring a great deal of effort from scientific 
computing specialists. 
Currently, the visualization of a model is tightly coupled with the 
structure of the model itself. This has the effect that any changes to 
the model require that the visualization be redesigned as well. Our 
vision is to automate the generation of visualizations from 
mathematical models. In other words, every time the model 
changes, its visualization is automatically updated without any 
programming efforts.  

Interactive Simulation, and 
Visualization ~ Tools for Design 



The innovation is demonstrating this approach in a number of 
different situations, e.g. for input and output data, and for two- and 
three-dimensional visualizations. We show that this approach works 
best for object-oriented languages (ObjectMath, C++, and Modelica). 
We describe the design of several programming environments and 
tools supporting the idea of automatic generation of visualizations. 
Tools for two-dimensional visualization include an editor for class 
hierarchies and a tool that generates graphical user interfaces from 
data structures. The editor for class hierarchies has been designed 
for the ObjectMath language, an object oriented extension of the 
Mathematica language, used for scientific computing.   
Diagrams showing inheritance, part-of relations, and instantiation of 
classes can be created, edited, or automatically generated from a 
model structure. A graphical user interface, as well as routines for 
loading and saving data, can be automatically generated from class 
declarations in C++ or ObjectMath. This interface can be customized 
using scripts written in Tcl/Tk. 



Mathematica includes highly flexible tools for visualization of 
models, but their performance is not sufficient, since Mathematica is 
an interpreted language. We use a novel approach where 
Mathematica objects are translated to C++, and used both for 
simulation and for visualization of 3D scenes (including, in 
particular, plots of parametric functions).  
Traditional solutions to simulations of CAD models are not 
customizable and the visualizations are not interactive. 
Mathematical models for mechanical multi-body simulation can be 
described in an object-oriented way in Modelica. However, the 
geometry, visual appearance, and assembly structure of mechanical 
systems are most conveniently designed using interactive CAD 
tools. Therefore we have developed a tool that automatically 
translates CAD models to visual representations and Modelica objects 
which are then simulated, and the results of the simulations are 
dynamically visualized.  



We have designed a high performance OpenGL-based 3D-
visualization environment for assessing the models created in 
Modelica.  
These visualizations are interactive (simulation can be controlled by 
the user) and can be accessed via the Internet, using VRML or 
Cult3D technology. Two applications (helicopter flight and robot 
simulation) are discussed in detail and a section on integration of 
collision detection and collision response with Modelica models in 
order to enhance the realism of simulations and visualizations. 
We compared several collision response approaches, and ultimately 
developed a new penalty-based collision response method, which 
we then integrated with the Modelica multi-body simulation library 
and a separate collision detection library. 
We also present a new method to compress simulation results in 
order to reuse them for animations or further simulations. This 
method uses predictive coding and delivers high compression 
quality for results from ordinary differential equation solvers with 
varying time step. 



An appropriate user interface technology should be 
used in each phase. 

The development and use of software goes through several stages 



We use the word visualization in a broad sense. Our interpretation is 
the representation of data structures and data values on computer 
displays by means of two and three-dimensional graphical elements 
using an appropriate level of abstraction. 
The 3D visualization is a representation of three-dimensional scenes 
mapped onto a 2D display. Scientific visualization is a special case of 
visualization which usually means visual presentation of high 
volumes of numeric data defined over some continuous domain, 
such as time and/or space. Often computational results of scientific 
computing are displayed by scientific visualization tools (e.g. AVS, 
Data Explorer, and Vis5D). 
The information used in scientific computing falls into two 
categories: descriptions of mathematical models and descriptions of 
data. When a mathematical model (at some level of abstraction) is 
represented graphically as a diagram by some tool it is usually not 
called visualization,butrather graphical model browsing and/or 
editing. 

Visualization and Editing Tools 



We can use a variety of object-oriented languages (ObjectMath, 
C++, Modelica) as the basis for our tools. Object-oriented models 
have a number of advantages, mainly for the following reasons: 
 
  object-orientation imposes concise, hierarchical structures on 

models and data; 
  information necessary for graphical user interface design can 

be extracted from such structures; 
  object oriented languages provide the means to attach 

auxiliary attributes to existing structures. This can be done by 
specialization through inheritance. Then these attributes can be 
used for graphical user interface generation. Such attributes do 
not interfere with the data properties used for normal 
computation (e.g. simulation). 

Models and Graphical User Interfaces 



The ObjectMath programming environment is designed to be 

easy to use for application engineers, e.g. in mechanical 

analysis who are not computer scientists. It is interactive and 

includes a graphical browser for viewing and editing 

inheritance hierarchies, an application oriented editor for 

editing ObjectMath equations and formulae, the Mathematica 

computer algebra system for symbolic computation, support 

for generation of numerical code from equations, an interface 

for calling external functions, and a class library. The 

graphical browser is used for viewing and editing ObjectMath 

inheritance hierarchies. ObjectMath code is automatically 

translated into Mathematica code and symbolic computations 

can be done interactively in Mathematica.  

The ObjectMath Programming Environment 



The environment during a typical session: …
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The displayed tree in the graphical browser window shows the 
inheritance hierarchy of classes, the text windows show the edited 
class definition and the Mathematica window for symbolic 
computations, whereas the visualized object Body1 is instantiated 
from a specialized Sphere class. 



ObjectMath is both a language and a programming environment. 
The current ObjectMath language has recently been enhanced 
with features for multiple inheritance and modeling part-of 
relations between objects. Both of these features has turned out to 
be important in realistic application models. An early version of 
the ObjectMath language only supported single inheritance . 
The ObjectMath language is an hybrid modeling language, 
combining object-oriented constructs with a language for 
symbolic computation. This makes ObjectMath a suitable 
language for implementing complex mathematical models, such 
as those used in machine element analysis. Formulae and 
equations can be written with a notation that closely resembles 
conventional mathematics, while the use of object-oriented 
modeling makes it possible to structure the model in a natural 
way. 

The ObjectMath Language 



When working with a mathematical description that consists of 

hundreds of equations and formulae, for instance one describing 

a complex machine element, it is highly advantageous to 

structure the model.  

A natural way to do this is to model machine elements as objects. 

Physical bodies, e.g. rolling elements in a bearing, are modeled as 

separate objects. 

Properties of objects like these might include a surface 

description, a normal to the surface, forces and moments on the 

body, and a volume. These objects might define operations such 

as finding all contacts on the body, computing the forces on or 

the displacement of the body, and plotting a three-dimensional 

picture of the body. 

Object-Oriented Modeling 



Abstract concepts can also be modeled as objects. Examples of 
such concepts are coordinate systems and contacts between 
bodies. The coordinate system objects included in the ObjectMath 
class library define methods for transforming points and vectors 
to other coordinate systems.  
Equations and formulae describing the interaction between 
different bodies are often the most complicated part of problems 
in machine element analysis. This makes it practical to 
encapsulate these equations in separate contact objects.  
One advantage of using contact objects is that we can substitute 
one mathematical contact model for another simply by plugging 
in a different kind of contact object. The rest of the model remains 
completely unchanged. When using such a model in practice, one 
often needs to experiment with different contact models to find 
one which is exact enough for the intended purpose, yet still as 
computationally efficient as possible. The ObjectMath class library 
contains several different contact classes. 

… Object-Oriented Modeling 



The use of inheritance facilitates reuse of equations and formulae. 
For example, a cylindrical roller element can inherit basic 
properties and operations from an existing general cylinder class, 
refining them or adding other properties and operations as 
necessary. 
Inheritance may be viewed not only as a sharing mechanism, but 
also as a concept specialization mechanism. This provides 
another powerful mechanism for structuring complex models in 
a comprehensive way. Iteration cycles in the design process can 
be simplified by the use of inheritance, as changes in one class 
affects all objects that inherits from that class. Multiple 
inheritance facilitates the maintenance and construction of classes 
which need to combine different orthogonal kinds of 
functionality.  
The part-of relation is important for modeling objects which are 
composed of other objects. This is very common in practice.  

… Object-Oriented Modeling 



A CLASS declaration declares a class which can be used as a 
template when creating objects. 
ObjectMath classes can be parameterized. The ObjectMath 
INSTANCE declaration is, in a traditional sense both a 
declaration of class and a declaration of one object (instance) of 
this class. This makes the declaration of classes with singleton 
instances compact. 
An array containing a symbolic number of objects can be created 
from one INSTANCE declaration by adding an index variable in 
brackets to the instance name. This allows for the creation of 
large numbers of nearly identical objects, for example the rolling 
elements in a rolling bearing. To represent differences between 
such objects, functions (methods) that are dependent upon the 
array index of the instance can be used. The implementation 
makes it possible to do computations with a symbolic number of 
elements in the array. 

ObjectMath Classes and Instances 



In addition to classes describing bodies with different geometry 
depicted in the inheritance hierarchy, there are additional classes 
which describe interactions between bodies and coordinate 
systems. Note that the inheritance hierarchy usually is edited 
graphically so that the user does not have to write the class 
headers by hand. 

Single Inheritance  

An inheritance hierarchy of 
classes for modeling bodies 
with different geometries 
such as cylinders and 
spheres: 



Multiple inheritance is useful when combining orthogonal 
concepts. Multiple inheritance hierarchy of bodies of different 
materials and geometries: 

Multiple Inheritance  

The filled 
lines denote 

single 
inheritance, 
whereas the 
dotted lines 

denote 
additional 

inheritance, 
i.e. we have 

multiple 
inheritance.  

Since material properties and geometry are 
orthogonal concepts there are no collisions 
between inherited definitions . 



Single inheritance version of the material-geometry model: 

… Multiple Inheritance  

The material equations describing elasticity or plasticity have to 
be repeated twice. 
This model structure is harder to maintain when changes are 
introduced into the model. 



Another useful case of multiple-inheritance is shown below, 
where an integration method is inherited into classes from two 
separate inheritance hierarchies (multiple inheritance of a 
numerical integration method into two different classes): 

… Multiple Inheritance  

The entities inherited from class Integration_Method will typically 
be a combination of entities such as procedural code, 
transformation rules. 

Here to be used for 
integrating forces 

or volumes.  
One class contains 
contact equations; 

another contains 
volumes, moments 

and equilibrium 
equations.  



The part-of relation is important for modeling objects which are 
composed of other objects, also noting that this concept is 
orthogonal to the concept of inheritance which is used to 
represent specialization. For example, a bicycle contain parts 
such as wheels, frame, pedals, etc. A rolling bearing contain inner 
ring, outer ring, rolling elements, lubrication fluid, etc. 
The ObjectMath syntax for expressing composition using the part-
of relation is exemplified below for a Bicycle class: 

CLASS Bicycle(C,P) 
  ... 
PART frontwheel INHERITS Wheel(P); 
PART rearwheel INHERITS Wheel(P); 
PART frame INHERITS Body; 
  ... 

END Bicycle; 

Modeling Part-Of Relations 



During the development of complex mathematical models there 
is often a need to explore different variants of solution strategies 
and formulations of equations. One would like to experiment 
with alternative ways of expressing equations and 
transformations within a certain class and still keep the previous 
version of the class definition in the model.  

Variants of Classes 

Each new variant of a 

class can of course be tried 

out by creating an entirely 

new model where all 

classes except one are 

identical compared to the 

previous model. 



The ObjectMath environment 
consisting of a diagram 

editor window, a program 
text window and the start 

window: 

ObjectMath Inheritance and 
Composition Diagram Editor 



The inheritance relations are numbered because the order of 
classes in case of multiple inheritance affects the program 
semantics.  

Graphical Representation  
of ObjectMath Models 

The container for global 
objects (Global container) 
is used for two purposes. 
First it contains global 
variables, functions and 
equations which do not 
belong to any particular 
instance. Second, the icon 
of Global container is 
connected to all classes 
and instances that have no 
superclasses. 



Menu choices of the ObjectMath class diagram editor. The 
alternatives leading to new dialogs are marked with ellipsis: 

Operations of ObjectMath diagram editor 



A Mathematica 

notebook with 

results of a 

symbolic 

integration, 2D 

and 3D plots. 

The notebook 

cell structure is 

made visible via 

brackets on the 

right side. 

USING THE MATHEMATICA ENVIRONMENT 
FOR GENERATING EFFICIENT 3D GRAPHICS 



 The screen 

shot of the 

MAGGIE 

tool with 

animation 

of a 

parametric 

surface: 

… USING THE MATHEMATICA ENVIRONMENT FOR GENERATING EFFICIENT 3D GRAPHICS 



 Water surface 
after the stones 

fell down and 
the waves 

appeared. The 
stones are 
below the 

surface and we 
look at them 
from below. 

This is a screen 
shot from the 

animation 
sequence. 

… USING THE MATHEMATICA ENVIRONMENT FOR GENERATING EFFICIENT 3D GRAPHICS 



Design optimization problem. For instance, the optimal size of the 
balls in bearings is searched in order to minimize friction. The 
function F simulates movement of some mechanism with a 
parameter vector x. The function E estimates how good the 
movement trajectory is. The goal of simulation series is to find 
such xm that E(F(xm)) achieves its maximum. The function E has 
many parameters.  
Therefore engineers use interactive environments and visual aids 
in order to find the appropriate xm. In applications for mechanical 
models it is very important to display forces, velocities and 
accelerations that occur in the simulated world.  
The simulation is not affected by the user after it starts, and 
usually the trajectories are analyzed after the results are 
computed. 

Visualization Requirements Induced by 
Simulation Goals 



Control system design. Assume that a robot that finds, grabs, moves 
and releases a detail should be designed. A control system for this 
robot should be developed. This control system should operate so 
that the robot performs the mission in minimum time and with 
maximum accuracy. The function E is an overall estimation of the 
quality of robot performance. A simulation function F for the robot 
includes Fm (a mechanical component) and Fc (a control 
component). The goal of the simulation is to find an algorithm Fc 
such that E(F(x)) is maximal. Visualization of such simulations 
should include display of trajectories of movements and 
comparison tools for such trajectories. 
A simulation can be affected by the user after it starts; in particular 
the user can feed different inputs (mission descriptions) to the 
control system. If the control system is designed so that it is able to 
compensate for errors in the movements of the machine elements, 
the numerical accuracy of computations can be reduced without 
excessively affecting the overall precision of the simulation. 

… Visualization Requirements Induced by Simulation Goals 



Simplification problem. Quite often there exists a numerical method 
to find f(x) which can be used as an approximation of F(x), i.e. 
f(x)≈F(x), and f(x) can be computed much faster. In particular, 
linearized results from finite element model computations are 
often used in order to reduce computation time. It is important to 
visualize the differences between F(x) and f(x), and to investigate 
(e.g. using interactive visualization) how these can be reduced. 

… Visualization Requirements Induced by Simulation Goals 

Presentation. Artistic, emotional and educational side effects of 
simulation, i.e. evaluation of F(x), is useful in many cases, such as 
computer games, movie industry, digital art, and human operator 
training. Numerical accuracy of computations can be reduced 
unless deviations between the simulated world and the real one 
can be perceived by the human during the simulation. However, 
color and texture choice is important in visualization. In order to 
use simulation interactively fast response time should be achieved. 
There is a trade-off between response speed, model complexity 
and accuracy. 



Multibody Simulation Tools. 

 
The purpose of multibody simulation tools is to perform 

various kinds of static and dynamic analyses of mechanical 

systems. Mechanical elements are fetched from libraries of 

ready components and their position and orientation is 

defined via a CAD-like 3-dimensional user interface. The 

connections between the elements are set up interactively 

using a CAD-like tool. Such tools are usually tightly coupled 

with the simulation tool, and a uniform graphical user 

interface and three-dimensional representation of mechanical 

parts is used both at the modeling stage and during 

visualization of simulation results. 

… Visualization Requirements Induced by Simulation Goals 



ADAMS. 
Adams is the world’s most widely used multibody mechanical 
simulation software. It can be used in different configurations: 
as a full simulation package (Adams/View, Adams/Solver and 
other components) or as Adams prototyping capabilities 
integrated within CAD/CAM environments. 

… Visualization Requirements Induced by Simulation Goals 

Cooperation 

between 

simulation 

engineer, 

Adams/View 

and 

Adams/Solver: 



Four typical ADAMS statements: 

… Visualization Requirements Induced by Simulation Goals 



The notation provides a relatively high flexibility of Adams 
models. The same model can be used for three different kinds of 
simulations: 
  Kinematic simulation: All motions are already prescribed by 

the user. The system has zero degrees of freedom. All part 
positions can be computed from the motions. Forces are 
ignored. 

  Static simulation: This simulation re-positions parts so that all 
forces are balanced. It finds the so called equilibrium 
configuration. 

  Dynamic simulation: This simulation computes the combined 
effect of forces and constraints. It can be used for any number 
of degrees of freedom. The dynamic simulation package 
contains four different integrators. The user should tune these 
integrators by giving appropriate accuracy, integration step 
minimum and maximum, as well as other tuning parameters. 

… Visualization Requirements Induced by Simulation Goals 



Visualization. During simulation or after the simulation terminates 
(in Adams/Solver) the user can see dynamic visualizations of 
machine elements. Adams has a rich set of constructs helping to 
run a series of simulations as a batch. In the 3D visualization the 
results of two (or more) simulations can be displayed and 
compared.  

… Visualization Requirements Induced by Simulation Goals 

Cooperation 

between a 

simulation 

engineer 

(user), and 

Adams plug-

in embedded 

in a CAD 

application. 



Working Model 3D. 

Integrated Environments for Computer-Based Animation (3D Studio Max) 

… Visualization Requirements Induced by Simulation Goals 

Double 

pendulum 

model  

in  

Working 

Model  

3D: 



Working Model 3D. 

Integrated Environments for Computer-Based Animation (3D Studio Max) 

… Visualization Requirements Induced by Simulation Goals 

A 

pendulum 

model  

in  

3D  

Studio 

Max: 



Working Model 3D. 

Integrated Environments for Computer-Based Animation (3D Studio Max) 

… Visualization Requirements Induced by Simulation Goals 

 Hierarchy 
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objects  
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the  
model  
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