
Interactive Simulation

and Visualization

~ Tools for Design ~

Curs 11

24.05. 2017

Mathematical models used in scientific computing are becoming
large and complex. In order to handle the size and complexity, the
models should be better structured (using object-orientation) and
visualized (using advanced user interfaces). Visualization is a
difficult task, requiring a great deal of effort from scientific
computing specialists.
Currently, the visualization of a model is tightly coupled with the
structure of the model itself. This has the effect that any changes to
the model require that the visualization be redesigned as well. Our
vision is to automate the generation of visualizations from
mathematical models. In other words, every time the model
changes, its visualization is automatically updated without any
programming efforts.

Interactive Simulation, and
Visualization ~ Tools for Design

The innovation is demonstrating this approach in a number of
different situations, e.g. for input and output data, and for two- and
three-dimensional visualizations. We show that this approach works
best for object-oriented languages (ObjectMath, C++, and Modelica).
We describe the design of several programming environments and
tools supporting the idea of automatic generation of visualizations.
Tools for two-dimensional visualization include an editor for class
hierarchies and a tool that generates graphical user interfaces from
data structures. The editor for class hierarchies has been designed
for the ObjectMath language, an object oriented extension of the
Mathematica language, used for scientific computing.
Diagrams showing inheritance, part-of relations, and instantiation of
classes can be created, edited, or automatically generated from a
model structure. A graphical user interface, as well as routines for
loading and saving data, can be automatically generated from class
declarations in C++ or ObjectMath. This interface can be customized
using scripts written in Tcl/Tk.

Mathematica includes highly flexible tools for visualization of
models, but their performance is not sufficient, since Mathematica is
an interpreted language. We use a novel approach where
Mathematica objects are translated to C++, and used both for
simulation and for visualization of 3D scenes (including, in
particular, plots of parametric functions).
Traditional solutions to simulations of CAD models are not
customizable and the visualizations are not interactive.
Mathematical models for mechanical multi-body simulation can be
described in an object-oriented way in Modelica. However, the
geometry, visual appearance, and assembly structure of mechanical
systems are most conveniently designed using interactive CAD
tools. Therefore we have developed a tool that automatically
translates CAD models to visual representations and Modelica objects
which are then simulated, and the results of the simulations are
dynamically visualized.

We have designed a high performance OpenGL-based 3D-
visualization environment for assessing the models created in
Modelica.
These visualizations are interactive (simulation can be controlled by
the user) and can be accessed via the Internet, using VRML or
Cult3D technology. Two applications (helicopter flight and robot
simulation) are discussed in detail and a section on integration of
collision detection and collision response with Modelica models in
order to enhance the realism of simulations and visualizations.
We compared several collision response approaches, and ultimately
developed a new penalty-based collision response method, which
we then integrated with the Modelica multi-body simulation library
and a separate collision detection library.
We also present a new method to compress simulation results in
order to reuse them for animations or further simulations. This
method uses predictive coding and delivers high compression
quality for results from ordinary differential equation solvers with
varying time step.

An appropriate user interface technology should be
used in each phase.

The development and use of software goes through several stages

We use the word visualization in a broad sense. Our interpretation is
the representation of data structures and data values on computer
displays by means of two and three-dimensional graphical elements
using an appropriate level of abstraction.
The 3D visualization is a representation of three-dimensional scenes
mapped onto a 2D display. Scientific visualization is a special case of
visualization which usually means visual presentation of high
volumes of numeric data defined over some continuous domain,
such as time and/or space. Often computational results of scientific
computing are displayed by scientific visualization tools (e.g. AVS,
Data Explorer, and Vis5D).
The information used in scientific computing falls into two
categories: descriptions of mathematical models and descriptions of
data. When a mathematical model (at some level of abstraction) is
represented graphically as a diagram by some tool it is usually not
called visualization,butrather graphical model browsing and/or
editing.

Visualization and Editing Tools

We can use a variety of object-oriented languages (ObjectMath,
C++, Modelica) as the basis for our tools. Object-oriented models
have a number of advantages, mainly for the following reasons:

 object-orientation imposes concise, hierarchical structures on

models and data;
 information necessary for graphical user interface design can

be extracted from such structures;
 object oriented languages provide the means to attach

auxiliary attributes to existing structures. This can be done by
specialization through inheritance. Then these attributes can be
used for graphical user interface generation. Such attributes do
not interfere with the data properties used for normal
computation (e.g. simulation).

Models and Graphical User Interfaces

The ObjectMath programming environment is designed to be

easy to use for application engineers, e.g. in mechanical

analysis who are not computer scientists. It is interactive and

includes a graphical browser for viewing and editing

inheritance hierarchies, an application oriented editor for

editing ObjectMath equations and formulae, the Mathematica

computer algebra system for symbolic computation, support

for generation of numerical code from equations, an interface

for calling external functions, and a class library. The

graphical browser is used for viewing and editing ObjectMath

inheritance hierarchies. ObjectMath code is automatically

translated into Mathematica code and symbolic computations

can be done interactively in Mathematica.

The ObjectMath Programming Environment

The environment during a typical session: …
 T

h
e O

b
jectM

ath
 P

ro
g

ram
m

in
g

 E
n

v
iro

n
m

en
t

The displayed tree in the graphical browser window shows the
inheritance hierarchy of classes, the text windows show the edited
class definition and the Mathematica window for symbolic
computations, whereas the visualized object Body1 is instantiated
from a specialized Sphere class.

ObjectMath is both a language and a programming environment.
The current ObjectMath language has recently been enhanced
with features for multiple inheritance and modeling part-of
relations between objects. Both of these features has turned out to
be important in realistic application models. An early version of
the ObjectMath language only supported single inheritance .
The ObjectMath language is an hybrid modeling language,
combining object-oriented constructs with a language for
symbolic computation. This makes ObjectMath a suitable
language for implementing complex mathematical models, such
as those used in machine element analysis. Formulae and
equations can be written with a notation that closely resembles
conventional mathematics, while the use of object-oriented
modeling makes it possible to structure the model in a natural
way.

The ObjectMath Language

When working with a mathematical description that consists of

hundreds of equations and formulae, for instance one describing

a complex machine element, it is highly advantageous to

structure the model.

A natural way to do this is to model machine elements as objects.

Physical bodies, e.g. rolling elements in a bearing, are modeled as

separate objects.

Properties of objects like these might include a surface

description, a normal to the surface, forces and moments on the

body, and a volume. These objects might define operations such

as finding all contacts on the body, computing the forces on or

the displacement of the body, and plotting a three-dimensional

picture of the body.

Object-Oriented Modeling

Abstract concepts can also be modeled as objects. Examples of
such concepts are coordinate systems and contacts between
bodies. The coordinate system objects included in the ObjectMath
class library define methods for transforming points and vectors
to other coordinate systems.
Equations and formulae describing the interaction between
different bodies are often the most complicated part of problems
in machine element analysis. This makes it practical to
encapsulate these equations in separate contact objects.
One advantage of using contact objects is that we can substitute
one mathematical contact model for another simply by plugging
in a different kind of contact object. The rest of the model remains
completely unchanged. When using such a model in practice, one
often needs to experiment with different contact models to find
one which is exact enough for the intended purpose, yet still as
computationally efficient as possible. The ObjectMath class library
contains several different contact classes.

… Object-Oriented Modeling

The use of inheritance facilitates reuse of equations and formulae.
For example, a cylindrical roller element can inherit basic
properties and operations from an existing general cylinder class,
refining them or adding other properties and operations as
necessary.
Inheritance may be viewed not only as a sharing mechanism, but
also as a concept specialization mechanism. This provides
another powerful mechanism for structuring complex models in
a comprehensive way. Iteration cycles in the design process can
be simplified by the use of inheritance, as changes in one class
affects all objects that inherits from that class. Multiple
inheritance facilitates the maintenance and construction of classes
which need to combine different orthogonal kinds of
functionality.
The part-of relation is important for modeling objects which are
composed of other objects. This is very common in practice.

… Object-Oriented Modeling

A CLASS declaration declares a class which can be used as a
template when creating objects.
ObjectMath classes can be parameterized. The ObjectMath
INSTANCE declaration is, in a traditional sense both a
declaration of class and a declaration of one object (instance) of
this class. This makes the declaration of classes with singleton
instances compact.
An array containing a symbolic number of objects can be created
from one INSTANCE declaration by adding an index variable in
brackets to the instance name. This allows for the creation of
large numbers of nearly identical objects, for example the rolling
elements in a rolling bearing. To represent differences between
such objects, functions (methods) that are dependent upon the
array index of the instance can be used. The implementation
makes it possible to do computations with a symbolic number of
elements in the array.

ObjectMath Classes and Instances

In addition to classes describing bodies with different geometry
depicted in the inheritance hierarchy, there are additional classes
which describe interactions between bodies and coordinate
systems. Note that the inheritance hierarchy usually is edited
graphically so that the user does not have to write the class
headers by hand.

Single Inheritance

An inheritance hierarchy of
classes for modeling bodies
with different geometries
such as cylinders and
spheres:

Multiple inheritance is useful when combining orthogonal
concepts. Multiple inheritance hierarchy of bodies of different
materials and geometries:

Multiple Inheritance

The filled
lines denote

single
inheritance,
whereas the
dotted lines

denote
additional

inheritance,
i.e. we have

multiple
inheritance.

Since material properties and geometry are
orthogonal concepts there are no collisions
between inherited definitions .

Single inheritance version of the material-geometry model:

… Multiple Inheritance

The material equations describing elasticity or plasticity have to
be repeated twice.
This model structure is harder to maintain when changes are
introduced into the model.

Another useful case of multiple-inheritance is shown below,
where an integration method is inherited into classes from two
separate inheritance hierarchies (multiple inheritance of a
numerical integration method into two different classes):

… Multiple Inheritance

The entities inherited from class Integration_Method will typically
be a combination of entities such as procedural code,
transformation rules.

Here to be used for
integrating forces

or volumes.
One class contains
contact equations;

another contains
volumes, moments

and equilibrium
equations.

The part-of relation is important for modeling objects which are
composed of other objects, also noting that this concept is
orthogonal to the concept of inheritance which is used to
represent specialization. For example, a bicycle contain parts
such as wheels, frame, pedals, etc. A rolling bearing contain inner
ring, outer ring, rolling elements, lubrication fluid, etc.
The ObjectMath syntax for expressing composition using the part-
of relation is exemplified below for a Bicycle class:

CLASS Bicycle(C,P)
 ...
PART frontwheel INHERITS Wheel(P);
PART rearwheel INHERITS Wheel(P);
PART frame INHERITS Body;
 ...

END Bicycle;

Modeling Part-Of Relations

During the development of complex mathematical models there
is often a need to explore different variants of solution strategies
and formulations of equations. One would like to experiment
with alternative ways of expressing equations and
transformations within a certain class and still keep the previous
version of the class definition in the model.

Variants of Classes

Each new variant of a

class can of course be tried

out by creating an entirely

new model where all

classes except one are

identical compared to the

previous model.

The ObjectMath environment
consisting of a diagram

editor window, a program
text window and the start

window:

ObjectMath Inheritance and
Composition Diagram Editor

The inheritance relations are numbered because the order of
classes in case of multiple inheritance affects the program
semantics.

Graphical Representation
of ObjectMath Models

The container for global
objects (Global container)
is used for two purposes.
First it contains global
variables, functions and
equations which do not
belong to any particular
instance. Second, the icon
of Global container is
connected to all classes
and instances that have no
superclasses.

Menu choices of the ObjectMath class diagram editor. The
alternatives leading to new dialogs are marked with ellipsis:

Operations of ObjectMath diagram editor

A Mathematica

notebook with

results of a

symbolic

integration, 2D

and 3D plots.

The notebook

cell structure is

made visible via

brackets on the

right side.

USING THE MATHEMATICA ENVIRONMENT
FOR GENERATING EFFICIENT 3D GRAPHICS

 The screen

shot of the

MAGGIE

tool with

animation

of a

parametric

surface:

… USING THE MATHEMATICA ENVIRONMENT FOR GENERATING EFFICIENT 3D GRAPHICS

 Water surface
after the stones

fell down and
the waves

appeared. The
stones are
below the

surface and we
look at them
from below.

This is a screen
shot from the

animation
sequence.

… USING THE MATHEMATICA ENVIRONMENT FOR GENERATING EFFICIENT 3D GRAPHICS

Design optimization problem. For instance, the optimal size of the
balls in bearings is searched in order to minimize friction. The
function F simulates movement of some mechanism with a
parameter vector x. The function E estimates how good the
movement trajectory is. The goal of simulation series is to find
such xm that E(F(xm)) achieves its maximum. The function E has
many parameters.
Therefore engineers use interactive environments and visual aids
in order to find the appropriate xm. In applications for mechanical
models it is very important to display forces, velocities and
accelerations that occur in the simulated world.
The simulation is not affected by the user after it starts, and
usually the trajectories are analyzed after the results are
computed.

Visualization Requirements Induced by
Simulation Goals

Control system design. Assume that a robot that finds, grabs, moves
and releases a detail should be designed. A control system for this
robot should be developed. This control system should operate so
that the robot performs the mission in minimum time and with
maximum accuracy. The function E is an overall estimation of the
quality of robot performance. A simulation function F for the robot
includes Fm (a mechanical component) and Fc (a control
component). The goal of the simulation is to find an algorithm Fc
such that E(F(x)) is maximal. Visualization of such simulations
should include display of trajectories of movements and
comparison tools for such trajectories.
A simulation can be affected by the user after it starts; in particular
the user can feed different inputs (mission descriptions) to the
control system. If the control system is designed so that it is able to
compensate for errors in the movements of the machine elements,
the numerical accuracy of computations can be reduced without
excessively affecting the overall precision of the simulation.

… Visualization Requirements Induced by Simulation Goals

Simplification problem. Quite often there exists a numerical method
to find f(x) which can be used as an approximation of F(x), i.e.
f(x)≈F(x), and f(x) can be computed much faster. In particular,
linearized results from finite element model computations are
often used in order to reduce computation time. It is important to
visualize the differences between F(x) and f(x), and to investigate
(e.g. using interactive visualization) how these can be reduced.

… Visualization Requirements Induced by Simulation Goals

Presentation. Artistic, emotional and educational side effects of
simulation, i.e. evaluation of F(x), is useful in many cases, such as
computer games, movie industry, digital art, and human operator
training. Numerical accuracy of computations can be reduced
unless deviations between the simulated world and the real one
can be perceived by the human during the simulation. However,
color and texture choice is important in visualization. In order to
use simulation interactively fast response time should be achieved.
There is a trade-off between response speed, model complexity
and accuracy.

Multibody Simulation Tools.

The purpose of multibody simulation tools is to perform

various kinds of static and dynamic analyses of mechanical

systems. Mechanical elements are fetched from libraries of

ready components and their position and orientation is

defined via a CAD-like 3-dimensional user interface. The

connections between the elements are set up interactively

using a CAD-like tool. Such tools are usually tightly coupled

with the simulation tool, and a uniform graphical user

interface and three-dimensional representation of mechanical

parts is used both at the modeling stage and during

visualization of simulation results.

… Visualization Requirements Induced by Simulation Goals

ADAMS.
Adams is the world’s most widely used multibody mechanical
simulation software. It can be used in different configurations:
as a full simulation package (Adams/View, Adams/Solver and
other components) or as Adams prototyping capabilities
integrated within CAD/CAM environments.

… Visualization Requirements Induced by Simulation Goals

Cooperation

between

simulation

engineer,

Adams/View

and

Adams/Solver:

Four typical ADAMS statements:

… Visualization Requirements Induced by Simulation Goals

The notation provides a relatively high flexibility of Adams
models. The same model can be used for three different kinds of
simulations:
 Kinematic simulation: All motions are already prescribed by

the user. The system has zero degrees of freedom. All part
positions can be computed from the motions. Forces are
ignored.

 Static simulation: This simulation re-positions parts so that all
forces are balanced. It finds the so called equilibrium
configuration.

 Dynamic simulation: This simulation computes the combined
effect of forces and constraints. It can be used for any number
of degrees of freedom. The dynamic simulation package
contains four different integrators. The user should tune these
integrators by giving appropriate accuracy, integration step
minimum and maximum, as well as other tuning parameters.

… Visualization Requirements Induced by Simulation Goals

Visualization. During simulation or after the simulation terminates
(in Adams/Solver) the user can see dynamic visualizations of
machine elements. Adams has a rich set of constructs helping to
run a series of simulations as a batch. In the 3D visualization the
results of two (or more) simulations can be displayed and
compared.

… Visualization Requirements Induced by Simulation Goals

Cooperation

between a

simulation

engineer

(user), and

Adams plug-

in embedded

in a CAD

application.

Working Model 3D.

Integrated Environments for Computer-Based Animation (3D Studio Max)

… Visualization Requirements Induced by Simulation Goals

Double

pendulum

model

in

Working

Model

3D:

Working Model 3D.

Integrated Environments for Computer-Based Animation (3D Studio Max)

… Visualization Requirements Induced by Simulation Goals

A

pendulum

model

in

3D

Studio

Max:

Working Model 3D.

Integrated Environments for Computer-Based Animation (3D Studio Max)

… Visualization Requirements Induced by Simulation Goals

 Hierarchy
of

objects
in

the
model

of
a

pendulum
in

3D
Studio

Max

References

1. Tools for Design, Interactive Simulation, and Visualization of Object-

Oriented Models in Scientific Computing, Vadim Engelson, Linköping

Studies in Science and Technology, Department of Computer and

Information Science, Linköpings universitet, SE-581 83 Linköping,

Sweden;

2. Automatic generation of user interfaces from data structure

specifications and object-oriented application models, Vadim Engelson,

Dag Fritzson and Peter Fritzson, Published in Proceedings of European

Conference on Object-Oriented Programming (ECOOP96), Linz, Austria,

8-12 July 1996, Pierre Cointe (ed.); Lecture Notes in Computer Science,

vol. 1098, Springer-Verlag, pp. 114-141.

3. Tools for Design, Interactive Simulation and Visualization for Dynamic

Analysis of Mechanical Models, Vadim Engelson, PELAB, IDA, Link¨

oping University.

4. 3D Systems, Stereo Lithography Interface Specification, 3D Systems,

Inc., Valencia, CA 91355. Available via

http://www.vr.clemson.edu/credo/rp.html.

5. ADAMS and Mechanical Dynamics Adams, ADAMS and Mechanical

Dynamics, Inc., http://www.adams.com

6. Advanced Visual Systems Inc., AVS/Express. http://www.avs.com

