
Interactive Simulation

and Visualization

Curs 10

17.05. 2018

Most researchers who perform data analysis and visualization do so
only after everything else is finished, which often means that they
don't discover errors invalidating the results of their simulation until
post-processing. A better approach would be to improve the
integration of simulation and visualization into the entire process so
that they can make adjustments along the way. This approach, called
computational steering, is the capacity to control all aspects of the
computational science pipeline. Recently, several tools and
environments for computational steering have begun to emerge.
These tools range from those that modify an application's
performance characteristics (either by automated means or by user
interaction) to those that modify the underlying computational
application. A refined problem-solving environment should
facilitate everything from algorithm development to application
steering. The authors discuss some tools that provide a mechanism
to integrate modeling, simulation, data analysis and visualization.

Interactive simulation and visualization

There are many other kinds of information that are important in
software design, which are not covered in this work. Particular
examples are documents and document structures, entity-relation
diagrams, scenario diagrams, database visualization and
diagrams of program execution paths.
Here we discuss and compare several stages where interactive
graphical environments can be used:

 model editing (in particular, browsing and editing of model

component diagrams during the design stage),
 input data editing,
 visualization during execution (e.g. interactive control of

simulations, execution monitoring, and computational
steering)

 output visualization in the form of 2D graphs and 3D
interactive animations.

Users are expected to be active agents in the process of design
and use of scientific software. Therefore user interfaces play a
dominant role.
In descriptions of interactive tools we attempt to evaluate the
quality of user interfaces. For this purpose typical user tasks are
selected and user efforts required for performing these tasks are
estimated. A good interface for visualization and editing should
provide the following

 consistent and compact presentation of components (layout
quality),

 ease of use in navigation and location of relevant
subcomponents (navigation quality),

 consistent feedback from user actions, such as data editing or
simulation steering (feedback quality).

User Interaction

In this taxonomy seven kinds of visualizations are related to seven
corresponding data types. Generation of some of visualizations in
this taxonomy can be automated.

1-dimensional: This class of visualization and data structures

includes textual documents and program source code. However,
the models we consider are usually quite complex. Therefore,
one-dimensional visualizations are not sufficient for presentation
of such models. In particular, program source code has a well-
defined structure. We suggest that this source code is converted
into hierarchical structures with nodes (classes, objects,
instances) and connections (relations between them). This
structure is generated automatically from the textual
representation and is visualized by our tools. For instance,
ObjectMath models are represented by hierarchical diagrams.

Taxonomy of Visualizations

2-dimensional: This kind of visualization includes geographical
maps and plans, as well as 2-dimensional plots of functions (X-Y
plots). This is a widespread way to present results from scientific
computing applications. Most of the tools for scientific
computing, e.g. Dymola, Mathematica, MathModelica, Beast have
facilities for plotting variables in different ways and options for
choosing variables to be plotted. The graphical user interface for
selecting variables to be plotted is automatically generated from
data structures, e.g. for Dymola, MathModelica and Beast.

… Taxonomy of Visualizations

3-dimensional: Items with volume, e.g. real world objects, and object
designed using 3D CAD modeling tools are most naturally
shown using 3-dimensional visualization. Both real and abstract
objects (such as three dimensional plots of functions) can be
viewed in this kind of visualization. Visualizations in three
dimensions are often used for physics-based simulations. In this
case, the structure of objects and their interrelations usually
correspond to the structure of the mathematical model.

… Taxonomy of Visualizations

… 3-dimensional:

 Such a model contains descriptions of each physical component
(e.g. rigid body) which is visualized as a separate graphical
object in 3D. Therefore, creation of such visualizations can be
automated (see paper 5). There are relations between the
visualized components (contacts and various motion
constraints), which usually are not visualized explicitly as
graphic elements, but which can easily be noticed when moving
objects are observed.

 There exist, however, 3-dimensional visualizations where the
structure of graphical objects is completely different from the
structure of mathematical model. For instance, this happens in
scientific visualization tools used in computation fluid dynamics.
Instead, the structure of graphical user interface for visualization
control often corresponds to the structure and dimensionality of
data.

… Taxonomy of Visualizations

Temporal: Visualization of time lines, historical information, and
events are examples of temporal visualization. In our case,
visualization of temporal data is just one feature for other
visualization types, in particular 3-dimensional visualization. We
use time in order to represent changes in objects and their
relations during physics-based simulation. Output data of such
simulations contains values of various variables at each time
instant. Animation is used for presentation of such simulations.

Multi-dimensional: Tools working with objects with many attributes
need multidimensional visualization. Such objects become points
inn-dimensional space. Visualization tools map objects with
these attributes to a 2- or 3-dimensional representation. In this
thesis, work in this direction has been done with parametric
functions of many parameters, which were defined in
Mathematica. In our tool the way of mapping n-dimensional
parametric functions to space coordinates and time can be
selected interactively.

… Taxonomy of Visualizations

Tree: Tree-structured visualization is useful for structures with
relations between parent and child nodes. A tree is a convenient
way to represent data structures of a model. Furthermore, it is
possible to automate creation of interactive visualizations based
on data structures. This automation has been designed for C++,
ObjectMath and MathModelica.

Networks and general graphs: Arbitrarily linked relations between
nodes are conveniently visualized by networks and general
graphs. This visualization is used where objects are related by
connectors, for instance in Modelica and Dymola. In mechanical
models joints and other contact elements are used as relations
between rigid bodies. These relations can be generated using a
graphical user interface. For instance, relations between bodies
are specified using a CAD interface.

Development of modern technologies has made it possible to
apply three-dimensional visualization in many application areas.
In particular 3D is used for visualization of computation results
and for modeling real world objects, such as objects constructed
using CAD tools. Due to development of graphic hardware 3D
animation recently became widely available for the users
working on average computers and therefore 4D data (three
space dimensions and one time dimension) can be used for
visualization.
3D visualization in scientific computing falls into three
categories:

1. Visualization of numerical results

2. Visualization of fixed shapes

3. Volume visualization

Three dimensional graphical user interfaces

1. Visualization of numerical results, where displayed shapes
depend on a particular computation. These shapes might
depend on some specific parameters, e.g. time.

We assume that points in 3D are denoted as (x,y,z). The
set of displayed points in three-dimensional coordinate
space can be expressed as

{(Fx(u,v), Fy(u,v), Fz(u,v))},

where umin < u < umax and vmin < v < vmax.

Some components of a graphical user interface for such
visualization can be generated automatically.

… Three dimensional graphical user interfaces

2. Visualization of fixed shapes. Each shape corresponds to a
real world object which is modeled as a rigid body (e.g. by a
CAD tool). Movement of the body is constrained by the laws
of physics. This kind of visualization is also called physics-
based visualization.

Visualization of results from physics-based simulations can
be automated.

… Three dimensional graphical user interfaces

3. Volume visualization, where displayed shapes are isosurfaces
computed from some volume data. This data can be the
result of some other computations or measurements. The set
of points displayed can be expressed as

{ (x,y,z) / F(x,y,z) = 0 }.

Rendering such visualizations is more difficult since it is
hard to find the set of points and translate to 3D graphic
primitives.

Usually parametric surfaces are used for visualization of
computational results when many inputs and outputs are involved
in a computation. If two input and one output variables are used,
the visualization of such a function is a surface composed by all
points

{ (x,y,F(x,y)) } ,

where xmin < x < xmax, ymin < y < ymax.

If three input and three output variables are used, a dynamically
changing surface can be composed from all the points

{ (Fx(u,v,t), Fy(u,v,t), Fz(u,v,t)) },

where umin < u < umax, vmin < v < vmax, tmin < t < tmax.

Interactive Visualization
of Numerical Results

of Computations Specified
in Mathematica

In general, an arbitrary function

F : Rm Rn can be visualized using this method.

The limitations are:

 Input values for a number of dimensions (m-3 dimensions)

should be fixed.

 Three dimensions are chosen from n, whereas the other n-3

dimensions are omitted.

… Interactive Visualization
of Numerical Results

 of Computations Specified
 in Mathematica

Generation of visualization for functions with multiple
arguments and multiple output values defined in Mathematica:

… Interactive Visualization of Numerical Results of Computations Specified in Mathematica

Virtual prototyping of complex systems presents interesting
challenges, especially with regard to systems in which different
languages are used to represent different parts. We describe here
one approach to solving such a problem. In particular, we describe
how to integrate the virtual test bed (VTB) solver engine with the
Simulink solver. This produces a rich environment for virtual
prototyping of power electronic applications due to the inherent
mixture of circuital and control problems. The integration is
conducted within the context of the resistive companion approach.
We present here the theoretical foundation of the approach, and also
suggest the generality and extensibility to other solver engines such
as SPICE. The theory is then enriched with some examples that
illustrate the approach including the use of the VTB high-level
graphic user interface

A multilanguage environment for
interactive simulation and development

controls for power electronics

The use of computer simulation in industry and construction is
rapidly increasing. Simulation is typically used to optimize product
properties and to educe product development cost and time to
market. Whereas in the past it was considered sufficient to simulate
subsystems separately, the current rend is to simulate increasingly
complex physical systems composed of subsystems from multiple
domains such as mechanical, electric, hydraulic, thermodynamic,
and control system components.
Modelica is a language for dynamic simulation. In particular,
mechanisms (such as construction tools, robots, vehicles) and
constructs under dynamic load (such as hanging bridges) have been
modeled, and interactively simulated. Thermodynamics applications
are modeled too; in particular, models for indoor climate and energy
simulations were developed in NMF which is similar to Modelica.
This application inputs a building map designed in a CAD tool and
generates equations for indoor climate simulations.

An Environment for Design, Simulation and Interactive

Visualization for CAD Models in Modelica

Modelica is a standard notation which is used for standard
domain libraries and for applications that use these libraries.
Tools and environments are built to comply with this standard.
The structure of the environment that leads the user from
interactive design to interactive visualization:

Structure of the integrated environment

The components of the environment needed for visualization. Our
translator from SolidWorks to Modelica takes information about the
mates and produces a corresponding set of Modelica class instances
with connections between them. The mass and inertia tensors for
each part are computed by SolidWorks. These are extracted and used
in a Modelica model. Geometry information is saved in a separate
STL file for each part. All external forces that are applied to the
bodies, as well as motor forces that are applied to revolute and
prismatic joints should be specified. This is done outside the
SolidWorks model by adding code for new class instances to the
Modelica model. A control subsystem that controls the forces
according to a certain plan (mission) can be written in Modelica . If
necessary, external code in C can be added to the model. When a
Modelica model is simulated, the position, orientation, velocity and
acceleration for each part (Body instance) is computed. For Modelica
simulation we use the Dymola tool with Modelica support.

Translation and simulation

The path from SolidWorks model to
dynamic system visualization:

Visualization

The integrated environment includes
a visualizer that provides online
dynamic display of the assembly
(during simulation) or offline (based
on saved state information for each
time step).
The STL format is a very simple
format suitable for visualization. All
surfaces are divided into triangles
and the coordinates of the triangle
vertices, as well as normal vectors of
the triangles, are listed in the STL-
file.

Helicopter dynamic visualization:

… Visualization

The helicopter is designed in SolidWorks and consists of 10 parts,
4 revolute and 2 prismatic joints.
It is possible to export the visualization to 3D Studio MAX (to
create and save movies) an MultiGen on SGI (to design Virtual
Reality applications).

To decrease the costs and the time it takes to develop and test
new products, computer simulations are very helpful. Models
can be simulated, and their behavior can be examined. This
applies not only to hardware, but even to software products that
can be divided to several components, so that their cooperative
work is simulated in a virtual environment. Some components of
this environment can later be replaced by physical, real world
devices.
Some other components can be just prototypes, and they are
replaced later with more complex and realistic software
components. In any case the idea is to construct a model and
simulate both software and hardware before the actual
production starts.

Simulation and Visualization of
Autonomous

Helicopter and Service Robots

In the project there is a need to develop a system which contains
helicopters, robots and various control software and hardware. In
particular there is a need to simulate the dynamic behavior of an
autonomous aircraft within a virtual environment. There is a
need to simulate a service environment, where robots can interact
with the landed helicopter.
In this report a study of object-oriented modeling of mechanical
systems using Modelica is presented. Mechanical features of an
autonomous helicopter have been modeled in order to verify the
control system. A robot which is able to grab, move and release
objects using automatic or manual control has been modeled. The
geometry and dynamic structure of these systems has been
designed in CAD tools and later integrated with control systems
for steering these devices. The simulation has been performed in
Modelica.

… Simulation and Visualization of
Autonomous

Helicopter and Service Robots

The most complex part of the project includes design of control
systems working in several layers.
These control systems are organized
as software tools in three layers:

 Layers of simulation architecture for an
autonomous vehicle

 A deliberative layer produces

plans, e.g. a plan of movement.

 A reactive layer produces

responses when certain events

happen.

 A process layer gets information

from sensors and produces

signals for mechanism actuators

(e.g. motors).

The part of the control system which communicates with the
Modelica model is the process layer. This system takes the plan
(helicopter mission) as commands expressed in a language FCL
(Flight Command Language).

The control system

Helicopter

model

designed

in

SolidWorks:

In a typical situation the task of the robot can be described as ”to
take some load from one container and to place it to another
container”. The position and rotation of the containers are known
to the control system of the robot. Finally the robot modeling
problem was formulated the following way:
 Input:

 Given positions of containers (later also slots) and their
identifiers, such as c1 or c2; Given a sequence Robot
Command Language (RCL) commands (missions), such as
MOVE(c1,c2).

 Given a virtual robot constructed in SolidWorks.
 Output:

 Torques applied by the motors in order to perform the
mission, for instance, to grab a load from container c1 and
move it to container c2.

 The movement trajectory of the robot and all its joints
when the mission is performed.

Robot Modeling

A virtual environment includes a robot, load (a small cube) and
two containers:

Environment Model

 Steps of

scenario

for

moving

a load

from

source

to target:

Scenario for Load Movement
The controller switches from one step to another when certain
conditions become true. At each step specific target values for the
actuators are specified. The platform motors can move on the plane
between the origin position, source and target container. Every
container has a reference point where the platform should be
located. The actuators for the platform compute force necessary to
move the platform in needed direction.

The Inverse Robot in 3D
The inverse robot with additional bars has a kinematic loop.
Required position of the tip is set up by the three scale bars
(for X, Y , and Z):

References

1. Interactive simulation and visualization, Johnson C.; Center for Sci.

Comput. & Imaging, Utah Univ., Salt Lake City, UT, USA ; Parker,

S.G. ; Hansen, C. ; Kindlmann, G.L., …

2. A multilanguage environment for interactive simulation and

development controls for power electronics, Lovett, T. ; Dept. of

Electr. Eng., South Carolina Univ., Columbia, SC, USA ; Monti, A. ;

Santi, E. ; Dougal, R.A.

3. An Environment for Design, Simulation and Interactive Visualization

for CAD Models in Modelica, Vadim Engelson, Hakan Larsson, Peter

Fritzson, Linkoping University, Sweden, Proceedings of 1999 IEEE

International Conference on Information Visualization, IEEE

Computer Society, 14-16 July 1999, London, pp. 188-193,

4. Simulation and Visualization of Autonomous Helicopter and Service

Robots, Vadim Engelson, PELAB, IDA, Link¨ oping University

5. 3D Systems, Stereo Lithography Interface Specification, 3D

Systems, Inc., Valencia, CA 91355, http://www.vr.clemson.edu/credo/rp.html.

6. Dymola, Dynamic Modeling Laboratory, User’s Manual, Version 4.0,

Hilding Elmqvist, Dag Bruck, Martin Otter,, from Dynasim AB,

Research Park Ideon, Lund, Sweden, http://www.dynasim.se

