
Using Static Analysis Tools to Assist Student Project Evaluation
Arthur-Jozsef Molnar
arthur@cs.ubbcluj.ro

Babeş–Bolyai University
Cluj-Napoca, Romania

Simona Motogna
motogna@cs.ubbcluj.ro
Babeş–Bolyai University
Cluj-Napoca, Romania

Cristina Vlad
vcis1860@scs.ubbcluj.ro
Babeş–Bolyai University
Cluj-Napoca, Romania

ABSTRACT
Code review and static analysis tools are acknowledged as impor-
tant instruments in software quality control and are used in the
industry on a daily basis. In this exploratory study we examine how
a well-known static analysis tool can be employed to assess the
quality of student solutions to coding assignments. We examine
all student solutions submitted to fulfill coding assignments re-
quired as part of an introductory programming course taught using
Python. We show how teaching staff can evaluate the progress of
individual students and how coding mistakes common to many
students can be highlighted. We also show how teaching staff can
improve their own understanding of perceived assignment com-
plexity by evaluating the aggregate quality of student submitted
source code.

CCS CONCEPTS
• Social and professional topics→ Student assessment.

KEYWORDS
static analysis, student evaluation, Computer Science education
ACM Reference Format:
Arthur-Jozsef Molnar, Simona Motogna, and Cristina Vlad. 2020. Using
Static Analysis Tools to Assist Student Project Evaluation. In Proceedings
of the 2nd ACM SIGSOFT International Workshop on Education through Ad-
vanced Software Engineering and Artificial Intelligence (EASEAI ’20), No-
vember 9, 2020, Virtual, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3412453.3423195

1 INTRODUCTION
We know that source code quality has an important influence on
the software development process as a whole. While experience
plays a central role in writing quality code, at the same time the
principles of code quality should be taught early on. This leads to
many introductory programming courses also addressing issues
related to code quality in the form of observing coding guidelines,
following a set of established best practices, and even adopting
methodologies such as feature-driven or test-driven development.

Code review and static analysis tools support this approach by
allowing automatic detection of many types of quality deficiencies
such as software defects, security vulnerabilities, or the breaking of
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best practices in early development phases. These tools are widely
used in the industry and their efficiency in development and main-
tenance has been proven to be significant, with existing research
[14] showing average defect detection of up to 55% to 60%. How-
ever, the usage of these tools in an educational setting is usually
limited to quality control as a software engineering process, or
within coursework dedicated to software quality, which is usually
taught at a more advanced level.

As such, the main objective of our work is to "assist teaching staff
in monitoring the learning evolution of students in a programming
language course". As many academic courses touch upon the most
important issues of programming style and best practices, we be-
lieve that special attention should be dedicated to corresponding
learning outcomes and the way they are assessed. At the same
time, evaluating the quality of student code is a tedious and time
consuming activity, reasons for which it is often overlooked. This
can be changed through automation, which brings additional ad-
vantages such as the ability to track student progress through all
completed assignments, compare student performance for a certain
assignment as well as build an overall assessment of the student
projects themselves, and improve the understanding teaching staff
have about the aspects students found most difficult to address.

We study how our main objective can be fulfilled through an
experience report that covers all student solutions to the coding
assignments required within the Fundamentals of Programming
introductory course that is taught using Python 3 and is attended
by 200 first-year undergraduate students in computer science from
the Babeş-Bolyai University in Cluj-Napoca, Romania.

2 TOOLS FOR STATIC ANALYSIS
Static code analysis allows developers to gain important insight
into source code without having to run it. Its benefits are the subject
of notable recent studies, mainly caused by the growth of static
code analysis tools [10] and their tight link with software quality
through implementation of known quality models such as SQALE
[12] and QMOOD [3].

Current static analysis tools are considered to belong to the third
generation [11], with the major shift in the fact that analysis is
performed on the target program’s abstract syntax tree. Focusing
on the logic of the code allows improved tool efficiency in detecting
existing issues. Most of the widely used tools are available for
several programming languages and can be easily integrated into
development environments in the form of plug-ins such as those
for Pylint [16] and SonarQube [20]. Static analysis tools such as
SonarQube were also used to characterize quality of large-scale
code bases in recent research targeting software quality [8, 15]. The
tight integration between well-known software quality models and
static analysis tools have helped promote increased formalism in
the study of software quality [1]. Boehm et al. [6] have shown that
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Table 1: Pylint message types

Message Type Abbrev Usage

Information I Information message
Refactor R Bad code smell

Convention C Programming standard violation
Warning W Python specific problems
Error E Probable bugs
Fatal F Errors that block further processing

early detection of defects lowers software development costs. This
was corroborated by more recent research [5, 6], which showed that
feedback received early on allowed correcting errors and problems
before they could make a large impact during the latter stages of
the software development life cycle.

From a teaching viewpoint, static analysis tools can provide the
following valuable features:

• They allow imposing coding standards uniformly and auto-
matically; this reduces the time requirements from teaching
staff and frees them from a task that can easily be perceived
as tedious.

• Perform source code analysis in order to identify code de-
fects, code smells, performance issues and dependencies [9].

• Enhance code comprehension by encouraging the creation
of shorter, easier to read methods [9].

• They are available at all times, and students can use them to
perfect the assignments they are currently working on [2].

In our previous experiments [24], static analysis of Python code
revealed students had a tendency to create code with excessive
cyclomatic complexity due to superfluous branching statements,
as well as methods having different return types depending on
code path, which often resulted in hard to identify defects. Modern
tools also help consummate professionals by detecting software
defects and security vulnerabilities, such as the use of uninitialized
resources, checking for software vulnerabilities such as unused
network connections, use of low-security pseudo-random number
generators and so on.

In this study we used the Pylint open-source analysis tool to
scan all student submitted assignments. Pylint can be used both
in command-line mode or integrated as a plugin into several de-
velopment environments. Pylint itself can be extended using a plu-
gin system to detect additional issues. The default rule set checks
code against a large collection of known code smells and enforces
Python’s PEP-8 default coding convention [17].

For each Python module, the tool reports detected issues in the
form of messages. Each message has one of the types presented
in Table 1, contextualizing the identified issue. Messages in the
information or fatal categories are not classified as source code
defects; the former are used to provide additional information,
while the latter preclude further processing from taking place. In
addition, eachmessage has a unique code and associated description,
which can be used to automatically aggregate issues across Python
modules or projects, as well as to help developers understand and
fix reported issues.

Table 2: Student assignment descriptions, their deadlines
and the number of individually submitted solutions for each
assignment.

Code Description Deadline Count(week)

A1 Multi-week assignment target-
ing procedural programming

5 149

A2 Introductory assignment for
object-oriented programming

6 158

A3 Multi-week assignment for ele-
ments of layered architecture in
an object-oriented context

9 129

A4 Board game implementation
that tests most of the concepts
studied during the semester

13 100

A5 Programming techniques such
as backtracking

14 106

A project’s Pylint score is calculated once all source codemodules
are scanned. It is determined as a weighted linear computation with
respect to the type and the number of occurrences for each issue.
The score values are computed using Formula (1), where 𝐸𝑐𝑜𝑢𝑛𝑡
represents the number of error issues found; remaining notations
follow the abbreviations found in Table 1. Issues identified as errors
carry the highest weight, while other message types describing
issues are equally weighted. The score is upper bounded by 10 and
has no lower bound.

𝑠𝑐𝑜𝑟𝑒 = 10 − 10 ∗ 5 ∗ 𝐸𝑐𝑜𝑢𝑛𝑡 +𝑊𝑐𝑜𝑢𝑛𝑡 + 𝑅𝑐𝑜𝑢𝑛𝑡 +𝐶𝑐𝑜𝑢𝑛𝑡
𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑐𝑜𝑢𝑛𝑡

(1)

3 APPROACH TO STUDENT EVALUATION
3.1 Methodology
Our experience report covers the introductory Fundamentals of Pro-
gramming course, which is taught in English and taken by first-year
undergraduate students in computer science. Course material is de-
signed so that it can be completed without previous programming
experience. In practice, most students already have programming
experience using the C language at high-school level. However, our
experience has shown that the switch to the Python language, and
the introduction of software engineering elements have an equaliz-
ing effect, as very few students bring previous experience that is
relevant in the given context. In addition, the choice of language
and course material keep students motivated to successfully com-
plete it. This is evidenced by the consistent positive feedback that
is anonymously provided by students at the end of each semester.

The course is designed as an introduction to programming and
covers lower-level topics such as searching, sorting and computa-
tional complexity. However, introductory topics in software engi-
neering such as modular programming, layered architecture and
unit testing are also covered. Furthermore, in contrast to most stu-
dents’ previous experience, emphasis is placed on code readability,
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Figure 1: History of Pylint error scores recorded for the sub-
missions of three students (A,B and C) over the semester’s
course. Maximum score is 10, with no lower bound.

composition and testing. Principles of layered architecture are also
introduced and elaborated upon. The course syllabus for the semes-
ter covered in our evaluation is publicly available [23] and presents
in detail course objectives, targeted competencies and technical
content. Several of the course objectives and competences can be
linked to measurable code quality, which can be evaluated using
the available tooling detailed in Section 2.

Student evaluation is a continuous activity that covers the en-
tire semester. As part of practical work, each student completes
five individual coding assignments where they practice important
concepts from procedural, modular and object-oriented program-
ming. In addition to required functionalities, instructor feedback
and grading are based on code attributes such as code readability,
complexity and coupling at both method and class levels. Table 2
illustrates the five main coding assignments students had to im-
plement during the fourteen-week semester, together with their
deadlines and the number of actual student submitted solutions
included in our study.

Assignments are graded by experienced teaching staff during
face-to-face laboratory sessions, in which students demonstrate run-
ning programs and sustain a discussion regarding implementation
decisions. Students send assignment source code to a designated
email address using their faculty email. Submissions are down-
loaded and pre-processed using in-house developed tooling. This
allows detecting invalid submissions, such as those not accompa-
nied by source code, or where students submitted code written in
a different programming language, or for a different course alto-
gether. Valid submissions are screened for plagiarism using Stan-
ford’s MOSS system [22], which uses winnowing to analyze the
similarity between source code submissions at the abstract syntax
tree level [19].

Our study was enabled by the creation of an additional software
tool that enables analysis and visualization of student progress.
Geared towards use by experienced teaching staff, it enables both
cross-sectional as well as longitudinal visualization of the Pylint
scores assigned to a single, or a group of students. This empowers
teaching staff to check the progress of individual and groups of
students, as well as to identify assignments that pose too much,
or too little difficulty for enrolled students. Furthermore, it allows
delving into specific issues reported by Pylint, in order to determine
what types of issues are most difficult for students to resolve.

Table 3: Distribution of submissions according to Pylint
score

Pylint score

= 10 ∈ [0 − 10) < 0

A1 41.61% 42.95% 15.44%
A2 52.23% 40.76% 7.01%
A3 7.75% 85.27% 6.98%
A4 22.00% 73.00% 5.00%
A5 10.38% 87.74% 1.89%

3.2 Evaluation
We carry out our study by running Pylint on all 642 student submis-
sions. Each of them represents a successfully completed assignment.
As shown in Table 2, their number follows a decreasing trend due
to the increased complexity, with A4 and A5 being completed by
around half of the 200 students enrolled in the course. We then eval-
uate the suitability of using static analysis to monitor and evaluate
the performance and progress of students in successfully carrying
out progressively more difficult coding assignments.

3.2.1 Analysis and visualization of a single student’s performance
over a semester’s course. Monitoring the progress for a given student
is possible by making a longitudinal evaluation regarding their
progress in learning. Our developed tooling provides visualizations
such as illustrated in Figure 1, showing the score history for three
selected students. Let’s consider the student whose assignments
are represented using the uninterrupted blue line. Some variability
within the scores can be observed and is expected. However, all
assignments are scored above 0.

Teaching staff can consult Pylint reports for singular or groups
of assignments. Table 4 illustrates the analyzer output in the case
of one student submission. Each table row represents one detected
issue. This helps teaching staff to improve their understanding of
issues common for many students, or to examine a single student’s
submissions in more detail.

We must note that in order to have the complete picture, teach-
ing staff must take into consideration each assignment’s level of
complexity and difficulty, as each assignment is based on, and at
the same time more complex, than the previous one.

3.2.2 Analysis and visualization of a given assignment. The objec-
tive is to provide the means for a cross-sectional evaluation that
targets all student submissions for a particular assignment. This ap-
proach provides relevant information regarding the learning level
of all the students based on the computed average value for all
analyzed source code submissions. This can be achieved for all
Pylint message types illustrated in Figure 1. We illustrate the re-
sults obtained within our experimental study using Table 3. We
partition student submissions for each assignment into one of three
categories, based on their Pylint score. Submissions scored with 10
did not trigger any of the analyzer rules. Those having a positive
score are in a separate classification, while we consider submis-
sions having a negative score those that require most attention to
following best practices.
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Table 4: Pylint result statistics for a single submitted assignment

Code Description Count

C0116 Missing function or method docstring (missing-function-docstring) 24
C0103 Function/argument name "xxx" doesn’t conform to snake_case naming style (invalid-name) 15
C0301 Line too long (103/100) (line-too-long) 9
C0114 Missing module docstring (missing-module-docstring) 4
C0411 standard import "xxx" should be placed before "from domain import *" (wrong-import-order) 2
C0304 Final newline missing (missing-final-newline) 1
C0123 Using type() instead of isinstance() for a typecheck; (unidiomatic-typecheck) 1

Total Convention messages 56

W0104 Statement seems to have no effect (pointless-statement) 4
W0108 Lambda may not be necessary (unnecessary-lambda) 2
W0401 Wildcard import domain (wildcard-import) 2
W0614 Unused import create from wildcard import (unused-wildcard-import) 2
W0703 Catching too general exception Exception (broad-except) 1
W0702 No exception type(s) specified (bare-except) 1

Total Warning messages 12

R1705 Unnecessary "elif " after "return" (no-else-return) 3
R1720 Unnecessary "elif " after "raise" (no-else-raise) 1

Total Refactor messages 4

E0702 Raising int while only classes or instances are allowed (raising-bad-type) 2

Total Error messages 2

The data in Table 3 shows a general decrease in negative scores
through the semester’s duration, which we attribute to students
gradually improving their coding skills, and having a better under-
standing of stated requirements and best practices. We also note
that introductory assignments A1 and A2 have the largest share of
submissions with a score of 10, while their number decreases for
the more complex assignments.

Teaching staff can use this data to complete their mental picture
regarding assignment complexity and fine tune assignment diffi-
culty in order to maximize learning potential. One such example
is the introduction of assignment A2, where students are required
to create an object-oriented program that handles a single domain
entity. The main reason for its existence was the observation that
the introduction of classes, class and object methods and attributes
was initially confounding for many students.

3.2.3 Analysis and visualization of assignments corresponding to
multiple students. Given that many classes, including the one pre-
sented in this study have high enrollment, many activities, including
seminars and laboratory work are carried out in smaller formations.
Many times, these are coordinated by several instructors. As such,
we believe it is important to enable analyzing the results for the
students found in a seminar or laboratory formation. Figure 2 illus-
trates a selection made in our tooling that reveals the Pylint scores
for the assignments submitted by 25 students (student identities
are protected according to European GDPR). This allows course
coordinators to check the progress of each formation and identify
those issues that several students have trouble with. Figure 3 illus-
trates the score range for all submitted assignments using box-plots.

We note that while most scores were above 0, for each assignment
Pylint identified problematic submissions that required additional
attention from the instructors.

3.3 Benefits
The benefits of this approach can be summarized as:

• Assesses quality and programming principles for source code.
It provides different perspectives for Python code, including
defects and code smells, offering the possibility of focusing
on different criteria to be monitored.

• Reduces time spent by teaching staff on repetitive issues.
Student source code is inspected automatically, and results
are available immediately.

• Allows to process projects for classes with high enrollment.
This is extremely useful in case of courses with numerous
participants, and especially when there are several instruc-
tors who evaluate student work. The tool acts as a guideline
that provides a uniform measure for all submissions.

• Allows to observe student progress during the entire semes-
ter. This is one of the scenarios proposed in our approach
and can offer tutors valuable measurements about student
effort, their results for each assignment, but also can show
trends for the entire semester.

• Provides an overall view of student performance, as de-
scribed in Section 3.2.2. It can provide valuable insight about
the entire activity associated with a course, and can be used
for further developing and improving course materials and
requirements.
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Figure 2: Pylint scores for 25 submissions of assignment A1.

• Allows to objectively assess student performance for a given
task, providing additional insight on the perceived difficulty
of the assignment. This is elaborated in Section 3.2.3.

3.4 Threats to Validity
We evaluated the threats that might influence the validity of our
study according to existing best practices [18] at each of the steps
in our process: data collection, integration with Pylint, and result
analysis.

Threats to internal validity were addressed in several steps. We
validated each student submission to ensure it was valid for the
course and given assignment, removed duplicated submissions and
enforced a standardized naming scheme. Submission analysis using
Pylint was automated and results were verified for accuracy.

With regards to external validity, we believe our approach is
amenable for application to software engineering courses where
students received substantial multi-week assignments. We must
note that results from static analysis will be skewed in the case of
submissions that were previously checked by students themselves
using the same, or other analysis tools. In addition, the scores re-
ported using static analysis only paint a partial picture, as program
functionality and actual reliability cannot be adequately tested. As
such, we must account for the fact that reported scores are only an
imperfect approximation of true software quality with regards to
both its functional and non-functional requirements.

We addressed threats to construct validity by limiting our explo-
ration to well-known issues. We employed a popular static analyzer
and limited our study to the span of a single semester, to eliminate
the influence inter-semester changes may have on course rules and
materials.

Code review automation brings important benefits in terms of
time, but cannot replace human expertise. Issues like logical error
problems, requirements misunderstanding, missing functionalities
[4] cannot be detected by such tools. So, such a tool must be used
to complement student and instructor effort, in order to save time.

4 RELATEDWORK
Although the benefits of code review and static analysis tools have
been clearly recognized and such tools are part of everyday life in
software development, their applicability in software engineering
education did not reach its full potential. Some contributions have
been reported especially in the case of students using these tools
to improve their programming skills.

Figure 3: Pylint scores for each assignment represented as
box plots.Whiskers represent lowest andhighest scores, and
boxes showcase the inter-quartile range.

A study conducted about the use of code review by students at
an introductory course in Software Engineering [21] was based
on an evaluation of comments from the tool and a survey given
to the students. The conclusion was that including code review
at undergraduate level can enhance program comprehension and
improve programming ability and enforcement of coding standards.

PyTA was introduced in [13] as a wrapper for Pylint. Authors
used it in programming exercises to first year students in computer
science. They reported that the tool helped students solve errors in
less time, and complete programming assignments quicker.

An approach in which Pylint is used for student assessment
is presented in [7], which compares traditional, instructor-driven
grading with Pylint scores for a data set consisting of 44 student sub-
missions for one programming assignment of medium complexity.
Although the experiment was a reduced scale one, the conclusions
highlighted the accuracy of the tool in detecting several source
code issues, but also reported a lower score than the one given by
the instructor.

While [13, 21] show the application of code review based on static
analysis in the learning process, and [7] in the assessment of student
work, our approach brings at least two benefits: tracking student
progress across all course assignments and being able to select
several aspects of the code, not only a general score, which might
provide more detailed feedback about which aspects students need
to improve. While other research studies on this topics concentrates
mainly on benefits for the students, our approach has the unique
feature of providing insights for teaching staff, helping them in
improving project requirements and complexity.

5 CONCLUSIONS AND FUTUREWORK
Code quality is an essential attribute for all software systems, and it
should be included in introductory courses teaching programming
and software engineering. We conducted a study on how a popular
code review and static analysis tool can be used to assist instructors
in evaluating these aspects, and highlighted a number of possible
benefits of such an approach, especially in case of courses having a
large number of enrolled students.

In conclusion, we believe our approach is valuable for monitor-
ing student progress and shows that some activities associated with
assessment can be automated. The experimental study is based on
real data gained from 200 enrolled students and 642 analyzed sub-
mitted assignments which point to solid results that emphasize the
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actual situation from the presented course. The study also showed
that Pylint provides meaningful information regarding different
aspects of code style or logical errors that can be further processed
and properly analyzed.

Future plans associated with this project include a more com-
prehensive analysis of the messages returned by Pylint, in order
to detect common errors or misuse of programming artefacts. Fur-
thermore, we plan to extend the study to cover several academic
years. Integrating the use of such tools into the course itself, and
encouraging students to use it during their programming sessions
is also a future goal.
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