
Artificial Intelligence Meets Software Engineering in the
Classroom
Laura Diosan∗

Simona Motogna∗
lauras@cs.ubbcluj.ro

motogna@cs.ubbcluj.ro
Babeş Bolyai University
Cluj-Napoca, Romania

ABSTRACT
We aimed to assess the reliability of teaching Artificial Intelligence
for Software Engineering master students. We propose a semi-
interactive course where the students have to develop applications
for solving real world problems by using various intelligent tools.
We try to integrate these two disciplines, since both deal with
modeling of the real case studies, sharing some common elements.
We report on a study that we conducted on observing student teams
as they develop AI-based applications. We validate the proposed
semi-interactive course by using various criteria. In addition, we
checked if some best practices from industrial teams are followed
by our students.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; • Computing methodologies→ Machine learning.

KEYWORDS
Software engineering education, Software creation, theory and
algorithms for application domain

ACM Reference Format:
Laura Diosan and Simona Motogna. 2019. Artificial Intelligence Meets Soft-
ware Engineering in the Classroom. In Proceedings of the 1st ACM SIGSOFT
International Workshop on Education through Advanced Software Engineering
and Artificial Intelligence (EASEAI ’19), August 26, 2019, Tallinn, Estonia.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3340435.3342718

1 INTRODUCTION
The content of a course must cover the fundamental aspects of the
discipline, such that it will contribute to the overall formation of
professionals in a specific domain. In computer science, the overall
accepted guidelines are provided by ACM Curricula Recommen-
dations [1], which offer relevant information about what a course

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASEAI ’19, August 26, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6852-0/19/08. . . $15.00
https://doi.org/10.1145/3340435.3342718

should contain and what principles to follow in constructing an en-
tire curricula. According to ACM, ”Software engineering spans the
entire software lifecycle - it involves creating high-quality, reliable
programs in a systematic, controlled, and efficient manner using
formal methods for specification, evaluation, analysis and design,
implementation, testing and maintenance”.

In the last decades Software Engineering (SE) curricula had fo-
cused on knowledge regarding these activities. However, the last
decade has seen a significant increase in complexity and size of
software products, as well as an unforeseen extension of application
domains. Software has become more ”intelligent”, more ”connected”
and more ”mobile”. The advances obtained in Artificial Intelligence
(AI) have made their way to be incorporated in modern applications,
in order to solve more complicated problems, to provide better so-
lutions (optimized) or to learn from their own behavior. These are
the reasons why at this moment many software engineers will be
required to design and implement AI based application solving real
life problems (with a special attention to address societal problems
and their challenges).

The curricula design should establish some course objectives
and must take into consideration the amount of time dedicated to
teaching and to study. Based on this, we then have to set evalua-
tion criteria that should clearly reflect qualitative and quantitative
measures of students’ knowledge. The design should also take into
account the level of knowledge and abilities a student who elects the
course should have, so there should be a distinction between intro-
ductory courses (suitable for bachelor degree studies) and advanced
topics (suitable for master degree studies). Bloom’s taxonomy of
learning [3] is mapped to course objectives based on this classifica-
tion, due to the fact that the objectives are targeting tasks such as
apply, analyze and evaluate.

The purpose of this paper is to report our experience of designing
a course for software engineering master students, that integrates
intelligent methods into real life applications. The main focus was
to have a problem-oriented approach for the course, to challenge
the students to gain project and team work experience. We begin by
describing the principles in designing the course, then the course
content. The projects and the development stages are presented
in details, in order to highlight the specific software development
stages for an AI solution, followed by project and course evaluation.
In the end, we give some conclusions and consider some future
improvements of the course.

35

https://doi.org/10.1145/3340435.3342718
https://doi.org/10.1145/3340435.3342718

EASEAI ’19, August 26, 2019, Tallinn, Estonia Laura Diosan and Simona Motogna

Figure 1: Bloom Taxonomy, adapted from [3]

2 COURSE STRUCTURE AND CONTENT
The course Intelligent Tools for Social Good is designed for Mas-
ter students in Software Engineering. The premises from which
we are building knowledge in this course are: the students have a
solid background in Computer Science (they hold a B.Sc. in Com-
puter Science), with good competences in software development
(programming languages, IDE, software development processes
and activities), and followed an introductory course in Artificial
Intelligence (including basic Machine Learning algorithms). The
design of the course followed three main principles that lead the
construction of the content and the evaluation of the students:

(1) Interdisciplinarity: combine SE concepts with AI approaches
(2) Real-life challenging problems: not easy, when a brute force

solution is not appropiate
(3) Soft skills: problem solving, team work, communication.
As we address, mainly, software engineering students, we evalu-

ated the course objectives against the recommendations for such
study programs [5]:

• ”Focus on lasting principles rather than last-minute fashion-
able technologies and buzzwords”: algorithms for solving
classes of problems were presented at the course, discussing
the usefulness of different solutions based on performance
and efficiency; also, the project requirements asked to con-
sider at least two possible solutions and to evaluate them;

• ”Integrate class teaching with projects”: the course has two
teaching classes and one project class per week, followed
by individual work, in order to combine the necessary the-
oretical knowledge with necessary development skills to
implement them;

• ”Try to make things easy and understandable”: the theoret-
ical part will not concentrate on the development of algo-
rithms, but rather on their applicability;

• ”Teach how to select and evaluate different methods and
approaches rather than follow them like recipes”: several
algorithms are discussed with classes of problems; also, one
of the main tasks of the project was the evaluation of the
solution with a relevant data set.

2.1 Course Content
In order to tackle some challenges of today’s society the course
brings together several intelligent methods:

• optimization algorithms: classic algorithms (e.g. Greedy), but
also modern ones such as nature-inspired (e.g. Evolutionary
Algorithms [6])

Table 1: Body of Knowledge covered by the course

KA Unit Course Project

SE Software Project Management 0 2
SE Tools and Environments 0 5
SE Requirements Engineering 0 2
SE Software Design 0 3
SE Software Construction 0 3
AL Advanced Data Structures Alg. 4 8
IM Information Management Concepts 1 2
CN Modelling and Simulation 4 9
IS Advanced Represent. and Reasoning 5 10
IS Advanced Machine Learning 5 10
IS Perception and Computer Vision 5 10
SDF Algorithms and Design 4 8

• machine learning: supervised and unsupervised learning al-
gorithms, traditional (e.g. Support Vector Machines [4], De-
cision Trees [12]) and modern ones (e.g. Deep Learning [2],
Genetic Programming [10], Cellular Automata [14]).

All these methods are deeply analysed and involved in solving
social problems from various domains: medical/healthcare, safety/
automotive, environmental sustainability. The final aim is to bridge
the gaps between these areas, enabling interdisciplinary coopera-
tions in a scientific and socially highly topical area through a shift
in thinking towards new perspectives and solutions.

The content of the lectures are problem oriented, following a path
from real life problem to model to applied algorithm, rather than
from theory to practice. ”Learning by doing”[5] is more effective in
this case, since the course addresses master students, which already
have a good theoretical background.

The course follows an active/interactive way of teaching, by
offering examples and exercises and organizing a series of debates
such that the students analyze and evaluate several solutions in
order to find the optimal one.

A secondary aim of the course is to bring together all three
academical components: knowledge generation by research, knowl-
edge dissemination through teaching and knowledge usage by de-
veloping services to society (even if in a primary form— proof of
concepts, not as commercial one — final products). The entire pro-
cess of knowledge management is student-centric, which not only
helps bring us convenience but also presents new challenges of
processing and analyzing massive real data.

The content of the course and of the project have been designed
according to the ACM Curricula recommendations [1], and cover
different knowledge units from several knowledge areas, as shown
in Table 1; the numbers associated to columns Course and Project
represent the designed number of hours from the total allotment
dedicated to the corresponding knowledge unit. More detailed in-
formation about the course can be found at https://softwareengubb.
wordpress.com/page/. The focus on applicative part can be also
noticed from this time allocation. For the aspects related to SE, we
focused on practical aspects, that’s why the allocation is on project
time. However, this year experience showed us that some topics
regarding these aspects should be included in the lectures.

36

https://softwareengubb.wordpress.com/page/
https://softwareengubb.wordpress.com/page/

Artificial Intelligence Meets Software Engineering in the Classroom EASEAI ’19, August 26, 2019, Tallinn, Estonia

2.2 Projects
The aim of project development was to familiarize the students with
specific software development stages for AI based solutions. Software
development phases are distinct when AI techniques are involved
because: it is a more iterative process (depending on finding, inte-
gration and optimization of the model, which means several tries);
it is more dependent on the application domain due to necessary
estimations; and finally, it is more client-oriented since it requires
clients’ feedback for the model choice and model validation.

The students were asked to form teams, such that each indi-
vidual student will learn teamwork skills, and each team will self
organize and manage its’ own project, as advised by experiential
learning in teams [7]. 32 students formed 12 teams (the teams were
decided based on students choices, so teams of 2 up to 4 students
were formed), each choosing their a single project topic . These
topics varied from real-life problems, such as automotive/driver
assistance (pedestrian detection, traffic sign detection and recogni-
tion), medical (heart chamber segmentation, motion tracking for
kinetic-therapy), to theoretical problems: computer vision (edge
detection, image recognition), planning (scheduling), community
detection in complex networks and multi-objective optimisation
problems. Other SE topics such as project management, risk as-
sessment are presented at other courses of the same program. The
essential requirement was to use intelligent tools (AI algorithms
from various libraries/frameworks: sklearn, Weka, Orange, Rapid-
Minner, OpenCV).

The project was divided in several stages, corresponding to the
specific methodology of developing AI based software application:

• Data management (collection, cleaning, labelling), with the
following purposes:
– transfer learning: from general or synthetic data to more
specialized data — 83% (= 10 out of 12) of projects have suc-
cessfully implemented transfer learning. Transfer learn-
ing refers to the adaptation and improvement of a model
developed for a task in order to be used (reused or as start-
ing point) on a new task (with more specialized data), by
exploiting its generalization ability. Developing custom
models, but general at the same time, requires both SE
skills and ML knowledge.

– feature engineering (data transformation/pre-processing)
— only 50% (= 6 out of 12) of projects improved the perfor-
mance of problem solving by explicit extraction of more
informative features. Possible explanations: quality of data
used strongly influences the identification of a good intel-
ligent model (an accurate classifier or predictor). Without
data, an ML algorithm does not work. Therefore, it is very
important to do a good management of data: discovering
the most appropriate and useful data, sourcing and storing
the data, versioning and selecting some of data. Such a
task requires competent specialists. In addition, the ma-
jority of problems were solved by using fully automatic
learning algorithms (e.g. Convolutional Neural Networks
that are able of performing simultaneously both feature
learning and model learning). The final aim was to solve
an important social problem by using an intelligent tool
and not to develop a new one.

• Feedback loop for a good model — in 67% (= 8 out of 12)
of projects the students have tried to tune the learnt model
(identifying the best hyper-parameters and custom the solv-
ing method). The workflow of an AI-feature application is
not linear [11], because it can contain one or more feedback
loops. Model training and evaluation is a stage where the
developers have to repeat various experiments, along more
iterations, until the model converges to an optimal one. In-
tegrating the ML workflow in the developing process [8, 9]
was a real challenge for our students.

• Model improvement (AI/research perspective) – in 17% (= 2
out of 12) of projects, we have identified original contribu-
tions from a research perspective (by proposing an original
intelligent solving algorithm or by enriching an existing
method with new extensions); even if we addressed master
students, the focus was on building software applications
with intelligent features in order to solve a real-world prob-
lem (and not to develop new intelligent techniques).

• Statistical analysis of the results — we have asked that each
problem to be solved by two or more different approaches
(two different intelligent mechanisms) and thus, in order to
evaluate the quality of problem solving, the students had
to compare the results obtained by these AI-based methods.
The comparison must be performed in terms of quality (error,
accuracy, precision, etc.) and of complexity. The qualitative
perspective involves the usage of some statistical tests in
order to quantify the generalization ability of the learnt mod-
els (e.g. confidence intervals for ensuring that if we change
the input data, the learnt model is able to deal with it). In
addition, numerous AI-based problem solving technologies
provide, to the end of the learning process, complex black-
box models that suffer from interpretability; in this context,
the programmers have to prepare either some visualizations
of the trained models or to try to quantify and to reduce
the model complexity. In our case, in 58% (= 7 out of 12) of
projects this analysis stage was performed.

2.3 Evaluation
Teacher’s perspective: One of the course requirements was to
do a project; this project is an opportunity for students to explore
an interesting machine learning problem of their choice, whether
empirically or theoretically. In general, the students had to con-
duct a small experiment (pick a dataset and apply an appropriate
machine learning algorithm) and prepare a scientific report. Both,
the project and the report, were evaluated based on a few crite-
ria: the clarity of the ideas and concepts, the technical quality of
the application (with a special attention to the hidden technical
debt in ML developing process [13] such as boundary erosion, en-
tanglement, hidden feedback loops, undeclared consumers, data
dependencies, configuration issues, changes in the external world,
a variety of system-level anti-patterns), the extensiveness of the
study and experiments, the analysis of the results, the writing style
and the clarity of the written paper, the quality of the final oral
presentation. All these criteria are mapped into experience points.
Some penalties have been applied when the deadlines have passed.

37

EASEAI ’19, August 26, 2019, Tallinn, Estonia Laura Diosan and Simona Motogna

Figure 2: Other courses

In addition, a pro-active context was prepared for project dissemina-
tion: each question asked or discussion initiated by a student who
is not part of the project team was granted with several experience
points.

Student’s perspective: In order to obtain a fair feedback from
the students about this course, we have constructed a questionnaire
divided in 3 parts: course content, project experience and evalua-
tion methods. 25 students have responded to all questions. Most of
the students considered the course challenging enough (52% voted
for medium difficulty, none for easy, 1 for very difficult, 20% for low
difficulty, and 24% for difficult), while most of them considered that
incorporating such a tool in a software system is rather difficult
(48% choose medium difficulty, and 40% choose difficult). For the
project part, the challenges were to adapt the tool for the speci-
ficity of the problem (52% considered difficult, and 32% considered
medium difficult) and to integrate the tool into the application (52%
said it was medium difficulty, and 24% said it was difficult). From
an experience point of view: almost half of the students declared
that the tool influenced the choice of the programming language.
72% of them used traditional IDE, and only one student used a
specific tool (namely, Jupyter notebook). The questionnaire also
showns that most of the students (72%) managed to go through all
development stages, while the other 28% didn’t, mostly due to bad
time management. Our assumption about interdisciplinarity was
well founded, since students considered they used knowledge from
other courses: AI (48%), SE (41%), but also Statistics (7%), as shown
in Figure 2. The feedback shown that the students appreciated the
evaluation, considering it fair and did not proposed any change.

The complete questionnaire and the students responses can be
found at https://softwareengubb.wordpress.com/page/

3 CONCLUSIONS AND PERSPECTIVES
The current study presents the experience gained while introduc-
ing a course with two main purposes: i) use of AI methods and
algorithms in solving real life problems and ii) integrate AI specific
solutions in software systems. We explained the principle in design-
ing the course content, with a special attention dedicated to the
applicative part. We described in detail how the application stages
interleaves AI tasks (model representation, training, statistical anal-
ysis) with SE tasks (requirements engineering, SE processes, project
management). In the end, we give an overview of the course eval-
uation. The essential characteristics that differentiate the course
from a generalist one, is dealing with real life industry data and
specific software development phases for integrated AI projects.

Instead of comparing this approach with related work (which
is very difficult considering the multitude of existing courses), we
tried to analyze how the ACM recommendations are identified in
the course and how much the good practices [5] are satisfied.

The course activities performed identified some challenges, that
will be addressed in order to improve this course. First at all, the
computing power of the students’ laptops have raised some issues
related to the data used and the selected algorithms; a solution
can be to use a small cluster with enhanced computing capabilities.
Secondly, both from a learning and teacher evaluation perspectives,
an improved versioning discipline will be desirable; the students,
in most of the cases, have kept versions from the development
point of view (using GitHub), but failed to achieve this from project
management. Lastly, the biggest threat to the successful completion
of the course was time management; a defective time management
of the student influenced evaluation of projects.

This analysis has highlight the improvements and future devel-
opments that can be brought to this course. In order to make the
project more realistic, a domain expert from the application domain
should be involved in different phases of the project: to establish the
model, to analyze the results, and to validate the model integrated
into the software solution. Another future extension, based on the
students feedback will be to propose projects topics related to more
familiar areas of interest from day-to-day life.

REFERENCES
[1] 2013. Computer Science Curricula 2013. Retrieved April 22, 2019 from https:

//www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[3] Engelhart M. D. Furst E. J. Hill W. H. Krathwohl D. R. A. Bloom, B. S. 1956. Taxon-
omy of Educational Objectives: The Classification of Educational Goals. Handbook
1: Cognitive Domain. David McKay Co, New York.

[4] C. Cortes and V. Vapnik. 1995. Support-Vector Networks. Machine Learning 20
(1995), 273.

[5] Carlo Ghezzi and Dino Mandrioli. 2005. The Challenges of Software Engineer-
ing Education. In Proceedings of the 27th International Conference on Software
Engineering (ICSE ’05). 637–638. https://doi.org/10.1145/1062455.1062578

[6] D. E. Goldberg, K. Deb, and J. H. Clark. 1992. Genetic Algorithms, Noise, and the
Sizing of Populations. Complex Systems 6 (1992), 333–362.

[7] Anna B. Kayes, D. Christopher Kayes, and David A. Kolb. 2005. Experiential
learning in teams. Simulation & Gaming 36, 3 (2005), 330–354. https://doi.org/
10.1177/1046878105279012

[8] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The emerging role of data scientists on software development teams. In Proceed-
ings of the 38th International Conference on Software Engineering. ACM, 96–107.

[9] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018.
Data scientists in software teams: State of the art and challenges. IEEE Transac-
tions on Software Engineering 44, 11 (2018), 1024–1038.

[10] J.R. Koza, A. David, F. H Bennett III, and M. Keane. 1999. Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman.

[11] Brendan Murphy, Christian Bird, Thomas Zimmermann, Laurie Williams, Nachi-
appan Nagappan, and Andrew Begel. 2013. Have agile techniques been the silver
bullet for software development at microsoft?. In 2013 ACM/IEEE international
symposium on empirical software engineering and measurement. IEEE, 75–84.

[12] J Ross Quinlan. 1983. Learning efficient classification procedures and their
application to chess end games. In Machine learning. Springer, 463–482.

[13] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. In Advances
in neural information processing systems. 2503–2511.

[14] Stephen Wolfram. 1983. Statistical mechanics of cellular automata. Reviews of
modern physics 55, 3 (1983), 601.

38

https://softwareengubb.wordpress.com/page/
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://doi.org/10.1145/1062455.1062578
https://doi.org/10.1177/1046878105279012
https://doi.org/10.1177/1046878105279012

	Abstract
	1 Introduction
	2 Course structure and content
	2.1 Course Content
	2.2 Projects
	2.3 Evaluation

	3 Conclusions and Perspectives
	References

