In Lecture 11...

- Hash tables
- Trees
- Binary Trees
Today

1. Binary Tree Traversal
2. Huffman coding
3. Binary Search Trees
A node of a (binary) tree is visited when the program control arrives at the node, usually with the purpose of performing some operation on the node (printing it, checking the value from the node, etc.).

Traversing a (binary) tree means visiting all of its nodes.

For a binary tree there are 4 possible traversals:
- Preorder
- Inorder
- Postorder
- Level order (breadth first)
In the following, for the implementation of the traversal algorithms, we are going to use the following representation for a binary tree:

BTNode:
- info: TElem
- left: ↑ BTNode
- right: ↑ BTNode

BinaryTree:
- root: ↑ BTNode
Preorder traversal

- In case of a preorder traversal:
 - Visit the root of the tree
 - Traverse the left subtree - if exists
 - Traverse the right subtree - if exists

- When traversing the subtrees (left or right) the same preorder traversal is applied (so, from the left subtree we visit the root first and then traverse the left subtree and then the right subtree).
Preorder traversal example

Preorder traversal: A, G, Q, X, Y, J, K, T, N, O
The simplest implementation for preorder traversal is with a recursive algorithm.

subalgorithm preorder_recursive(node) **is:**

```plaintext
//pre: node is a ↑ BTNode
if node ≠ NIL then
    @visit [node].info
    preorder_recursive([node].left)
    preorder_recursive([node].right)
end-if
```

end-subalgorithm
Preorder traversal - recursive implementation

- The *preorder_recursive* subalgorithm receives as parameter a pointer to a node, so we need a wrapper subalgorithm, one that receives a *BinaryTree* and calls the function for the root of the tree.

```plaintext
subalgorithm preorderRec(tree) is:
//pre: tree is a BinaryTree
    preorder_recursive(tree.root)
end-subalgorithm
```

- Assuming that visiting a node takes constant time (print the info from the node, for example), the whole traversal takes $\Theta(n)$ time for a tree with n nodes.
We can implement the preorder traversal algorithm without recursion, using an auxiliary *stack* to store the nodes.

- We start with an empty stack
- Push the root of the tree to the stack
- While the stack is not empty:
 - Pop a node and visit it
 - Push the node’s right child to the stack
 - Push the node’s left child to the stack
Preorder traversal - non-recursive implementation example

- Stack: A
- Visit A, push children (Stack: T G)
- Visit G, push children (Stack: T X Q)
- Visit Q, push nothing (Stack: T X)
- Visit X, push children (Stack: T J Y)
- Visit Y, push nothing (Stack: T J)
- Visit J, push child (Stack: T K)
- Visit K, push nothing (Stack: T)
- Visit T, push children (Stack: O N)
- Visit N, push nothing (Stack: O)
- Visit O, push nothing (Stack:)
- Stack is empty, traversal is complete
subalgorithm preorder(tree) is:
//pre: tree is a binary tree
s: Stack //s is an auxiliary stack
if tree.root ≠ NIL then
 push(s, tree.root)
end-if
while not isEmpty(s) execute
 currentNode ← pop(s)
 @visit currentNode
 if [currentNode].right ≠ NIL then
 push(s, [currentNode].right)
 end-if
 if [currentNode].left ≠ NIL then
 push(s, [currentNode].left)
 end-if
end-while
end-subalgorithm
• Time complexity of the non-recursive traversal is $\Theta(n)$, and we also need $O(n)$ extra space (the stack)
In case of *inorder* traversal:

- Traverse the left subtree - if exists
- Visit the *root* of the tree
- Traverse the right subtree - if exists

When traversing the subtrees (left or right) the same inorder traversal is applied (so, from the left subtree we traverse the left subtree, then we visit the root and then traverse the right subtree).
Inorder traversal example

The simplest implementation for inorder traversal is with a recursive algorithm.

Subalgorithm inorder_recursive(node) is:

```plaintext
// pre: node is a ↑ BTNNode
if node ≠ NIL then
    inorder_recursive([node].left)
    @visit [node].info
    inorder_recursive([node].right)
end-if
```

We need again a wrapper subalgorithm to perform the first call to `inorder_recursive` with the root of the tree as parameter.

The traversal takes $\Theta(n)$ time for a tree with n nodes.
Inorder traversal - non-recursive implementation

We can implement the inorder traversal algorithm without recursion, using an auxiliary stack to store the nodes.

- We start with an empty stack and a current node set to the root
- While current node is not NIL, push it to the stack and set it to its left child
- While stack not empty
 - Pop a node and visit it
 - Set current node to the right child of the pushed node
 - While current node is not NIL, push it to the stack and set it to its left child
Inorder traversal - non-recursive implementation example

- currentNode: A (Stack:)
- currentNode: NIL (Stack: A G Q)
- Visit Q, currentNode NIL (Stack: A G)
- Visit G, currentNode X (Stack: A)
- currentNode: NIL (Stack: A X Y)
- Visit Y, currentNode NIL (Stack: A X)
- Visit X, currentNode J (Stack: A)
- currentNode: NIL (Stack: A J K)
- Visit K, currentNode NIL (Stack: A J)
- Visit J, currentNode NIL (Stack: A)
- Visit A, currentNode T (Stack:)
- currentNode: NIL (Stack: T N)
- ...
Inorder traversal - non-recursive implementation

subalgorithm inorder(tree) is:
//pre: tree is a BinaryTree
 s: Stack //s is an auxiliary stack
 currentNode ← tree.root
 while currentNode ≠ NIL execute
 push(s, currentNode)
 currentNode ← [currentNode].left
 end-while
 while not isEmpty(s) execute
 currentNode ← pop(s)
 @visit currentNode
 currentNode ← [currentNode].right
 while currentNode ≠ NIL execute
 push(s, currentNode)
 currentNode ← [currentNode].left
 end-while
 end-while
end-subalgorithm
Inorder traversal - non-recursive implementation

- Time complexity $\Theta(n)$, extra space complexity $O(n)$
Postorder traversal

- In case of *postorder* traversal:
 - Traverse the left subtree - if exists
 - Traverse the right subtree - if exists
 - Visit the *root* of the tree

- When traversing the subtrees (left or right) the same postorder traversal is applied (so, from the left subtree we traverse the left subtree, then traverse the right subtree and then visit the root).
Postorder traversal: Q, Y, K, J, X, G, N, O, T, A
The simplest implementation for postorder traversal is with a recursive algorithm.

```subalgorithm postorder_recursive(node) is:
//pre: node is a ↑ BTNode
if node ≠ NIL then
    postorder_recursive([node].left)
    postorder_recursive([node].right)
    @visit [node].info
end-if
end-subalgorithm```

We need again a wrapper subalgorithm to perform the first call to `postorder_recursive` with the root of the tree as parameter.

The traversal takes $\Theta(n)$ time for a tree with $n$ nodes.
We can implement the postorder traversal without recursion, but it is slightly more complicated than preorder and inorder traversals.

We can have an implementation that uses two stacks and there is also an implementation that uses one stack.
Postorder traversal with two stacks

The main idea of postorder traversal with two stacks is to build the reverse of postorder traversal in one stack. If we have this, popping the elements from the stack until it becomes empty will give us postorder traversal.

Building the reverse of postorder traversal is similar to building preorder traversal, except that we need to traverse the right subtree first (not the left one). The other stack will be used for this.

The algorithm is similar to preorder traversal, with two modifications:

- When a node is removed from the stack, it is added to the second stack (instead of being visited)
- For a node taken from the stack we first push the left child and then the right child to the stack.
Postorder traversal with one stack

- We start with an empty stack and a current node set to the root of the tree.

- While the current node is not NIL, push to the stack the right child of the current node (if exists) and the current node and then set the current node to its left child.

- While the stack is not empty
  - Pop a node from the stack (call it current node).
  - If the current node has a right child, the stack is not empty and contains the right child on top of it, pop the right child, push the current node, and set current node to the right child.
  - Otherwise, visit the current node and set it to NIL.
  - While the current node is not NIL, push to the stack the right child of the current node (if exists) and the current node and then set the current node to its left child.
Postorder traversal - non-recursive implementation example

Node: A (Stack: )
Node: NIL (Stack: T A X G Q)
Visit Q, Node NIL (Stack: T A X G)
Node: X (Stack: T A G)
Node: NIL (Stack: T A G J X Y)
Visit Y, Node: NIL (Stack: T A G J X)
Node: J (Stack: T A G X)
Node: NIL (Stack: T A G X J K)
Visit K, Node: NIL (Stack: T A G X J)
Visit J, Node: NIL (Stack: T A G X)
Visit X, Node: NIL (Stack: T A G)
Visit G, Node: NIL (Stack: T A)
Node: T (Stack: A)
Node: NIL (Stack: A O T N)
...

Marian Zsuzsanna
DATA STRUCTURES AND ALGORITHMS
subalgorithm postorder(tree) is:
//pre: tree is a BinaryTree
s: Stack //s is an auxiliary stack
node ← tree.root
while node ≠ NIL execute
  if [node].right ≠ NIL then
    push(s, [node].right)
  end-if
  push(s, node)
  node ← [node].left
end-while
while not isEmpty(s) execute
  node ← pop(s)
  if [node].right ≠ NIL and (not isEmpty(s)) and [node].right = top(s) th
    pop(s)
    push(s, node)
    node ← [node].right
//continued on the next slide
Postorder traversal - non-recursive implementation

```java
else
 @visit node
 node ← NIL
end-if
while node ≠ NIL execute
 if [node].right ≠ NIL then
 push(s, [node].right)
 end-if
 push(s, node)
 node ← [node].left
end-while
end-while
end-subalgorithm

- Time complexity Θ(n), extra space complexity O(n)
Traversal without a stack

- Preorder, postorder and inorder traversals can be implemented without an auxiliary stack if we use a representation for a node, where we keep a pointer to the parent node and a boolean flag to show whether the current node was visited or not.

- When we start the traversal we assume that all nodes have the visited flag set to false.

- During the traversal we set the flags to true, but when traversal is over, we have to make sure that they are set to false again (otherwise a second traversal is not possible).
Inorder traversal without a stack

- We take a current node which is set to the root of the tree
- Repeat the following until the node becomes NIL
 - If the node has a left child and it was not visited, the node becomes the left child
 - Otherwise, if the node is not visited, we will visit it
 - Otherwise, if the node has a right child and it was not visited, the node becomes the right child
 - Otherwise, set the children (left and right) of this node back to unvisited and change the node to its parent
Inorder traversal without a stack - example

- Start with node A and go left when possible (Node: Q)
- Visit Q and go right if possible, if not, go up (Node: G)
- Visit G and go right if possible (Node: X)
- Go left as much as possible (Node: Y)
- Visit Y and go right if possible, if not, go up (Node: X)
- Visit X and go right if possible (Node: J)
- Go left as much as possible (Node: K)
- Visit K and go right if possible, if not go up (Node: J)
- Visit J and go right if possible, it not go up and set children of J to non-visited (Node: X)
- Go up and set children of X to non-visited (Node: G)
- ...
Inorder traversal without a stack - implementation

subalgorithm inorderNoStack(tree) is:

//pre: tree is a BinaryTree, with nodes containing pointer to parent and visited
current ← tree.root
while current ≠ NIL execute
 if [current].left ≠ NIL and [[current].left].visited = false then
 current ← [current].left
 else if [current].visited = false then
 @visit current
 [current].visited ← true
 else if [current].right ≠ NIL and [[current].right].visited = false then
 current ← [current].right
 else
 //we are going up, but before that reset the children to not-visited
 if [current].left ≠ NIL then
 [[current].left].visited ← false
 end-if
 //continued on the next slide...
Inorder traversal without a stack - implementation

```
if [current].right ≠ NIL then
    [[current].right].visited ← false
end-if
current ← [current].parent
end-if
end-while
if tree.root ≠ NIL then
    [tree.root].visited ← false
end-if
end-subalgorithm
```
In case of level order traversal we first visit the root, then the children of the root, then the children of the children, etc.

Level order traversal: A, G, T, Q, X, N, O, Y, J, K
For level order traversal we do not have a recursive implementation, only a non-recursive one.

The algorithm is very similar to preorder traversal, except that we use a queue instead of a stack.

- We start with an empty queue
- Push the root of the tree to the queue
- While the queue is not empty:
 - Pop a node and visit it
 - Push the node’s left child to the queue
 - Push the node’s right child to the queue
subalgorithm levelorder(tree) is:
//pre: tree is a binary tree
q: Queue //q is an auxiliary queue
if tree.root ≠ NIL then
 push(q, tree.root)
end-if
while not isEmpty(q) execute
 currentNode ← pop(q)
 @visit currentNode
 if [currentNode].left ≠ NIL then
 push(q, [currentNode].left)
 end-if
 if [currentNode].right ≠ NIL then
 push(q, [currentNode].right)
 end-if
end-while
end-subalgorithm
Time complexity of the non-recursive traversal is $\Theta(n)$, and we also need $O(n)$ extra space (the queue)
The interface of the binary tree contains the *iterator* operation, which should return an iterator.

This operation receives a parameter that specifies what kind of traversal we want to do with the iterator (preorder, inorder, postorder, level order).

The traversal algorithms discussed so far, traverse all the elements of the binary tree at once, but an iterator has to do element-by-element traversal.

For defining an iterator, we have to divide the code into the functions of an iterator: *init, getCurrent, next, valid*.
In order binary tree iterator

- Assume an implementation without a parent node.
- What fields do we need to keep in the iterator structure?

InorderIterator:
- bt: BinaryTree
- s: Stack
- currentNode: ↑ BTNode
Inorder binary tree iterator - init

What should the *init* operation do?

```plaintext
subalgorithm init (it, bt) is:
//pre: it - is an InorderIterator, bt is a BinaryTree
  it.bt ← bt
  init(it.s)
  node ← bt.root
  while node ≠ NIL execute
    push(it.s, node)
    node ← [node].left
  end-while
  if not isEmpty(it.s) then
    it.currentNode ← top(it.s)
  else
    it.currentNode ← NIL
  end-if
end-subalgorithm
```
Inorder binary tree iterator - getCurrent

What should the `getCurrent` operation do?

```plaintext
function getCurrent(it) is:
    getCurrent ← [it.currentNode].info
end-function
```
Inorder binary tree iterator - valid

What should the *valid* operation do?

```plaintext
function valid(it) is:
    if it.currentNode = NIL then
        valid ← false
    else
        valid ← true
    end-if
end-function
```
Inorder binary tree iterator - next

What should the \textit{next} operation do?

\begin{verbatim}
subalgorithm next(it) is:
 node ← pop(it.s)
 if [node].right ≠ NIL then
 node ← [node].right
 while node ≠ NIL execute
 push(it.s, node)
 node ← [node].left
 end-while
 end-if
 if not isEmpty(it.s) then
 it.currentNode ← top(it.s)
 else
 it.currentNode ← NIL
 end-if
end-subalgorithm
\end{verbatim}
How to remember the difference between traversals?

- Left subtree is always traversed before the right subtree.
- The visiting of the root is what changes:
 - PREorder - visit the root before the left and right
 - INorder - visit the root between the left and right
 - POSTorder - visit the root after the left and right
Assume you have a binary tree, but you do not know how it looks like, but you have the *preorder* and *inorder* traversal of the tree. Give an algorithm for building the tree based on these two traversals.

For example:
- Preorder: A B F G H E L M
- Inorder: B G F H A L E M
Think about it

- Can you rebuild the tree if you have the postorder and the inorder traversal?

- Can you rebuild the tree if you have the preorder and the postorder traversal?
Tree traversal

- When we have a tree that is not binary, there are only two possible traversals:
 - Level order (breadth first) - looks exactly the same as in case of a binary tree, we use an auxiliary queue to store the nodes.
 - Depth first - similar to breadth first, but we use an auxiliary stack to store the nodes (it is the generalizations of preorder traversal). By using a stack, the algorithms will always go as deep as possible in the tree and only once a whole subtree of a node was visited we pass to the next child.
Tree traversal - Example

Huffman coding

- The *Huffman coding* can be used to encode characters (from an alphabet) using variable length codes.

- In order to reduce the total number of bits needed to encode a message, characters that appear more frequently have shorter codes.

- Since we use variable length code for each character, *no code can be the prefix of any other code* (if we encode letter E with 01 and letter X with 010011, during decoding, when we find a 01, we will not know whether it is E or the beginning of X).
When building the Huffman encoding for a message, we first have to compute the frequency of every character from the message, because we are going to define the codes based on the frequencies.

Assume that we have a message with the following letters and frequencies

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>e</th>
<th>i</th>
<th>s</th>
<th>t</th>
<th>space</th>
<th>newline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10</td>
<td>15</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>
Huffman coding

For defining the Huffman code a binary tree is build in the following way:

- Start with trees containing only a root node, one for every character. Each tree has a weight, which is frequency of the character.
- Get the two trees with the least weight (if there is a tie, choose randomly), combine them into one tree which has as weight the sum of the two weights.
- Repeat until we get have only one tree.
Huffman coding
Huffman coding

- Code for each character can be read from the tree in the following way: start from the root and go towards the corresponding leaf node. Every time we go left add the bit 0 to encoding and when we go right add bit 1.

- Code for the characters:
 - NL - 00000
 - S - 00001
 - T - 0001
 - A - 001
 - E - 01
 - I - 10
 - SP - 11

- In order to encode a message, just replace each character with the corresponding code.
Huffman coding

- Assume we have the following code and we want to decode it: 011011000100010011100100000

- We do not know where the code of each character ends, but we can use the previously built tree to decode it.

- Start parsing the code and iterate through the tree in the following way:
 - Start from the root
 - If the current bit from the code is 0 go to the left child, otherwise go to the right child
 - If we are at a leaf node we have decoded a character and have to start over from the root

- The decoded message: E I SP T T A SP I E NL
A *Binary Search Tree* is a binary tree that satisfies the following property:

- if \(x \) is a node of the binary search tree then:
 - For every node \(y \) from the left subtree of \(x \), the information from \(y \) is less than or equal to the information from \(x \)
 - For every node \(y \) from the right subtree of \(x \), the information from \(y \) is greater than or equal to the information from \(x \)

In order to have a binary search tree, we need to store information in the tree that is of type \(TComp \).

Obviously, the relation used to order the nodes can be considered in an abstract way (instead of having \(\leq \) as in the definition).
If we do an inorder traversal of a binary search tree, we will get the elements in increasing order (according to the relation used).
The terminology and many properties discussed for binary tree is valid for binary search trees as well:

- We can have a binary search tree that is full, complete, almost complete, degenerate or balanced
- The maximum number of nodes in a binary search tree of height N is $2^{N+1} - 1$ - if the tree is complete.
- The minimum number of nodes in a binary search tree of height N is N - if the tree is degenerate.
- A binary search tree with N nodes has a height between $\log_2 N$ and N (we will denote the height of the tree by h).
Binary search trees can be used as representation for sorted containers: sorted maps, sorted multimaps, priority queues, sorted sets, etc.

In order to implement these containers on a binary search tree, we need to define the following basic operations:
- search for an element
- insert an element
- remove an element

Other operations that can be implemented for binary search trees (and can be used by the containers): get minimum/maximum element, find the successor/predecessor of an element.
We will use a linked representation with dynamic allocation (similar to what we used for binary trees).

We will assume that the info is of type TComp and use the relation "≤".
How can we search for an element in a binary search tree?

How can we search for element 15? And for element 14?
How can we implement the search algorithm recursively?
How can we implement the search algorithm recursively?

```plaintext
function search_rec (node, elem) is:
  //pre: node is a BSTNode and elem is the TComp we are searching for
  if node = NIL then
    search_rec ← false
  else
    if [node].info = elem then
      search_rec ← true
    else if [node].info < elem then
      search_rec ← search_rec([node].right, elem)
    else
      search_rec ← search_rec([node].left, elem)
  end-if
end-function
```
Complexity of the search algorithm:

\[\text{O}(h) \text{ (which is } \text{O}(n)) \]

Since the search algorithm takes as parameter a node, we need a wrapper function to call it with the root of the tree.

function search (tree, e) is:

// pre: tree is a BinarySearchTree, e is the elem we are looking for
search ← search rec(tree.root, e)
end-function
Complexity of the search algorithm: $O(h)$ (which is $O(n)$)

Since the search algorithm takes as parameter a node, we need a wrapper function to call it with the root of the tree.

```plaintext
function search (tree, e) is:
  //pre: tree is a BinarySearchTree, e is the elem we are looking for
  search ← search_rec(tree.root, e)
end-function
```