Variable Hardy and Hardy-Lorentz spaces and applications in Fourier analysis

Ferenc Weisz¹

Department of Numerical Analysis, Eötvös L. University H-1117 Budapest, Pázmány P. sétány 1/C., Hungary e-mail: weisz@inf.elte.hu

Let $p(\cdot)$: $\mathbb{R}^n \to (0,\infty)$ be a variable exponent function satisfying the globally log-Hölder condition and $0 < q \leq \infty$. We introduce the variable Hardy and Hardy-Lorentz spaces $H_{p(\cdot)}(\mathbb{R}^d)$ and $H_{p(\cdot),q}(\mathbb{R}^d)$. A general summability method, the so called θ -summability is considered for multidimensional Fourier transforms. Under some conditions on θ , it is proved that the maximal operator of the θ -means is bounded from $H_{p(\cdot)}(\mathbb{R}^d)$ to $L_{p(\cdot)}(\mathbb{R}^d)$ and from $H_{p(\cdot),q}(\mathbb{R}^d)$ to $L_{p(\cdot),q}(\mathbb{R}^d)$. This implies some norm and almost everywhere convergence results for the θ -means, amongst others the generalization of the well known Lebesgue's theorem. Some special cases of the θ -summation are considered, such as the Riesz, Bochner-Riesz, Weierstrass, Picard and Bessel summations.

¹This research was supported by the Hungarian Scientific Research Funds (OTKA) No K115804.