
12th Joint Conference on Mathematics and Computer Science, June 14 – 17, 2018, Cluj, Romania1

Refactoring for parallelization

Tamás Kozsik

Department of Programming Languages and Compilers
Eötvös Loránd University (ELTE), Budapest, Hungary

Tamas.Kozsik@elte.hu

The development of efficient parallel programs requires significant effort from the programmer’s
side. On the one hand, due to the increased complexity, it is much harder to guarantee the correct-
ness of the parallel code than that of the sequential one. On the other hand, it is not straightfor-
ward to find out which is the best way to parallelize a given program with a given input on a given
hardware architecture. Often there are many possibilities, and the software developer needs to ex-
periment with the code, and to apply profiling techniques, in order to make a good parallelization
decision. It may even turn out that there is no effective parallelization of the given code under
the circumstances, because the runtime overhead of any parallelization cancels out all performance
gains. In such cases the programmer’s efforts were just wasted.

In order to minimize the effort put into parallelization and experimentation, software devel-
opers may be willing to use a refactoring tool to easily, quickly, and – most importantly – safely
apply the source code transformations required by the insertion and removal of parallel program-
ming constructs. Refactoring is the process of changing the code without changing its observable
behaviour. The goal of refactoring is to modify some non-functional properties of the code, e.g.
to improve its quality. A refactoring tool offers semantics preserving code transformations, and
can help avoid making errors during the process of refactoring. Since parallelization can be re-
garded as refactoring, some refactoring tools (e.g. [4]) have already started to offer parallelization
transformations.

Software development tools can not only automate code transformations, but they can also
facilitate the identification of parallelization opportunities. Pattern candidate discovery [3] is a
static source code analysis technique, which can find source code fragments amenable to refactoring
into instances of common parallel patterns. Parallel patterns [2] describe the sequential/parallel
structure of computations at a high level of abstraction. They can be implemented using algorithmic
skeletons [1], which are reusable, composable and configurable structures for parallel computations.

This talk gives an overview of the refactoring techniques to support pattern-based paralleliza-
tion, and describes recent achievements of code paraphrasing [2] in various functional programming
languages. The talk has been supported by the European Union, and co-financed by the European
Social Fund (EFOP-3.6.2-16-2017-00013).

References

[1] Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press,
1991. ISBN 0-262-53086-4

[2] Hammond, K., Aldinucci, M., Brown, C., Cesarini, F., Danelutto, M., González-Vélez, H., Kil-
patrick, P., Keller, R., Rossbory, M., Shainer, G., The ParaPhrase Project: Parallel Patterns for
Adaptive Heterogeneous Multicore Systems. In: Formal Methods for Components and Objects,
LNCS 7542, 2013. pp. 218–236.

[3] Kozsik, T., Tóth, M., Bozó, I., Horváth, Z., Static analysis for divide-and-conquer pattern
discovery. Computing and Informatics 35(4):764–791, 2017.

[4] Kozsik, T., Tóth, M., Bozó, I., Free the Conqueror! Refactoring divide-and-conquer functions.
Future Generation Computer Systems 79(2):687–699, 2018.


