Application function placement optimization in a mobile distributed cloud environment

Anna Reale, Péter Kiss, Charles Ferrari, Benedek Kovács, László Szilágyi, Melinda Tóth

Department of Programming Languages and Compilers, Eötvös Loránd University
Department of Data Science and Engineering, Eötvös Loránd University
anna.reale@inf.elte.hu, axx6v4@inf.elte.hu, svu938@inf.elte.hu, benedek.kovacs@ericsson.com, laszlo.szilagyi@ericsson.com, toth.m@inf.elte.hu

Distributed Computing in 5G Mobile Networks is a potential requirement for certain applications that depend on low latency and information sharing, through or with data information sources. Such applications may be observed as a distributed application, however there is no complete methodology present for deploying such applications that considers the special application domain[4, 7, 7]. We present a tool and method to optimize the partition of applications[2, 3, 5], dividing them into Modules, to deploy them in a distributed 5G Mobile Network environment. To do so we apply an approximation algorithm for the Path Computation and Function Placement Problem described in [1]. We show that under certain circumstances it is beneficial to deploy parts of such applications in a Cloud Computing environment with Distributed Cloud resources at the Mobile Network Edge. We verify our findings with an example, an Augmented Reality application.

References


