Random growth with reset: complex systems in a new perspective

Tamás S. Bíró¹ and Zoltán Néda²

 1 Theory Department, H.A.S. Wigner RCP, Budapest, Hungary 2 Department of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania

biro.tamas@wigner.mta.hu
zneda@phys.ubbcluj.ro

A simple model [1, 2] based on a master equation that contains a growth term and a reset term to a fundamental state is discussed. In the continuum limit the evolution equation writes:

$$\frac{\partial}{\partial t} \mathcal{P}(x,t) = -\frac{\partial}{\partial x} \left(\mu(x) \mathcal{P}(x,t) \right) - \gamma(x) \mathcal{P}(x,t).$$
(1)

For various $\mu(x)$ growth and $\gamma(x)$ reset rates such processes lead to distributions that are characteristic for complex systems [3, 4, 5]:

$\gamma(x)$	$\mu(x)$	Q(x)
γ	μ	Exponential: $\sim e^{-(\gamma/\mu)x}$
γ	$\sigma(x+b)$	Tsallis–Pareto: $\sim (1 + x/b)^{-1 - \gamma/\sigma}$
γ	$\sigma x^{\alpha}, \alpha < 1$	Weibull: $\sim x^{-\alpha} e^{-bx^{1-\alpha}}$
γ	$\sigma(x+a)(x+b)$	Pearson: $\sim (x+a)^{-1-v}(x+b)^{-1+v}$
γ	$\sigma \mathrm{e}^x$	Gompertz: $\sim \exp\left(\frac{\gamma}{\sigma}\mathrm{e}^{-x} - x\right)$
$\ln(x/a)$	σx	Log-Normal: $Q(x) dx \sim e^{-\gamma^2/2\sigma} d\gamma$
x	σ^2	Gauss: $\sim e^{-x^2/2\sigma^2}$
$\sigma(ax-c)$	σx	Gamma: $\sim x^{c-1} e^{-ax}$

Table 1: Common stationary density functions, Q(x), obtained with the $\gamma(x)$ reset and $\mu(x)$ growth rate.

We present several interdisciplinary applications for this simple process: emergence of degree distribution in real-world networks, scientific citations-, Facebook popularity-, income- and wealth distribution, biodiversity indicators and settlement-sizes distribution.

References

- [1] T. S. Biro and Z. Neda, *Physica A*, **499** pp. 335-361 (2018)
- [2] T.S. Biro, A. Telcs and Z. Neda, Universe, 4 10 (2018)
- [3] Z. Neda, L. Varga and T.S. Biro, Plos One, 12 e0179656 (2017)
- [4] T.S. Biro and Z. Neda, Phys. Rev. E., 95 032130 (2017)
- [5] T.S. Biro and Z. Neda, *Physica A*, **474** 355-362 (2017)