
BABEŞ BOLYAI UNIVERSITY
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

SCIENTIFIC REPORT
January 2016 - December 2016

MACHINE LEARNING FOR SOLVING SOFTWARE
MAINTENANCE AND EVOLUTION PROBLEMS

–Învăţare automată ı̂n probleme privind evoluţia şi
ı̂ntreţinerea sistemelor informatice–

Project leader: Assoc. prof. CZIBULA István-Gergely

Project code: PN-II-RU-TE-2014-4-0082
Contract no.: 263/01.10.2015

2016

Contents

1 Introduction 2

2 Approaches for software defect detection 4
2.1 An approach using fuzzy self-organizing maps 4

2.1.1 Problem relevance. Motivation . 5
2.1.2 Background . 5
2.1.3 Methodology . 7
2.1.4 Computational experiments . 10
2.1.5 Discussion and comparison to related work 13
2.1.6 Conclusions and future work . 15

2.2 An approach using fuzzy decision trees . 15
2.2.1 Motivation . 16
2.2.2 Background . 16
2.2.3 Methodology . 18
2.2.4 Testing . 22
2.2.5 Experimental evaluation . 22
2.2.6 Discussion . 24
2.2.7 Conclusions and future work . 26

3 Custering based software packages restructuring 28
3.1 Motivation . 29
3.2 Background . 29

3.2.1 Clustering . 29
3.2.2 Software remodularization at the package level. Literature review . . . 30

3.3 Methodology . 31
3.3.1 Theoretical model . 31
3.3.2 Grouping into packages . 32
3.3.3 Assigning application classes to packages 38

3.4 Experimental evaluation . 39
3.4.1 Parameters tuning . 39
3.4.2 Evaluation measure . 40
3.4.3 Experiments . 40

3.5 Discussion and comparison to related work 53
3.5.1 Analysis of our approach . 53
3.5.2 Comparison to related work . 56

4 Hidden dependencies identification 58
4.1 Literature review . 58

5 Conclusions 60

1

Chapter 1

Introduction

In this report we will present the original scientific results which were obtained for achieving
the objectives proposed in the project’s work plan for the year 2016. The first scientific
objective is related to the development of new classification algorithms for identifying entities
with defects in software systems. The second objective is connected to the development
of unsupervised learning methods for software packages restructuring. The third objective
of the current project is related to conducting a literature review on hidden dependencies
identification and proposing a computational model for this problem.

Chapter 2 addresses the problem of software defect detection, an important problem which
helps to improve the software systems’ maintainability and evolution. In order to detect
defective entities within a software system, a fuzzy self-organizing feature map is proposed.
The trained map will be able to identify, using unsupervised learning, if a software module is
defective or not. We experimentally evaluate our approach on three open-source case studies,
also providing a comparison with similar existing approaches. The obtained results emphasize
the effectiveness of using fuzzy self-organizing maps for software defect detection and confirm
the potential of our proposal. Section 2.2 introduce a novel approach for predicting software
defects using fuzzy decision trees. Through the fuzzy approach we aim to better cope with
noise and imprecise information.A fuzzy decision tree will be trained to identify if a software
module is defective or not. Two open source software systems are used for experimentally
evaluating our approach. The obtained results highlight that the fuzzy decision tree approach
outperforms the non-fuzzy one on almost all case studies used for evaluation. Compared to
the approaches used in the literature, the fuzzy decision tree classifier is shown to be more
efficient than most of the other machine learning-based classifiers.

Chapter 3 approaches the problem of software restructuring at package level which has
a major importance in the field of software architecture, since refactoring increases the in-
ternal software quality and is beneficial during the software maintenance and evolution. As
the requirements for grouping application classes into software packages are hard to identify,
clustering is useful, since it is able to uncover hidden patterns in data. In this chapter we are
investigating software refactoring at the package level by using hierarchical clustering. Two
approaches are proposed in order to help software developers in designing well-structured
software packages. The first approach takes an existing software system and re-modularizes
it at the package level using hierarchical clustering, in order to obtain better-structured pack-
ages. The second method we propose considers a certain structure of packages for a software
system and suggests the developer the appropriate package for a newly added application
class. The experimental evaluations are performed on two open source frameworks and the
algorithms have proven to perform well in comparison to existing similar approaches.

The literature review we have conducted in the direction of hidden dependencies identifi-
cation in software systems is presented in Chapter 4.

The main scientific results we have obtained during the period January 2016 - December

2

CHAPTER 1. INTRODUCTION 3

2016 are:

• An unsupervised learning based approach using fuzzy self-organizing maps (FSOM)
and a supervised learning based approach using fuzzy decision trees for software defect
detection.

• A hierarchical clustering based approach for software restructuring at the package level.

• 11 scientific papers (9 papers are published, 1 is accepted for publication and 1 is
accepted for the second revision). From the published papers, 8 are indexed ISI (2 in
SCI-E journals and 6 in ISI proceedings) and 2 are BDI indexed papers.

We mention that the 2015 impact factor of our ISI publications is 2.978.

Chapter 2

Approaches for software defect
detection

In this section we present our original approaches which were introduced in the direction of
detecting software defects in existing software systems, using fuzzy self-organizing maps. The
original approaches were introduced by Marian, Mircea and Czibula in [72] and by Czibula,
Marian and Ionescu in [30].

In order to increase the efficiency of quality assurance, defect detection tries to identify
those modules of a software where errors are present. In many cases there is no time to
thoroughly test each module of the software system, and in these cases defect detection
methods can help by suggesting which modules should be focused on during testing.

2.1 An approach using fuzzy self-organizing maps

In order to detect faults in existing software systems, Czibula, Marian and Ionescu introduced
in [30] a novel approach, based on fuzzy self-organizing feature maps. A fuzzy map will be
trained, using unsupervised learning, to provide a two-dimensional representation of the
faulty and non-faulty entities from a software system and it will be able to identify if a
software module is or not a defective one. Five open-source case studies are used for the
experimental evaluation of our approach. The obtained results are better than most of the
results already reported in the literature for the considered datasets and emphasize that
a fuzzy self-organizing map is more efficient than a crisp one for the case studies used for
evaluation.

Software defect detection is a problem intensively investigated in the literature and an
active area in the software engineering field, as shown by a systematic literature review pub-
lished in 2011, which collected 208 fault prediction studies published between 2000 and 2010
[42]. Detecting software faults is a complex and difficult task, mainly for large scale soft-
ware projects. In the search-based software engineering literature there are a lot of machine
learning-based approaches for predicting faulty software entities, for example, [40], [76] and
[66]. From a supervised learning perspective, defect prediction is a hard problem, partic-
ularly because of the imbalanced nature of the training data (the number of non-defective
training instances is much higher than the number of defective ones). Much more, it is not a
trivial problem to identify a set of software metrics that would be relevant for discriminating
between faulty and non-faulty modules.

Even if there are a lot of methods already developed for detecting software defects, re-
searchers are still focusing on improving the performance of existing classifiers. We are intro-
ducing in this paper an unsupervised machine learning method based on fuzzy self-organizing
maps for detecting faults within software systems. To the best of our knowledge, our approach
is novel in the search-based software engineering literature and proved to outperform most

4

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 5

of the existing similar approaches, considering the case studies we have used for evaluation.

2.1.1 Problem relevance. Motivation

Since software systems are continuously growing in size and complexity, predicting the reli-
ability of software has a fundamental role in the software development process [119]. Clark
and Zubrow consider in [25] that there are three main reasons for which the analysis and
prediction of software defects is essential. The first one is to help the project manager to
measure the progress of a software project and to plan activities for defect detection. The
second reason is to contribute to the process management, by evaluating the quality of the
software product and measuring the process performance [25]. Finally, information about
software faults, their location within the software and the distribution of defects may con-
tribute to improving the efficiency of the testing process and the quality of the next version
of a software.

Many of the machine learning-based software defect predictors existing in the literature
have been built using historical data collected by mining software repositories [56]. Unfortu-
nately, there are studies carried out in the defect prediction literature (like [10]) which have
revealed that defect data extracted from change logs and bug reports may contain noise [56].
Other machine learning-based software defect predictors use openly available datasets, like
the NASA datasets, where only the software metric values computed for the modules of the
software system are available, but not the source code. Unfortunately, there can be noise in
these datasets as well, as shown by [39]. Therefore, there is a need to build classifiers which
can cope with the lack of information, imprecision and noise.

Fuzzy techniques are known in the soft computing literature to be able to better deal with
noisy data than the crisp methods and may lead to the development of more robust systems.

In consequence, we consider a fuzzy self-organizing map approach towards software fault
detection to be a pertinent choice for both coping with uncertainty and for overcoming the
drawbacks of supervised learning-based approaches (the previously mentioned problem of
imbalanced data).

2.1.2 Background

In this section we aim at presenting the main characteristics of self organizing maps as well
as similar approaches for software defect detection.

2.1.2.1 Fuzzy self-organizing maps

Self-organizing maps (SOMs) [98] are unsupervised learning based models from the neural
networks literature that are trained using unsupervised learning to produce a two-dimensional
representation of the input space (of training samples), called a map [34]. The map consists of
an input layer (an input neuron for each dimension of the input data) and an array (usually
two-dimensional) of neurons on the computational (output) layer. Each neuron from the
input layer is connected to every output neuron and each connection is weighted.

The self-organization process consists of mapping the input instances on the neurons from
output layer in order to maintain the topological relationships from the input space. The
topology preservation is a main characteristic of a SOM and it means that similar input
instances are mapped on neurons that are neighbors on the output map [61]. The algorithm
that is usually used for training the map is the Kohonen algorithm [98]. After training, the
map is able to provide clusters of similar data items [62], being appropriate for data mining
tasks that require classification [62]. The SOM can be also used as effective tool for visualizing
high-dimensional data.

Different approaches were developed in the literature in order to combine the theory of
self-organizing maps with the theory of fuzzy sets introduced by Zadeh [117].

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 6

Tsao et. al introduced in [101] a fuzzy Kohonen clustering network, combining the Fuzzy c-
Means clustering (FCM) model and the Kohonen network model. This hybridization provided
an optimization of the FCM, leading to an improved convergence and accuracy of the obtained
results. The authors show that the proposed method can be viewed as a Kohonen type of FCM
[101], the “self-organizing” character being given by the size of the updated neighborhood
and the learning rate which are automatically adjusted during the learning process.

Lei and Zheng discuss in [63] the combination of ANN and fuzzy sets, and introduce
a fuzzy self-organizing feature map based on Kohonen’s algorithm [63]. An output node
from the map corresponds to a cluster and for each output node, a fuzzy set is defined to
represent all vectors contained in the cluster corresponding to that node. Compared with
the classical Kohonen algorithm, the fuzzy approach introduced in [63] replaces the distance
between an input instance x and a neuron j on the map with a membership measure of x
to the cluster corresponding to neuron j. The authors conclude that the resulting method,
unlike the classical SOM method, is able to process inexact or fuzzy information.

Khalilia and Popescu approached in [53] the problem of clustering relational data, i.e.,
the problem of clustering a set of objects described by pairwise dissimilarity values. The
authors proposed an algorithm, FRSOM, which is a combination of the relational SOM
approach [45] (the extension of the SOM to handle relational data) and the relational fuzzy
clustering algorithm presented in [46] (the extension of the fuzzy c-means algorithm to deal
with relational data). The authors highlight in [53], through numerical results, that FRSOM
is able to discover substructures in the data that are hard to find by the crisp relational SOM.

A very different approach was introduced by Vuorimaa in [109], a map where the nodes
were replaced by fuzzy rules. The exact rules for each node are learned using the regular
SOM algorithm. After the map is trained, i.e., the rules were learned, when a new instance
is presented to the map, the firing strength of each rule is computed, and these strengths are
used as weights to compute one final output for the map. Thus, for each input instance the
map will produce one single output value.

2.1.2.2 Related work

In the following, we will briefly review several machine learning-based approaches from the
defect detection literature which are somehow related to our approach (are based on unsu-
pervised learning or are using the same case studies as in the experimental part of this paper)
.

An approach that uses a combination of self-organizing maps and threshold values is
presented in [5]. After the SOM is trained, threshold values are used to label the trained
nodes: if any of the values from the weight vector is greater than the corresponding threshold,
the node will represent the defective entities. Classification is done by finding the best
matching unit for the given instance and using the label of the node.

We have introduced an approach for detecting defective entities using self-organizing maps
in [75]. After an attribute selection based on the Information Gain [78] of the attributes, a
map was trained to visualize the defective entities. While we had encouraging results, we
have realized that in many cases defective and nondefective entities are quite similar, they are
close to each other on the map. These observations led us to the use of fuzzy self-organizing
maps, which can handle such situations.

There are several approaches in the literature that use different clustering algorithms to
group defective and nondefective entities. One such approach is presented in [17], where K-
Means algorithm is used and the centers of the clusters are found using Quad Trees. Varade
and Ingle in [106] use K-Means as well, but they use Hyper-Quad Trees for the cluster
center initialization. Since determining the optimal number of clusters is not a simple task,
some approaches use clustering algorithms where the number of clusters is automatically
determined. Such an approach is presented in [22] where the Xmeans algorithm from Weka

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 7

[41] is used for clustering. After the clusters are created software metric threshold values are
used to determine which clusters represent the defective and which represent the nondefective
entities. The Xmeans algorithm (together with a second clustering algorithm that is capable
of automatically determining the optimal number of clusters, EM) is used by the authors in
[85] as well, together with different attribute selection techniques implemented in Weka.

Yu and Mishra in [114] investigate the problem of building cross-project detection models,
which are models built from data taken from one software system, but used and tested on a
different software system. They use binary logistic regression on the Ar datasets, and build
two models: self-assessment, when the model is tested on the dataset from which it was built,
and forward-assessment, when some datasets are used for building a model and a different
one is used for testing it. They conclude that self-assessment leads to better performance
measures, but forward-assessment gives a more realistic measure of the real performance of
the binary logistic regression model.

The problem of cross-project defect detection is approached in [81] as well. The authors
consider situations when the software metrics from the datasets on which a model was built
are not the same as the metrics computed for the system to be tested. They introduce an
approach which tries to match the software metrics from the different sets to each other,
based on correlation, distribution, and other characteristics. To compare this approach to
other existing ones, they use 28 datasets (including the Ar datasets) and Logistic Regression
from Weka.

Multiple Linear Regression and Genetic Programming are used in [6] to evaluate the
influence and performance of different resampling methods for the problem of defect detection.
The Ar datasets are used as case studies to compare five different resampling methods: hold-
out, repeated random sub-sampling, 10-fold cross validation, leave-one-out cross-validation
and non-parametric bootstrapping. The results of the study show that, considering the AUC
performance measure, there is no significant difference between the resampling methods, but
the authors claim that this can be caused by the imbalanced datasets or the high number of
attributes.

A comparison of statistical and machine learning methods for defect prediction is pre-
sented in [67]. They compare logistic regression with six machine learning approaches: Deci-
sion Trees, Artificial Neural Networks, Support Vector Machines, Cascade Correlation Net-
works, GMDH polynomial networks and Gene Expression Programming. The models were
evaluated on two Ar datasets, and the best performance was obtained using Decision Trees.

2.1.3 Methodology

In this section we introduce our fuzzy self-organizing map model for detecting faults in existing
software systems.

The software entities (classes, modules, methods, functions) from a software system are
represented as high-dimensional vectors (an element from this vector is the value of a software
metric applied to the considered entity). As shown in [75], the software system Soft is
viewed as a set of instances (called entities) Soft = {e1, e2, ..., en}. A set of software metrics
will be used as the feature set characterizing the entities from the software system, M =
{m1,m2, ...,ml}. Therefore, an entity ei ∈ Soft from the software system can be represented
as an l-dimensional vector, ei = (ei1, ei2, . . . , eil) (eij denotes the value of the software metric
mj applied to the software entity ei).

For each entity from the software system, the label of the instance is known (D=defect
or N=non-defect). The labels of the instances will not be used for building the fuzzy SOM
model, since the learning process will be completely unsupervised. The labels will be used
only for preprocessing the input data and for evaluating the performance of the resulting
classification model.

Before applying the fuzzy SOM approach, the data is preprocessed. First, the data is

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 8

normalized using the Min-Max normalization method, and then a feature selection step will
be used in order to identify a subset of features (software metrics) that are highly relevant
for the fault detection task (details will be given in the experimental part of the paper). As
a result of the feature selection step, p features (software metrics) will be selected and will
be further used for building the fuzzy SOM.

2.1.3.1 The fuzzy SOM model. Our proposal

The dataset preprocessed as indicated above, will be used for the unsupervised training of
the map. As for the classical SOM approach, a distance function between the input instances
is needed. We are using as distance between two software entities ei and ej the Euclidean
Distance between their corresponding vectors.

We are proposing, in the following, a fuzzy self-organizing map algorithm (FSOM) for
building the fuzzy map. Our algorithm does not reproduce any existing algorithm from the
literature, but it combines the existing viewpoints related to fuzzy SOM approaches. The
underlying idea in FSOM is the classical SOM algorithm, combined with the concept of
fuzziness employed in fuzzy clustering [59].

The FSOM algorithm enhances the classical Kohonen algorithm for building a SOM
with the idea (employed in fuzzy clustering) of using a fuzzy membership matrix. In fuzzy
clustering, instead of using a crisp assignment of an object to a cluster, an object can belong
to multiple clusters. The degree to which an input object belongs to the clusters is indicated
by the set of membership levels expressed by the columns of the membership matrix. In
building the fuzzy SOM, we will use the fuzzy membership idea related to the computation
of the “winning neuron”. Instead of using a crisp best-matching unit (BMU), as used in the
classical SOM algorithm, the membership matrix will be used to specify the degree to which
an input instance belongs to an output neuron (cluster). This means that an input instance
is not mapped to a single neuron (its BMU), but to all the neurons (clusters) from the map
(but with a certain membership degree).

Intuitively, an input instance will have the larger membership degree to the neuron rep-
resenting its BMU. The idea of updating the winning neuron and its neighbors is kept from
the classical SOM, but if the input instance has a larger membership degree (level) to a
neighboring neuron, this neuron will be “moved” closer to the input instance than the other
neurons (i.e., the updating rule considers the computed membership levels). Through these
updating rules, the FSOM algorithm maintains the main characteristic of the classical SOM
of “moving” the winning neuron and its neighborhood towards the input instance, but it may
express a better updating scheme than the crisp approach.

Let us consider, in the following, that the input layer of the map consists of p neurons
(the dimensionality of the input data after the feature selection step) and the computational
layer of the map consists of c neurons disposed on a two dimensional grid, in which an output
neuron i is represented as an p-dimensional vector of weights, wi = (wi1, wi2, . . . , wip) (wij

represents the weight of the connection between the j-th neuron from the input layer and the
i-th neuron from the computational layer).

Let us denote by u the membership matrix, where uik ∈ [0, 1],∀1 ≤ i ≤ c, 1 ≤ k ≤ n. These
values are used to describe a set of fuzzy c-partitions for the n entities, and uik represents
the degree to which entity ek belongs to the output neuron (cluster) i.

The main steps of the FSOM algorithm are described in the following.

Step 1. Weights initialization. The weights are initialized with small random values from
[0,1].

Step 2. Membership degrees computation. The values from the membership matrix
are computed as in Formula (2.1) (as for the fuzzy c-means clustering algorithm [59]). m is a
real number, greater than 1 and represents the fuzzifier. The role of the fuzzifier is to control

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 9

the overlapping between the clusters [59].

uik =
1

c∑
j=1

(
||xk − wi||
||xk − wj ||

) 2
m−1

(2.1)

Step 3. Sampling. Select a random input entity et and send it to the map.

3.1 Matching. Find the “winning” neuron j∗, as the output neuron which maximizes
the membership degree of the input entity et to the neuron.

3.2 Updating. After identifying the “winning neuron”, update the connection weights
of the winning unit and its neighboring neurons, such that the neurons are “moved”
closer to the input instance. When updating the weights for a particular neuron, we will
consider the membership degree of the considered entity to that neuron. More precisely,
for each output neuron j (∀1 ≤ j ≤ c), its weights wji (∀1 ≤ i ≤ p) will be updated
with a value ∆wji computed as in Formula (2.2)

∆wji = η · Tjj∗ · (eti − wji) · umjt (2.2)

where η is the learning rate and Tjj∗ denotes the neighborhood function usually used
in the classical Kohonen’s algorithm [98] and whose radius decreases over time.

Step 4. Iteration. Repeat steps 2-3 for a given number of iterations.

If we are looking to the Step 2 of the FSOM algorithm, we observe that an input entity will
have the largest membership degree to the neuron (cluster) representing its BMU. Intuitively,
the degrees to which the entity belongs to the other neurons from the map (others than its
BMU) have to decrease as the distance from the entity and the neurons increases. Another
characteristic of the fuzzy algorithm (compared to the crisp variant) is the fact that the
weights of particular neurons from the neighborhood of the “winning neuron” (see Step
3) are updated differently depending on the degree to which the current entity belongs to
the neuron. This updating method may lead to final weights which would give a better
representation of the input space.

After the map was trained using the FSOM algorithm described above, in order to visual-
ize the obtained map, the U-Matrix method [52] is used. The U-Matrix value of a particular
node (neuron) from the map is calculated as the average distance between the node and its
4 neighbors. If one interprets these distances as heights, the U-Matrix may be interpreted
as follows [52]: high places on the U-Matrix represent entities that are dissimilar with those
from low places, while the data falling around the same height represent entities that are
similar and can grouped together to represent a cluster.

Since the fault prediction problem is a binary classification one, our goal is to identify
on the trained map two clusters corresponding to the two classes of entities: defects and
non-defects.

Even if the fuzzy SOM was built using unsupervised learning, after it was created it may
also be used in a supervised learning scenario for classifying a new software entity. First,
the “winning neuron” corresponding to this entity is determined (as indicated at Step 3.1).
Then, the class (defect or non-defect) to which the winning neuron belongs will indicate the
result of classifying the new software entity.

For evaluating the performance of the FSOM model trained as shown above, we are com-
puting the confusion matrix for the two possible classes (non-defect and defect), considering
that the defective class is the positive one and the non-defective class as the negative one.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 10

Dataset Defects Non-defects Difficulty

Ar1 9 (7.4%) 112 (92.6%) 0.666

Ar3 8 (12.7%) 55 (87.3%) 0.625

Ar4 20 (18.69%) 87 (81.31 %) 0.7

Ar5 8 (22.22%) 28 (77.78%) 0.375

Ar6 15 (14.85%) 86 (85.15%) 0.666

Table 2.1: Description of the datasets used for the experimental evaluation.

For computing the values from the confusion matrix, we are using the known labels (classes)
of the training entities.

Since defect prediction data are highly imbalanced (the number of defects is much smaller
than the number of non-defects) the main challenge in software fault prediction is to increase
the true positive rate (i.e., maximize the number of defective entities that are classified as
faults), or, equivalently to decrease the false negative rate (i.e., minimize the number of de-
fective entities that are wrongly classified as non-faults). For the problem of defect detection,
having false negatives is a more serious problem than having false positives, the first situa-
tion denotes an undetected fault in the system, which can cause serious problems later, while
in case of the second situation some time is lost to thoroughly test a fault-free entity that
was classified faulty. In the case of imbalanced data, the evaluation measure that is relevant
for representing the performance of the classifiers is the Area Under the ROC Curve (AUC)
measure [36] (larger AUC values indicate better classifiers).

2.1.4 Computational experiments

In this section we provide an experimental evaluation of the FSOM model (described in
Section 2.2.3) on five open-source datasets which were previously used in the software defect
detection literature. We mention that we have used our own implementation for FSOM,
without using any third party libraries.

2.1.4.1 Datasets

The datasets used in our experiments are publicly available for download at [31] and are called
Ar1, Ar3, Ar4, Ar5 and Ar6. All five datasets were obtained from a Turkish white-goods
manufacturer embedded software implemented in C [75]. The software entities from these
datasets are functions and methods from the considered software and are represented as 29-
dimensional vectors containing the value of different McCabe and Halstead software metrics.
For each instance within the datasets, we also know the class label, denoting whether the
entity is defective or not.

We depict in Table 2.1 the description of the Ar1 -Ar6 datasets used in our case studies.
For each dataset, the number of defects and non-defects are illustrated, as well as the difficulty
of the dataset. The measure of difficulty for a dataset was introduced by Boetticher in [19]
and is computed as the percentage of entities for which the nearest neighbor (ignoring the
label of the entity when computing the distances) has a different label. Since our datasets are
imbalanced, when computing the difficulty of the datasets we considered only the percentage
of defective entities for which the nearest neighbor is non-defective.

From Table 2.1 one can observe that all datasets are strongly imbalanced, with all number
of defects much smaller than the number of non-defects. Moreover, it can be seen that
the task of accurately classifying the defective entities is very difficult. Ar1, Ar4 and Ar6
seem to be the most difficult datasets from the defect classification point of view. The
complexity of the software fault prediction task for the Ar1 and Ar6 datasets is highlighted
in Figures 2.1 and 2.2, which depict a two dimensional view of the data obtained using t-SNE

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 11

[104]. T-distributed Stochastic Neighbor Embedding (t-SNE) is a method for visualizing
high-dimension data in a way that better reflects the initial structure of the data compared
to other techniques, such as PCA. From a visualization point of view, the method has been
shown to produce better results than its competitors on a significant number of datasets.

Figure 2.1: t-SNE plot for the Ar1
dataset.

Figure 2.2: t-SNE plot for the Ar6
dataset.

We can see from Figures 2.1 and 2.2 that, for both Ar1 and Ar6 datasets, the fault
detection problem we are approaching in this paper is not an easy one, since it is very hard
to discriminate between the defective and the non-defective entities (the non-defective entities
are marked with black n and the defective ones with red d). We have shown the t-SNE graphs
only for the Ar1 and Ar6 datasets, but the same situation appears for all datasets we are
working with.

2.1.4.2 Results

For the fuzzy self-organizing map, we used in our experiments the torus topology, since it is
shown in the literature that this topology provides better neighborhood than the conventional
one [55]. The parameters used for building the map are the following: 200000 training epochs
and the learning coefficient was set to 0.7. For controlling the overlapping degree in the fuzzy
approach, the fuzzifier was set to 2 (shown in the literature as a good value for controlling
the fuziness degree [59]).

For the feature selection step, we have used the analysis that was performed in [75] on
the Ar3, Ar4 and Ar5 datasets. For determining the importance of the software metrics
for the defect detection task, the information gain (IG) measure was used. From the soft-
ware metrics whose IG values were higher than a given threshold, a subset of metrics that
measure different characteristics of the software system were finally selected. Therefore, 9
software metrics were selected in [75] to be representative for the defect detection process:
halstead vocabulary, total operands, total operators, executable loc, halstead length, total loc,
condition count, branch count, decision count [75]. The previously mentioned features (soft-
ware metrics) will also be used in our FSOM approach.

We are presenting in the following the results we have obtained by applying the FSOM
model (see Section 2.1.3.1) on the Ar1, Ar3, Ar4, Ar5 and Ar6 datasets. After the data is
preprocessed, the FSOM algorithm introduced in Section 2.1.3.1 is applied and the U-Matrix
corresponding to the trained FSOM will be used to identify the class of defects and non-
defects. Then, for each instance from the training dataset, we compare the class provided
by our FSOM with the entity’s true class label (known from the training data). Finally, the
AUC measure will be computed.

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 depict the U-Matrix visualization of the best FSOMs
obtained on the five datasets used in the experimental evaluation. On each neuron from the

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 12

maps we represent the training instances (software entities) which were mapped (using the
FSOM algorithm) on that neuron, i.e., instances for which the neuron was their BMU. The
red circles represent the defective entities and the green circles represent the non-defective
entities. Each neuron is also marked with the number of defects (D) and non-defects (N)
which are represented on it.

Figure 2.3: U-Matrix for the Ar1
dataset.

Figure 2.4: U-Matrix for the Ar3
dataset.

Visualizing the U-Matrices from Figures 2.3, 2.4, 2.5, 2.6 and 2.7, one can identify two
distinct areas: one containing lightly colored neurons, whereas the second area consists of
darker neurons. The two areas represented on the maps correspond to the clusters of defective
and non-defective software entities. Since the percentage of software faults from the software
systems is significantly smaller than the percentage of non-faulty entities (see Table 2.1), the
area from the map containing a larger number of elements is considered to be the non-defective
cluster. The remaining area from the map corresponds to the defective cluster.

Figure 2.5: U-Matrix for the Ar4
dataset.

Figure 2.6: U-Matrix for the Ar5
dataset.

Table 3.6 illustrates, for each dataset, the configuration used for the FSOMs (number
of rows and columns of the maps) as well as the values from the confusion matrix (false
positives, false negatives, true positives and true negatives).

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 13

Figure 2.7: U-Matrix for the Ar6 dataset.

Dataset rows x columns FP FN TP TN

Ar1 3x2 26 1 8 86

Ar3 2x3 1 2 6 54

Ar4 2x3 18 4 16 69

Ar5 3x2 4 0 8 24

Ar6 3x3 18 4 11 68

Table 2.2: Results obtained using FSOM on all experimented datasets.

2.1.5 Discussion and comparison to related work

As presented in Section 3.6 and graphically illustrated in Figures 2.3, 2.4, 2.5, 2.6 and 2.7,
our FSOM approach was able to provide a good topological mapping of the entities from
the software system and successfully identified two clusters corresponding to the faulty and
non-faulty entities. Even if the separation was not perfect, which is extremely difficult for
the software defect detection task, for all five datasets we obtained good enough true positive
rates (at least 73% detection rate for the defects). For the Ar5 dataset, our FSOM succeeded
in obtaining a perfect defect detection rate, misclassifying only 4 non-defective entities.

The AUC measure is often considered to be the best performance measure to compare
classifiers [36]. However, it is usually suitable for methods which, instead of directly returning
the classification of an instance, return a score which is transformed into classification using
a threshold. In such cases, different thresholds lead to different (sensitivity, 1-specificity)
points on the ROC curve, and AUC measures the area under this curve. For methods where
no threshold is used (for example, in our approach) the ROC curve contains one single point,
which is linked to the points (0,0) and (1,1), thus providing a curve and making possible the
computation of the AUC measure.

Table 2.3 presents the values of the AUC performance measure computed for the results
we have obtained using our approach, but it also contains values reported in the literature
for some existing similar approaches, presented in Section 2.2.2.2. If an approach does not
report results on a particular dataset, we marked it with “n/a” (not available). In case of
approaches that do not report the value of the AUC measure, but report other measures (for
example false positive rate, false negative rate) if it was possible, we computed the values
from the confusion matrix from these measures and used them to compute the value for the
AUC measure, as in case of our approach. The best results obtained for the AUC measure
are marked with bold in the table.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 14

Approach Ar1 Ar3 Ar4 Ar5 Ar6

Our FSOM 0.829 0.87 0.80 0.93 0.762

SOM [75] 0.695 0.87 0.74 0.92 0.726

SOM with Threshold [5] n/a 0.88 0.95 0.84 n/a

K-means with Quad-Trees [17] n/a 0.70 0.75 0.87 n/a

Clustering Xmeans [85] n/a 0.84 0.69 0.86 n/a

Clustering EM [85] n/a 0.82 0.69 0.80 n/a

Clustering Xmeans [22] n/a 0.70 0.75 0.87 n/a

Genetic Programming [6] 0.530 0.67 0.65 0.67 0.630

Multiple Linear Regression [6] 0.550 0.61 0.62 0.55 0.590

Binary Logistic Regression [114] 0.551 0.87 0.73 0.39 0.722

Logistic Regression [81] 0.734 0.82 0.82 0.91 0.640

Logistic Regression [67] 0.494 n/a n/a n/a 0.538

Artificial Neural Networks [67] 0.711 n/a n/a n/a 0.774

Support Vector Machines [67] 0.717 n/a n/a n/a 0.721

Decision Trees [67] 0.865 n/a n/a n/a 0.948

Cascade Correlation Networks [67] 0.786 n/a n/a n/a 0.758

GMDH Network [67] 0.744 n/a n/a n/a 0.702

Gene Expression Programming [67] 0.547 n/a n/a n/a 0.688

Table 2.3: Comparison of our AUC values with the related work.

We would like to mention that the results from [6] for the Multiple Linear Regression
and Genetic Programming approaches are the best values reported by the authors and they
were usually achieved for different resampling settings. In case of the cross-project defect
prediction approach, [114], we have reported only the results of the experiments when the
same dataset was used both for building the model and testing it.

From Table 2.3 we observe that our FSOM approach has better results than most of the
approaches existing in the literature and considered for comparison. Out of 54 comparisons,
our algorithm has a better or equal value for the AUC performance measure in 48 cases,
which represents 89% of the cases.

It has to be noted that the fuzzy SOM method introduced in this paper proved to have a
better or equal performance, for all datasets, than the crisp approach previously introduced in
[75]. For the Ar3 and Ar6 datasets, the FSOM performed similarly to the classical SOM, for
the other three datasets the FSOM outperformed the SOM. For the Ar1 dataset, the FSOM
obtained a significantly better AUC value than the classical SOM. These results highlight
the effectiveness of using a fuzzy approach with respect to the crisp one.

Analyzing the results from Table 2.3 we observe that our FSOM approach has the highest
AUC value for the Ar5 dataset, the second highest value for the Ar1 and Ar3 datasets and
the third highest value for the Ar6 dataset. Interestingly, the results that we have obtained
are perfectly correlated with the difficulties of the considered datasets (given in Table 2.1).
More precisely, the best result was obtained for the “easiest” dataset, Ar5, while the worst
results were provided for the datasets which are more “difficult”, Ar6 and Ar4. Even for the
hardest datasets, the AUC values obtained by the FSOM are larger than most of the AUC
values from the literature.

Figure 2.8 depicts, for each dataset we have considered, the AUC value obtained by our
FSOM and the average AUC value reported in related work from the literature for the dataset
(see Table 2.3). The first dashed bar from this figure corresponds to our FSOM. One can
observe that the AUC value provided by our approach is better, for each dataset, than the
average AUC value from the existing related work.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 15

Figure 2.8: Comparison to related work.

2.1.6 Conclusions and future work

A fuzzy self-organizing feature map has been introduced in this section for detecting, in an
unsupervised manner, those software entities which are likely to be defective. The experi-
ments we have performed on five open-source datasets used in the software defect detection
literature highlight a very good performance of the proposed approach, providing results bet-
ter than most of the similar existing approaches. Moreover, the fuzzy approach introduced
in this paper proved to outperform, for the considered case studies, the crisp SOM approach.

Other open-source case studies and real software systems will be further used in order to
extend the experimental evaluation of the fuzzy self-organizing map model proposed in this
paper. We also aim to investigate the applicability of other fuzzy models for software defect
detection (like fuzzy decision trees [116]), as well as identifying software metrics appropriate
for software fault detection [90].

2.2 An approach using fuzzy decision trees

Software quality assurance is a major issue in the software engineering field and is used to
ensure the software quality. In order to increase the effectiveness of quality assurance and
software testing, defect prediction is used to identify defective modules in an upcoming version
of a software system and is useful for assigning more effort for testing and analysing those
modules [48].

Most of the machine learning based classifiers existing in the defect prediction literature
are supervised. From this perspective, the problem of accurately predicting the defective
modules is a hard one, because of the imbalanced nature of the training data (the number
of non-defects in the the training data is much higher than the number of defects). Thus,
it is hard to train a classifier to recognize the defects, when a small number of defective
examples were provided during training. A major challenge in defect prediction is to increase
the number of correctly identified defects and to minimize the number of misclassified defects.
Much more, it is not easy to identify the relevant software metrics which would be able to
discriminate between defects and non-defects.

In order to deal with the above mentioned problems, we are introducing in this section
[72] a supervised machine learning method based on fuzzy decision trees for detecting defects
in existing software systems. As far as we know, our approach is novel in the defect prediction
literature. The experimental evaluation of the fuzzy decision tree is performed on two open

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 16

source software systems and shows that our proposal provides better results than most similar
existing ones.

2.2.1 Motivation

Software defect detection represents the activity through which software modules which con-
tain errors are identified. Certainly, the discovery of such defective modules plays an impor-
tant role in assuring the quality of the software development process. An activity which is
also connected to maintaining the software quality is the code review. Reviewing the existing
code is time consuming and costly and it is frequently used in the agile software development.
Software defect detection can be helpful in the code review process to point out parts of the
source code where it is likely to identify problems.

From a supervised learning perspective, the problem of identifying defective software
entities is a complex and difficult one, mainly because the training data is highly imbalanced.
Obviously, a software system contains a small number of defective entities, compared to the
number of non-defective ones. Thus, a supervised classifier for defect detection will be trained
with a set of defective examples which is much smaller than the set of non-defective ones.
This way, the classifier would be susceptible to learn to assign the majority class, namely
the non-defective class. That is why, the field of software defect prediction is a very active
research area, being a continuous interest in developing performant classifiers which are able
to handle the imbalanced nature of the software defect data.

Several studies that have been performed in the defect prediction literature [10] have
shown that defect data extracted from change logs and bug reports may be noisy and imprecise
[56]. Our previous research in the defect prediction field (like [75]) reinforced the idea that
it is very hard to find a crisp separation between the defective and non-defective entities,
in most situations defective entities seem to be very similar to non-defective ones. The
self-organizing map used in [75] revealed that the defect data contains some uncertain areas
(overlapping zones between defects and non-defects) that can lead crisp classifiers to erroneous
predictions. That is why we consider that the fuzzy approaches would be a good choice for
trying to alleviate the previously mentioned problems.

2.2.2 Background

The main characteristics of fuzzy decision trees as well as existing approaches for software
defect prediction are presented in this section.

2.2.2.1 Fuzzy decision trees

Fuzzy decision trees [103] have been investigated in the soft computing literature as a hy-
bridization between the classical decision trees [78] and the fuzzy logic. The classical algo-
rithms for building decision trees (ID3, C4.5) were extended toward a fuzzy setting [50] by
considering aspects of fuzziness and uncertainty. At each internal node of the fuzzy tree,
all instances from the data set are used, but each instance has a certain membership degree
associated. At the root node, all instances have the membership degree 1. Each internal node
contains an attribute (selected using Information Gain - Formula (2.6)) and has one child
node for each fuzzy function associated to the selected attribute. Each of these child nodes
will contain all instances, but the membership degree of each instance from the parent node
will be multiplied by the value of the fuzzy function for the given instance. A leaf node from
the fuzzy decision tree, instead of containing a single class (target value) as in the classical
approach, contains the proportion of the cumulative membership values with respect to the
total cumulative membership for each of the classes.

A fuzzy decision tree is used differently when a new instance has to be classified (tested)
than a traditional one. The test instance will be considered to belong to all branches of

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 17

the fuzzy decision tree with different degrees given by the branching fuzzy function. A final
fuzzy membership value will be obtained, this way, for each leaf node in the tree. All the
memberships for the leaf nodes are summed for each target class. The class having the
maximum associated membership value will be considered as the final classification for the
testing instance.

Naturally, the fuzzy decision tree approach conceptually incorporates the crisp approach
when the membership degrees of the fuzzy sets used in the process describe crisp memberships.
The classic decision tree is therefore a subclass of the fuzzy decision tree and the performance
of every fuzzy variant will be at least as good as the crisp correspondent.

However, the problem of defect prediction is very challenging due to the imbalanced
nature of the training data sets. Usually the defective entities inside a software project
are significantly scarcer than the non-defective ones and therefore the classification using
decision trees is not an easy task to be solved, because the Entropy and the Information Gain
measures, which play a fundamental part in the decision process, are strongly dependent on
the balance in size between the target classes used in training.

Another problem occurs when the probability distributions of the attributes inside the
data set are computed separately on each of the target classes. It would have been preferred
that the attributes exhibit a normal Gaussian trend as this will aid the decision process,
but the probability analysis of the data sets quickly revealed that most of the attributes fall
under a lognormal distribution with many values crowded towards 0. In this case it is highly
difficult for any form of decision tree to discriminate properly between the two classes as
the instances in both groups tend to have the same behaviour and are perfectly disparate
throughout the domain making a clear group delimitation a true challenge. Even in the
fuzzy perspective it is very difficult to decide between one class and the other as the defective
vs. non-defective groups overlap significantly enough to deem many of the instances to be
classified undetermined.

2.2.2.2 Literature review

Software defect detection is a well-studied problem, there are many different approaches
presented in the literature that try to identify the defective entities in a software system. A
literature study published in 2011, [42], found that 208 papers were published on this subject
between 2000 and 2010 and since then the number of papers has increased. Most of these
approaches are supervised, meaning that they require some training data in order to build
the model. There are several openly available data sets that can be used for training, and
in this section we are going to present some approaches from the literature that use for the
experimental evaluation the same data sets that we have used: JEdit and Ant.

Okutan and Yildiz present in [82] an approach that uses Bayesian Networks and the K2
algorithm for defect detection. Besides the already existing software metrics they add two
new metrics to the data set: lack of coding quality (LOCQ) and number of developers (NOD).
For the experimental evaluation, they use 9 publicly available data sets (including JEdit and
Ant) and the implementation of the K2 algorithm from Weka [41]. Based on the generated
Bayesian Networks they investigate the effectiveness of different software metric pairs for
defect detection, and conclude that the LOC-RFC, RFC-LOCQ, RFC-WMC pairs are the
most effective.

Multivariate Logistic Regression is used by Malhotra in [65] to detect the defective entities
in the Ant system. The authors first detect and remove outliers from the data, then apply
the Multivariate Logistic Regression using 10-fold cross validation. The built model includes
two metrics from the data set: RFC and CC.

While defect detection is usually considered as a binary classification problem, the authors
in [24] consider it a regression problem and they try to predict the exact number of defects
in each entity. They compare six different regression methods, Linear Regression, Bayesian

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 18

Ridge Regression, Support Vector Regression, Nearest Neighbors Regression, Decision Tree
Regression, Gradient Boosting Regression, and conclude that Decision Tree Regression gives
the best results in terms of precision and root mean square error. The authors also investigate
the difference between within-project defect prediction (when the prediction model is built
based on previous version of the same software system) and cross-project defect prediction
(when the model is built on other projects). Unlike other such studies, they conclude that
cross-project defect prediction models are comparable to within project defect prediction
models with respect to prediction performance.

The authors in [21] introduce a cross-project defect prediction approach as well, but
they formulate the problem as a multi-objective optimization problem where two different
objectives have to be considered: the number of defect prone entities detected and the cost
of analyzing the predicted defect prone classes. Their approach is based on a multi-objective
Genetic Algorithm, and was tested using 10 different data sets, including JEdit and Ant.
They conclude that the multi-objective approach achieves better performance than the single-
objective approach they used for comparison.

Scanniello et al. present an approach, where the classes from the software system are first
clustered, to identify clusters of strongly connected classes, then Stepwise Linear Regression
is used to build a defect detection model for each cluster separately [93]. Compared to the
approach where all classes are used together to build a detection model, this approach can
provide a more accurate detection of the number of faults for each class.

2.2.3 Methodology

In this section we introduce our fuzzy decision tree based classifier for detecting defective
software entities in existing software systems.

As we have previously introduced in [75], the entities from a software system (classes,
methods, functions) may be represented as high-dimensional vectors representing the values of
several software metrics applied to the considered entity. Thus, a software system S is viewed
as a set of entities (instances) S = {e1, e2, ..., en} [75]. A set of software metrics will be used
as the feature set characterizing the entities from the software system,M = {m1,m2, ...,ml}.
Therefore, an entity ei ∈ S may be visualized as an l-dimensional vector, ei = (ei1, ei2, . . . , eil),
where eij represents the value of the software metric mj applied to the software entity ei.

As in a supervised learning scenario, the label (class) associated for each entity is known
(D=defect, N=non-defect). The first step before applying the fuzzy decision tree based
learning approach is the data preprocessing step. Then, the preprocessed training data will
be used for building (training) the fuzzy decision tree based classifier. The built classification
model will be then tested in order to evaluate its performance. These steps will be detailed
in the following.

2.2.3.1 Data preprocessing

During this step, the data set representing the high dimensional software entities will be
preprocessed. A feature selection step will be used in order to identify a subset of software
metrics that are relevant for predicting software defects.

The data sets that will be used for the experimental evaluation of our approach were
created for open-source object-oriented software systems. In these data sets each entity
corresponds to a class from the software system and contains data to identify the module
(name of the system, version of the system, name of the class) and the value of 20 different
software metrics plus the number of bugs in the given entity.

During the data preprocessing step, we first transform the number of bugs into a binary
attribute, to denote whether the entity is defective or not. The value 0 will be used for non-
defective entities and 1 will be used for the defective ones. In order to reduce the number of

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 19

software metrics in the data set, we have used the findings of a systematic literature review
conducted on 106 papers [89], which studies the applicability of 19 different software metrics
for the task of software fault prediction. Out of the metrics reported by the study as having a
strong positive effectiveness on software fault prediction, three can be found in our data sets,
so we have decided to eliminate the other metrics. The metrics kept after the preprocessing
are: WMC, CBO and RFC.

In order to build the fuzzy sets for the selected software metrics, we have taken inspira-
tion from the work of Filó et al. [96]. They have used 111 software systems written in Java
and computed the value of 17 different software metrics for each class of the systems. For
each metric they have identifies thresholds to group the value of the metric in three ranges:
Good/Common, Regular/Casual, and Bad/Uncommon. The threshold between the first two
ranges was computed as the 70 percentile of the data, while the second threshold was consid-
ered at the 90 percentile. Since the study presented in [96] contains thresholds for only one
of the software metrics that we are using, we have decided to compute our own thresholds.

We have taken all data sets from the Tera-Promise repository [31] that belong to the
Defect category and use the same software metrics as the data sets used for the experimental
evaluation. In case of data sets with multiple versions, we have taken the last version. In this
way, we have built a data set containing 6082 instances coming from a total of 30 projects. We
have computed the 70 and 90 percentile for the metrics and used these values as thresholds
for building two trapezoidal membership functions for the non-defect and defect classes. The
first function measures the membership of a given software metric value to the class of non-
defective entities, while the second one measures the membership to the class of defective
entities. The two fuzzy membership functions for the WMC software metric are illustrated
on Figure 2.9. Formulae 2.3 and 2.4 describe the equations used to compute the membership
degree of a software metric value to the non-defect, respectively defect fuzzy sets. The exact
threshold values used for all three metrics are presented in Table 2.4.

µnon−defect(x) =

1, x < a
b−x
b−a a ≤ x ≤ b
0, x > b

(2.3)

µdefect(x) =

0, x < a
x−a
b−a a ≤ x ≤ b
1, x > b

(2.4)

Figure 2.9: Fuzzy membership functions for the WMC software metric.

2.2.3.2 Training

During the training process the fuzzy decision tree is built from the data set that was prepro-
cessed as presented in the previous section. Defect detection data sets are usually imbalanced,

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 20

Software Metric a b

WMC 10 22.9

CBO 10 20

RFC 30 66

Table 2.4: Threshold values used to build the fuzzy membership functions for the used
software metrics.

which can influence the training process and lead to a fuzzy decision tree where each leaf node
predicts that the given instance is non-defective. In order to reduce the imbalance of the data
set, we enhance it before the training process, by adding extra defective instances from other
data sets. These instances are used only for the training process, they are not considered
during the testing.

Building the fuzzy decision tree (FuzzyDT)

The building process for the fuzzy decision tree proposed in the current paper resembles the
one for a crisp variant of a decision tree with several alterations to cope with uncertainty
and data imbalance. Both of these aspects have an important effect on the proposed fuzzy
decision tree version shaping it into a custom variant tailored to solve the given problem as
accurately as possible.

In order to manage the uncertainty of software defect prediction the defective and non-
defective concepts needed to be formalized as fuzzy sets with respect to each of the attributes
inside the data set. The method of fuzzy set construction for both of the target classes was
presented in the previous section, but it must be added that an intensive selection process was
necessary to highlight the attributes that may have a beneficial impact on the fuzzy decision
process as many attributes in the data set were naturally not suited to aid any form of clas-
sification. This is an aspect that contributes to the difficulty of the defective/ non-defective
classification task. It must be mentioned that in order for the fuzzy approach to work, the
fuzzy membership functions employed in the decision process need to be handled very del-
icately preferably their devise being the fruit of a collaboration with software engineering
experts. If the fuzzy membership functions do not map accordingly onto real contexts, the
whole decisional process will be affected.

Once the fuzzy membership functions are constructed for each attribute, separately on
each target class, the real fuzzy decision tree construction may commence. At this point,
the other major problem discussed in the introduction occurs: data imbalance. Due to the
scarceness of defective instances, the defective target class will be clearly imbalanced with
respect to the non-defective target class on the studied attributes. In the classic fuzzy decision
tree approach, the fuzzy entropy and fuzzy information gain measures are very biased with
respect to data imbalance and this impacts the decision process in the sense that there is a
clear inclination towards labeling instances as non-defective simply because the training set
contains a significantly increased number of non-defective instances. This is an important
issue with deep implications in the decisional process and therefore finding a way to deal with
data imbalance was imperiously necessary.

A solution to the imbalance problem was proposed in [64]. Instead of choosing to follow
other rather simplistic approaches that directly affect the data set such as over-sampling
or under-sampling, which in our opinion are not fit for the present problem because the
discrepancy between defective and non-defective instances is too high, the authors propose a
way of coping with the imbalance by transforming the entropy and information gain measures.
In this way, from a constructional point of view, the only alteration will be changing the
entropy and information gain formulae to a form that takes the imbalance into account
and includes it in the computation, therefore attenuating its impact. Let us consider, in the

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 21

following, that the defective class is the positive one and the non-defective class is the negative
one. As we have mentioned in Section 2.2.2.1, each internal node from the tree stores all the
instances from the training data set D, but each instance has a certain membership degree.
The entropy measure at a node from the fuzzy tree is computed as in Formula (2.5) and
generalizes the entropy computation from the crisp case.

Entropy(node) = −m+

mm
· log

m+

mm
− m−
mm

· log
m−
mm

(2.5)

where m+ represents the sum of the membership degrees for the instances from D belonging
to the positive class, m− sums the membership degrees for the instances from D belonging
to the negative class and mm is the sum of m+ and m−.

For computing the information gain of an attribute a with respect to the set of instances
stored at an internal node node from the fuzzy tree, a kind of confusion matrix at that node
is computed. We denote by F a

+ and F a
− the fuzzy functions associated to attribute a and to

the positive and negative class, respectively. By TPFuzzy, FPFuzzy and FNFuzzy we express
the values which generalize (for the fuzzy case) the components of the confusion matrix for
the crisp case. More exactly, these values are computed as follows:

• TPFuzzy sums the membership degrees for the instances i belonging to the positive
class multiplied with the result of applying the function F a

+ on the value of attribute a
in instance i.

• FNFuzzy sums the membership degrees for the instances i belonging to the positive
class multiplied with the result of applying the function F a

− on the value of attribute a
in instance i.

• TNFuzzy sums the membership degrees for the instances i belonging to the negative
class multiplied with the result of applying the function F a

− on the value of attribute a
in instance i.

• FPFuzzy sums the membership degrees for the instances i belonging to the negative
class multiplied with the result of applying the function F a

+ on the value of attribute a
in instance i.

We use the following notations:

• m = TPFuzzy + TNFuzzy + FPFuzzy + FNFuzzy.

• p = TPFuzzy + FNFuzzy.

• pp = TPFuzzy + FPFuzzy.

Using the previous notations, the new formula for the information gain measure is pre-
sented in Formula (2.6).

IG(node) = Entropy(node)− pp

m
· E1 −

m− pp
m

· E2 (2.6)

where

E1 = −TP
Fuzzy

pp
· log

TPFuzzy

pp
− FPFuzzy

pp
· log

FPFuzzy

pp

and

E2 = −TN
Fuzzy

m− pp
· log

TNFuzzy

m− pp
− FNFuzzy

m− pp
· log

FNFuzzy

m− pp
.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 22

2.2.4 Testing

After the fuzzy decision tree was trained (as described in Section 2.2.3.2), a new instance will
be classified as shown in Section 2.2.2.1.

For evaluating the overall performance of the FuzzyDT model, a leave-one out cross-
validation is used [110]. In the leave-one out (LOO) cross-validation on a data set with n
software entities, the FuzzyDT model is trained on n-1 entities and then the obtained model
is tested on the instance which was left out. This is repeated n times, for each entity from
the data set.

During the cross-validation process, the confusion matrix [87] for the two possible out-
comes (non-defect and defect) is computed. We are considering that the defective class is the
positive one and the non-defective class is the negative one. The confusion matrix contains
four values, the number of True Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN). For computing the values from the confusion matrix, we are using
the known labels (classes) for the training instances.

Since the software defect prediction data are highly imbalanced (the number of defects is
much smaller than the number of non-defects) the main challenge in software defect prediction
is to obtain a large true positive rate and a small false negative rate. For defect predictors,
the accuracy of the classifier (i.e. number of testing instances which were correctly classified
- Formula (2.7)), is not a relevant evaluation measure, since the imbalanced nature of the
data.

Acc =
TP + TN

TP + TN + FP + FN
(2.7)

A more relevant evaluation measure for the performance of the software defect classifiers is
the Area Under the ROC Curve (AUC) measure [36] (larger AUC values indicate better defect
predictors). The AUC measure is usually used in case of approaches that output a single value
which is transformed into a class label using a threshold. For such approaches, modifying
the value of the threshold can lead to different values of the Probability of detection (Formula
(2.8)) and the Probability of false alarm (Formula (2.9)) measures. For each threshold, the
point (Pf , Pd) is represented on a plot, and AUC measures the area under this curve.

Pd =
TP

TP + FN
(2.8)

Pf =
FP

FP + TN
(2.9)

In case of approaches where the output is directly the class label, there is only one (Pf ,
Pd) point, which can be linked to the (0,0) and (1,1) points, and the area under this curve
can be computed using Formula (2.10).

AUC = (1− Pf) ∗ Pd+
Pf ∗ Pd

2
+

(1− Pf) ∗ (1− Pd)

2
(2.10)

2.2.5 Experimental evaluation

In this section we provide an experimental evaluation of the FuzzyDT model (described
in Section 2.2.3) on two open-source software systems which were previously used in the
software defect prediction literature. We mention that we have used our own implementation
for FuzzyDT, without using any third party libraries.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 23

Data set Defects Non-defects Difficulty

JEdit 48 319 0.6667

Ant 166 579 0.5723

Table 2.5: Description of the data sets used for the experimental evaluation.

Data set TN TP FN FP AUC Accuracy

JEdit original 305 18 30 14 0.666 0.88

JEdit enhanced 289 27 21 30 0.734 0.86

Ant original 539 60 106 40 0.646 0.80

Ant enhanced 526 84 82 53 0.707 0.82

Table 2.6: Results of the experimental evaluation.

2.2.5.1 Case studies

For the experimental evaluation of the FuzzyDT model we have used two openly available
data sets, created for two software systems written in Java: JEdit (version 4.2)1 and Ant
(version 1.7)2. Both data sets are available at [31]. Details about these two data sets can be
found in Table 2.5.

The last column of Table 2.5 contains the difficulty of the data sets. This measure was
introduced by Boetticher in [19] and is computed as the percentage of entities for which
the nearest neighbor (ignoring the label of the entity when computing the distances) has a
different label. Since our data sets are imbalanced, when computing the difficulty of the data
sets we considered only the percentage of defective entities for which the nearest neighbor is
non-defective.

For each data set that is used for the experimental evaluation, we will perform two
experiments. In the first experiment we are going to use the data set without any modification,
while in the second experiment we are going to enhance it by adding to the data set defective
entities taken from a different software system. We are adding extra defective entities to
reduce the imbalance in the data set. In the literature, two options are usually presented for
adding more defective entities: over-sampling (when some defective entities are duplicated)
and SMOTE (when new minority-class entities are created using the existing ones) [107]. We
believe that using actual defective entities from a different project is better than creating
synthetic entities.

For both data sets, we have added as extra defective entities, all the defective entities
from the Tomcat data set, which is also available at the Tera-Promise repository [31]. Con-
sequently, we have added 77 defective entities to both data sets, increasing the percentage of
defective entities from 0.131 to 0.282 (for JEdit) and from 0.223 to 0.30 (for Ant).

2.2.5.2 Results

Table 2.6 contains the results of the experimental evaluation. As presented in the previous
section, for each data set we have run the FuzzyDT model both for the original data set and
the data set enhanced with the defective entities taken from the Tomcat system. We mention
that these defective entities were used only for the training of the model, the testing was
performed only on the entities from the JEdit and Ant systems.

Besides the AUC performance measure - computed with the Formula (2.10) - we have
decided to add to Table 2.6 the entire confusion matrix to allow the computation of any
performance measures for our approach, to facilitate the comparison of our results to other

1https://terapromise.csc.ncsu.edu/!/#repo/view/head/defect/ck/jedit/
2https://terapromise.csc.ncsu.edu/!/#repo/view/head/defect/ck/ant/ant-1.7

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 24

approaches. While we argued that accuracy is not a good performance measure in case of
imbalanced data sets, we have decided to add it to Table 2.6 to show how different the values
of this measure are compared to AUC.

2.2.6 Discussion

In this section we provide an analysis of our approach, as well as a comparison to similar
approaches existing in the defect prediction literature.

2.2.6.1 Results analysis

Analyzing the results from Table 2.6 we can observe that, for both data sets, the AUC values
are higher for the enhanced version than for the original one. This difference was illustrated on
Figure 2.10 as well. We can also observe from Table 2.6 that the values for the True positives
have increased for the enhanced version in both situations, which means that the number
of False negatives has decreased. False negatives are defective entities that are classified as
non-defective by the approach, and in case of defect detection, such errors are more serious
than False positives, situations when non-defective entities are classified as defective. In the
first case an error in the entity will be missed, while in the second case some time will be
wasted to check an entity that contains no defects.

Figure 2.10: Comparison of the AUC values for the original and enhanced data sets.

We can also observe that the values for the accuracy measure are a lot higher than the
ones for the AUC. This demonstrates that accuracy is not a suitable performance measure
for imbalanced data sets, because we can have high accuracy in cases when only most of the
majority class was correctly classified.

Unfortunately, the AUC values are not very high, but the reason for this is the difficulty
of the data sets. As presented in the last column of Table 2.5, both data sets have really high
values for the difficulty metric. The value 0.66 in case of the JEdit data set means that 66%
of the defective entities from the data set have as nearest neighbor a non-defective entity.

2.2.6.2 Comparison to related work

In this section we compare the results for our approach to the results reported in the literature.
We selected for comparison existing methods that use for the experimental evaluation the
same data sets that we have used: JEdit and Ant. While for the Ant data set most existing
approaches use version 1.7, in case of the JEdit data set there is not a version used in most
existing related work.

Table 2.7 contains a comparison of the results for our approach and results achieved for
other approaches reported in the literature. The first two lines of the table contain the results
for our approach, both for the original and the enhanced data sets.

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 25

Approach AUC - JEdit AUC - Ant

FuzzyDT - original 0.666 0.646

FuzzyDT - enhanced 0.735 0.707

Weka - Decision Tree 0.520 0.629

Orange - Decision Tree 0.620 0.654

Multivariate Logistic Regression [65] n/a 0.754

Logistic Regression - Weka 0.602 0.661

Multi-Objective [21]
(0.13, 0.33) 0.305 (0.51, 0.39) 0.641
(0.18, 0.64) 0.346 (0.43, 0.77) 0.739
(0.18, 0.54) 0.369 (0.43, 0.43) 0.633

Bayesian networks [82] 0.732 0.703

Table 2.7: Comparison of the results to similar approaches.

The next two lines contain the results achieved for the Decision Tree classifier using two
openly available machine learning software: Weka [41] and Orange [83]. We want to mention
that we have used the original data sets because in case of the enhanced data sets we could
not find settings for using the extra defective entities only for the training and perform the
leave-one-out cross validation on the original entities only. Also, we have taken from the
results of these software systems only the confusion matrix, and computed the value of the
AUC measure using our formula.

The fifth line contains the results reported in [65] using Logistic Regression with 10-fold
cross validation on the Ant data set. The paper reports multiple performance measures, we
have taken the sensitivity (which is equal to Pd) and specificity (which is 1− Pf) and used
them to compute the value of the AUC measure, using the Formula (2.10). We have also
run the Logistic Regression classifier from Weka on the data sets and computed the value of
the AUC measure from the confusion matrix. These values are presented on the next line of
Table 2.7.

The next three lines contain the results from [21], a multi-objective cross-project defect
detection approach, which, instead of returning one single solution, computes a whole Pareto-
front of solutions. In order to perform different comparisons Canfora et al. present in [21]
some (precision, recall) pairs for their approach. From these values we have computed the
confusion matrix and the value of the AUC measure. On each line, in front of the AUC
value, we have given the (precision, recall) pair for which it was computed. In case of the
JEdit system, [21] uses the 4.0 version, not 4.2 like we do. We have run our Fuzzy DT model
on JEdit 4.0 as well, and we achieved an AUC value of 0.7, which is better than the results
reported in [21].

The last line contains the results for the Bayesian networks, an approach introduced
in [82]. We have used the Weka implementation for Bayesian networks to replicate the
experiments presented in [82] and computed the value of the AUC measure from the confusion
matrix.

Comparing the AUC values for approaches presented in the literature to our approach,
we can observe that in case of the JEdit data set our approach with the enhanced data set
has the highest AUC value. In case of the Ant system, our enhanced approach has the third
highest value, but the difference between the first three AUC values are not very big.

For the JEdit data set, the Fuzzy DT for the original data set performed better than the
related work in 6 cases out of 7 comparisons while the Fuzzy DT for the enhanced data set
performed better in all 7 cases. For the Ant data set, out of 8 comparisons, the Fuzzy DT
for the original data set provided better AUC values in only 3 comparisons, while the Fuzzy
DT for the enhanced data set performed better in 6 cases. One can observe that, for both
JEdit and Ant data sets, the Fuzzy DT for the enhanced data sets outperformed the Fuzzy

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 26

Data set TN TP FN FP AUC Accuracy

JEdit 292 25 23 27 0.718 0.864

Ant 535 73 93 44 0.682 0.816

Table 2.8: Results of the Fuzzy DT with over-sampling.

DT for the original data sets.
It is known that coping with imbalanced data sets can be done by under-sampling (re-

moving elements from the majority class) and over-sampling (duplicating elements from the
minority class) [23]. The process of creating the enhanced data sets used for the experimental
evaluation of the Fuzzy DT is similar to over-sampling, but instead of duplicating existing
instances we used defective instances from a different project. To demonstrate the advantage
of this approach, we compared it to simple over-sampling on both the JEdit and Ant data
sets. In order to make a fair comparison, for both data sets we have randomly selected 77
defective entities (the same number of defective entities were taken from the Tomcat project
to create the enhanced data sets) and added them to the data sets. We tested the Fuzzy DT
on these data sets, using a leave-one-out validation, where the extra entities were used only
for the training step, but not for testing. The obtained results are shown in Table 2.8.

Comparing the AUC values from Tables 2.6 and 2.8 we can conclude that coping with
imbalance through adding existing instances from a different project leads to an increased
performance compared to simple over-sampling. The result of this is illustrated in Figure 2.11.
The AUC values for each data set (JEdit and Ant) are depicted using two bars: the first one
corresponds to our Fuzzy DT using simple over-sampling on the data set and the second bar
represents our proposal of Fuzzy DT for the enhanced data set. Further investigations will
be made in order to consider other methods for handling the imbalance nature of the data
sets.

Figure 2.11: Comparison to simple over-sampling.

2.2.7 Conclusions and future work

A fuzzy decision tree model has been introduced for predicting, in a supervised manner, those
entities from software systems which are likely to be defective. The experimental evaluation
which was performed on two open-source software systems provided results better than most
of the similar existing approaches and highlighted a very good performance of the proposed
approach . Much more, the fuzzy decision tree approach proved to outperform, for the
considered case studies, the crisp DT approach.

Further work will be carried out in order to extend the experimental evaluation of the fuzzy
decision tree approach proposed in this paper. We also aim to investigate a hybridization
between the fuzzy DT model and relational association rules [94], since we are confident that

CHAPTER 2. APPROACHES FOR SOFTWARE DEFECT DETECTION 27

relations between the values for different software metrics would be relevant in discriminating
between defective and non-defective software entities.

Chapter 3

Software packages refactoring using
a hierarchical clustering-based
approach

The structure of a software system is the subject of many changes during the system lifecycle
and it has a major impact on the maintainability of the system. Improper implementations
of these changes often imply structure degradation that leads to costly maintenance, this is
why continuous software refactoring is beneficial.

Fowler defines in [37] refactoring as “the process of changing a software system in such a
way that it does not alter the external behavior of the code yet improves its internal structure.
It is a disciplined way to clean up code that minimizes the chances of introducing bugs”.

In the original paper [74] we have approached the problem of software refactoring at
the package level and we proposed a clustering-based approach, that would help developers
to group application classes from an existing software system into appropriate packages.
Clustering [57] is a well known unsupervised learning technique that is very useful in detecting
hidden patterns in data. Our approach takes an existing software system and re-modularizes
it at the package level using hierarchical clustering, in order to obtain better-structured
packages. Considering a certain structure of packages from a software system, the method
proposed in this chapter would also be useful for suggesting the developer the appropriate
package for a newly added application class.

It is well-known that different software systems can have different architectures [13], and
the architecture of the system influences how classes should be divided into packages. Al-
though there is the general “low coupling, high cohesion” rule [108], in case of layered or
multitier architectures, for example, classes from different layers have dependencies between
them, and they should not be placed in the same package. Thus, when developing a method
for grouping classes into packages, we have to consider the architecture of the system. In this
paper we will focus on grouping classes into packages in case of frameworks (systems with
many abstract classes and interfaces).

The rest of the chapter is structured as follows. Section 3.1 emphasizes the relevance of the
problem of software re-modularization at the package level and also gives a motivation of our
approach. The fundamentals of clustering, as well as a survey on existing approaches in the
software engineering literature in the direction of automatic software packages restructuring
are presented in Section 3.2. Section 3.3 introduces the clustering-based approach we propose
for software packages restructuring. Section 3.4 provides an experimental evaluation of our
approach. An analysis of the method proposed in this paper as well as a comparison with
existing similar approaches are given in Section 3.5.

28

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 29

3.1 Motivation

Software systems have become increasingly complex and versatile [51], that is why in order to
make them simple to maintain and evolve, it is very important to continuously refactor the
code. There is a continuous interest in applying data mining [118], [7] methods in software
engineering as mining techniques can support several aspects of the software development
life-cycle, such as software quality [91].

Refactoring is adopted by the modern software development methodologies, such as ex-
treme programming and other agile methodologies, as a solution for keeping the software
structure clean and easy to maintain. Refactoring becomes an integral part of the software
development cycle: developers alternate between adding new tests and functionality and
refactoring the code to improve its internal consistency and clarity [95].

Nowadays, the software systems are becoming more and more complex, consisting of
thousands of application classes which are grouped into software packages. Moreover, they
evolve over time and have many releases, which are resolving new functional requirements
or are due to technological improvements. Without an appropriate package structure of the
software, the system becomes hard to maintain, since its structure may be deteriorated. Thus,
software restructuring at the package level is an important process in software maintenance
and evolution. The cost of software maintenance increases with the complexity of the systems,
therefore it is very hard for software developers to decide the appropriate software package
in which a newly added application class has to be placed. When the number of application
classes is large the class assignment decision is not an easy one, since it involves a good
knowledge of the overall system design.

The problem of software packages restructuring arises from practical needs, thus the
approach proposed in this paper can be useful for assisting software developers in their daily
works of refactoring packages in software systems. Consequently, the approach we propose
in this paper would be effective for software developers in assisting them during maintaining
complex software systems, as well as through the software evolution [54].

3.2 Background

In this section we present the main aspects related to the clustering problem, as well as a
literature review on the problem of automatic software packages restructuring.

3.2.1 Clustering

Clustering [43] is a data mining activity that aims at partitioning a set of data (or objects)
in a set of meaningful sub-classes, called clusters, being considered the most important un-
supervised learning problem. The resulting subsets or groups, distinct and non-empty, are
to be built so that the objects within each cluster are more closely related to one another,
than objects assigned to different clusters. Central to the clustering process is the notion of
degree of similarity (or dissimilarity) between the objects.

Let O = {O1, O2, . . . , On} be the set of objects to be clustered. The measure used for
discriminating objects can be any metric or semi-metric function d : O × O −→ <. The
distance expresses the dissimilarity between objects.

In this paper we are focusing only on hierarchical clustering [35], that is why, in the
following, a short overview of the hierarchical clustering methods is presented.

Hierarchical clustering methods represent a major class of clustering techniques [49].
There are two styles of hierarchical clustering algorithms. Given a set of n objects, the
agglomerative (bottom-up) methods begin with n singletons (sets with one element), merg-
ing them until a single cluster is obtained. At each step, the most similar two clusters are

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 30

chosen for merging. The divisive (top-down) methods start from one cluster containing all n
objects and split it until n clusters are obtained.

The agglomerative clustering algorithms that were proposed in the literature, differ in the
way the two most similar clusters are calculated and the linkage-metric used (single, complete
or average). Single link algorithms merge the clusters whose distance between their closest
patterns is the smallest. Complete link algorithms, on the other hand, merge the clusters
whose distance between their most distant patterns is the smallest [49]. In general, complete
link algorithms generate compact clusters, while single link algorithms generate elongated
clusters. Complete link algorithms are generally more useful than single link algorithms.
Average link algorithms merge the clusters whose average distance (the average of distances
between the objects from the clusters) is the smallest. Average link clustering is a compromise
between the sensitivity of complete-link clustering to outliers and the tendency of single-link
clustering to form long chains that do not correspond to the intuitive notion of clusters as
compact, spherical objects [71].

3.2.2 Software remodularization at the package level. Literature review

In the literature, there are several different methods reported for identifying how classes
should be grouped into packages. One such method is presented in [9], where clustering is used
to find the ideal grouping of classes. The authors present several methods and experimental
results of these methods. In the first method they keep the current package structure of the
software system, but they check if there are classes which should be moved from one package
to another. For each class they count the number of initializations of that class in the existing
packages. If a class has a higher number of initialization in a different package than its own,
it is suggested to be moved to that one.

The second method presented in [9] uses a vector-based representation of the classes,
i.e. every class from the software system is represented as a multidimensional vector. The
length of the vector represents the total number of methods in the system and the values
in the representation of the classes are the number of calls to the given method. For two
such vectors a dissimilarity coefficient is defined, which will be used in the clustering process.
They use a hierarchical clustering algorithm and experiment with different linkage-metrics:
single, complete and average. They also present a novel clustering algorithm, called Adaptive
k-Nearest Neighbour (A-KNN) Clustering, which gives similar results to regular clustering
algorithms, but has lower complexity.

Another method that tries to automatically divide classes into packages is the one pre-
sented in [84]. In this method, software networks are used to represent classes from a software
system and their dependencies. They use two kind of dependencies, method accessing at-
tribute and method call dependencies. Dependencies between classes are defined based on
these two types of dependencies: if a method from a class accesses an attribute or calls a
method from a different class, a dependency is formed between the two classes. On the
networks built based on these dependencies a constrained community detection algorithm is
applied, which will identify the optimized community structures, that correspond to the ideal
package structure.

Even if it can not restructure a whole system, the method presented by Bavota et al. in
[14] can divide a package, which has a low cohesion, into several more cohesive packages. They
measure cohesion considering both structural and semantic relationships among the classes.
Thus, for every pair of classes, they compute a likelihood that the two classes should be
together in a package, using a structural software metric (Information-Flow Based Coupling)
and a semantic one (Conceptual Coupling Between Classes). Using these likelihoods they
extract chains of classes from the package which should form separate packages.

Another direction of research that should be mentioned, is the definition of different met-
rics, which measure the quality of packages in a software system. Such metrics are defined in

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 31

[92], that measure different aspects of the division into packages: coupling, not programming
to interfaces, size, system extensibility, API cohesiveness and segregation, common use of
method classes, a total of 14 metrics. The only disadvantage of these metrics is that they
require the explicit definition of APIs for the packages, but in most systems, such APIs are
not defined. Another set of metrics, which overcomes this disadvantage by automatically con-
sidering as part of the API those classes that interact with classes from different packages,
is presented in [33]. They introduce three coupling metrics and two cohesion metrics defined
for packages. These metrics are based on two types of dependencies: extend dependencies
and use dependencies (defined as method call or attribute access). Some metrics are actually
pairs, containing one metric defined for extend dependencies and one for use dependencies
(for example: Index of Inter-Package Usage and Index of Inter-Package Extending).

3.3 Methodology

In this section we introduce the clustering-based approach (CASP - Clustering Approach for
Software Packages Restructuring) for software re-modularization at the package level.

CASP approach consists of two steps:

• Data collection - The existing software system is analyzed in order to extract from
it relevant information about application classes, methods, attributes and the existing
relationships between them: inheritance relations, aggregation relations, dependencies
between the entities from the software system. These information can be extracted from
existing documents of the software system, like: source code, byte code, UML diagrams,
or other documents that may provide the needed information. All these collected data
will be used in the Grouping step of our approach.

• Grouping - The set of classes from the software system, considering the relevant in-
formation extracted at the previous step, are grouped in clusters (packages) using a
clustering algorithm (HASP in our approach). The goal of this step is to obtain a par-
titioning of the software system into packages (each cluster from the obtained partition
corresponds to a software package).

In the following, we introduce a theoretical model on which our clustering approach is
based and a more detailed description of CASP.

3.3.1 Theoretical model

Let S = {s1, s2, ..., sn} be a software system, where si, 1 ≤ i ≤ n represents an application
class from the software system.

Let us consider that:

• Each application class si (1 ≤ i ≤ n) is a set of methods and attributes, i.e. si =
{mi1,mi2, . . . ,mipi , ai1, ai2, . . . , airi , where mij (∀j, 1 ≤ j ≤ pi) are methods and aik
(∀k, 1 ≤ k ≤ ri) are attributes from the application class si.

• Meth(S) =

n⋃
i=1

pi⋃
j=1

mij , Meth(S) ⊂
n⋃

i=1

si, is the set of methods from all the application

classes of the software system S.

• Attr(S) =

n⋃
i=1

ri⋃
j=1

aij , Attr(S) ⊂
n⋃

i=1

si, is the set of attributes from the application

classes of the software system S.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 32

At the Grouping step of our approach, the application classes from software system S
have to be re-grouped. This re-grouping is represented as a partition of S.

Partition into packages of a software system S.

The set K = {K1,K2, ...,Kv} is called a partition into packages of the software system
S = {s1, s2, . . . , sn} iff

• 1 ≤ v ≤ n;

• Ki ⊆ S,Ki 6= ∅,∀i, 1 ≤ i ≤ v;

•
n⋃

i=1

si =

v⋃
i=1

Ki and Ki ∩Kj = ∅, ∀i, j, 1 ≤ i, j ≤ v, i 6= j.

In a partition K = {K1,K2, ...,Kv} of the software system S a cluster Ki represents a
software package (group of application classes).

3.3.2 Grouping into packages

In the following we introduce a novel hierarchical agglomerative clustering algorithm (HASP
- Hierarchical Clustering Algorithm for Software Packages Restructuring), which aims at
identifying a partition of a software system S, that corresponds to a good structure of
packages of the software system. Since the architecture of a software system is an important
factor when deciding which classes should be placed in the same package, it is complicated to
create a universal model, that works for every architecture. In this paper we are focusing on
identifying a good structure of packages for a framework, consequently, the HASP algorithm
will be suitable for such systems.

In our clustering-based approach, the objects to be clustered are the application classes
from the software system S, i.e. {s1, s2, . . . , sn}. Our focus is to group application classes
from S into packages (cluster). In the following, when referring to a cluster, we are considering
a group of application classes (a possible software package).

Based on the considerations above, we are going to associate in the following a score to
a group G of application classes (group that may represent a possible package) in a software
system S. This score will give a measure of how “good” the software package consisting
of the application classes from G is, also considering the other packages from the software
system S.

Let us consider that K = {K1,K2, ...,Kv} is a partition of the software system S rep-
resenting a current partitioning into packages of the system. Since we are going to apply a
hierarchical clustering-based approach, we have to decide at a given moment in the clustering
process to merge into a single cluster two clusters Ki and Kj from the current partition K.
Thus, we aim at defining a numerical value, denoted by score (Formula (3.1)), indicating
the “importance” of the software package obtained by merging the clusters Ki and Kj with
respect to the remaining packages from the partition K. At a given moment in the hierarchi-
cal clustering process, we will merge the pair of clusters that have the maximum associated
score.

3.3.2.1 Selected features

In order to obtain a good package structure, we try to capture important characteristics of a
good package: high cohesion, low coupling, high reuse potential. Seven features F1, F2, F3, F4, F5, F6, F7

were identified to be relevant in characterizing how “good” is the software package Ki
⋃
Kj

related to the rest of the packages from the partition K. An important part for computing

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 33

most of these features is based on the notion of “dependency” (between classes, packages).
For a given class C, we consider that the list of classes C depends on is formed by:

(1) All the interfaces implemented by C and the class extended by C, if they exist.

(2) The types of the attributes in class C.

(3) For every method m from class C we consider:

a. The type of the parameters for method m.

b. The type of the returned value for method m.

c. Classes whose attributes are directly accessed in the method m.

d. Types of the local variables created/used in m.

e. Classes from which methods are called in m.

We have also considered that not every type of dependency is equally important when group-
ing the classes into packages, so we have decided to weight these dependency types differently,
according to their importance: attribute type (item (2) - strongest), inheritance (item (1)),
method/attribute access (item (3c) - weakest). The weights used in our approach for these
three dependencies are 6, 4 and 2, respectively. All other dependency types are equally
weighted.

Let us denote by K∗ = K \ {Ki,Kj} the partition K without the packages Ki and Kj .
Therefore, score(Ki

⋃
Kj ,K∗) depends on the following features:

1. Feature F1 - Package cohesion. This feature counts the number of dependencies
between the classes in package Ki

⋃
Kj . For every class C from this package we compute

the list of classes it depends on and we count how many of these classes are in package
Ki
⋃
Kj . For this feature we count a dependency multiple times if it appears more than

once.

2. Feature F2 - Package reuse. This feature counts the number of the packages from
the rest of the system, K∗, depending on the package Ki

⋃
Kj (on at least one class).

3. Feature F3 - Package coupling. This feature counts the number of packages from
K∗ on which classes from Ki

⋃
Kj depend on.

4. Feature F4 - Name cohesion. This feature measures the similarity between names
of the classes from package Ki

⋃
Kj .

5. Feature F5 - Dependency similarity. This feature measures how similar the classes
from K∗ on which the application classes of Ki

⋃
Kj depend on are.

6. Feature F6 - General coupling. This feature counts the percentage of pairs of classes
(one class from Ki and one from Kj) which have a dependency (in either direction).

7. Feature F7 - General name coupling. This feature computes the percentage of
methods with similar names for every pair of classes (one from Ki and one from Kj).

3.3.2.2 A simple example

In order to better understand how these features are computed, in the following, we will
present a short, simple example, a system consisting of seven classes, part of an online
bookstore. The source code is presented on Figure 3.1, and the list of dependencies for every
class from Figure 3.1 is given in Table 3.1.

Let us consider that at a given step in the clustering process, the current partition contains
the following four clusters:

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 34

public abstract class AbstractBook{

protected String title;

protected String author;

protected Integer year;

public String getDescription(){

return title + ":" + author+

+ "(" + year + ")";

}

// simple constructor with fields as

// parameters, getters and

// setters for fields

}

public class AudioBook extends

AbstractBook{

private String reader;

public String getDescription(){

return super.getDescription() +

" - AudioBook (" + reader + ")";

}

// simple constructor with fields as

// parameters, getter and

// setter for reader

}

public class EBook extends

AbstractBook{

private String format;

private boolean blackAndWhite;

private Integer size;

public String getDescription(){

return super.getDescription() +

" - EBook (" + format + ")";

}

// simple constructor with fields as

// parameters, getters and setters

// for fields

}

public class PaperBook extends

AbstractBook{

private String type;

private Integer weight;

public String getDescription(){

return super.getDescription() +

" - " +type;

}

// simple constructor with fields as

// parameters, getters and setters

// for fields

}

public abstract class EBookReader{

protected List<String> supportedFormats;

protected String resolution;

protected String model;

public abstract boolean supports(EBook b);

// simple constructor with fields as

// parameters, getters and setters

// for fields

}

public class ColorReader extends

EBookReader{

public boolean supports(EBook b){

if(supportedFormats.contains(

b.getFormat()))

return true;

else

return false;

}

// simple constructor with fields as

// parameters

}

public class BlackAndWhiteReader

extends EBookReader{

public boolean supports(EBook b){

if(!(supportedFormats.contains(

b.getFormat())))

return false;

if(book.isBlackAndWhite())

return true;

return false;

}

// simple constructor with fields as

// parameters

}

Figure 3.1: Simple Code Example

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 35

Class name Dependencies

AbstractBook ∅
AudioBook AbstractBook (6 times)

EBook AbstractBook (6 times)

PaperBook AbstractBook (6 times)

EBookReader EBook

ColorReader EBookReader(5 times), EBook(2 times)

BlackAndWhiteReader EBookReader(5 times), EBook(3 times)

Table 3.1: Dependencies for classes from Figure 3.1
.

• C1 : EBookReader, ColorReader, BlackAndWhite-Reader

• C2 : AbstractBook, AudioBook

• C3 : PaperBook

• C4 : EBook

The values of the seven features, presented in the previous Section, for the pairs of clusters C1

- C4, C2−C4 and C3−C4 are presented in Table 3.2. For the first pair, C1 - C4, consisting of
classes EBookReader, ColorReader, BlackAndWhiteReader, respectively EBook, the values
are computed in the following way:

• F1. EBookReader has a single dependency on EBook, ColorReader has five dependen-
cies on EBookReader and two on EBook, BlackAndWhiteReader has five dependencies
on EBookReader and three on EBook, and EBook has no dependencies (from the C1 -
C4 package). This is a total of 16 dependencies.

• F2. There is no package in the system which uses classes from the C1 - C4 package, so
this value is 0.

• F3. The only package on which classes from C1 - C4 depend on is C2, so this value is 1.

• F4. For this feature we consider every pair of classes and count the common words
in their names: EBookReader - ColorReader (1 word), EBookReader - BlackAnd-
WhiteReader (1 word), EBookReader - EBook (2 words, E is a separate word), Color-
Reader - BlackAndWhiteReader (1 word), ColorReader - EBook (0 words), BlackAnd-
WhiteReader - EBook (0 words). In total, there are 5 common words in 6 pairs, so this
value is 0.83.

• F5. There is no class on which all classes from C1 - C4 depend on, so this feature has
the value of 0.

• F6. There is a dependency between every pair of classes, when one class comes from
C1 and the other from C4, so the value of this feature is 1.

• F7. There is no common method for the pairs of classes, considered as for F6, so this
value is 0.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 36

Pair of F1 F2 F3 F4 F5 F6 F7

clusters

C1 - C4 16 0 1 0.83 0 1 0

C2 - C4 12 2 0 1 0 0.5 0.094

C3 - C4 0 1 1 1 1 0 0.091

Table 3.2: Values of features for three cluster pairs
.

score(Ki

⋃
Kj ,K∗) =

2∑
i=1

wi · Fi − w3 · F3

|Ki
⋃
Kj |2 − 1

+
7∑

i=4

wi · Fi (3.1)

3.3.2.3 Score computation

After the relevant features were identified, the score score(Ki
⋃
Kj ,K∗) of the software pack-

age Ki
⋃
Kj is defined as a linear function on these features, as given in Formula (3.1).

When defining this score we have first started from the well-known principle, that packages
should have high cohesion and low coupling. We also wanted to consider many different
types of dependencies between classes, not just initialization, method call, attribute access
like some other methods do. Also, when considering coupling, which should be low, for a
given package we differentiate between the package being used by some other package (feature
F2) and the package using another package (feature F3). From the perspective of a given
package, we consider that the former is “good coupling” - when you create a package, you
want other packages to use it -, while the latter is “bad coupling” - you want a package to be
as independent as possible. Also, we have noticed that aiming just for high cohesion and low
coupling will often result in some big packages with absolutely no connection between them
(0 being the lowest possible coupling). This is why we introduced the rest of the features,
to measure the similarity of the names of the classes, how common the used classes are, how
many relations are between the classes of the two packages to be merged and so on.

In Formula (3.1) wi (0 ≤ wi ≤ 1) is the weight associated to the feature Fi (∀ 1 ≤ i ≤ 7).
In order to obtain good values for the weights a grid search procedure [16] will be used (details
are given in Section 3.4.1). In defining the score we started from the intuition that in order to
obtain good packages the values for the features F1, F2, F4, F5, F6, F7 have to be maximized
(since they express the cohesion between Ki and Kj), the value for F3 has to be minimized
(since it expresses the coupling between Ki and Kj to the rest of the packages), without
favoring packages with a large number of classes.

HASP is based on the idea of hierarchical agglomerative clustering. At a given step, the
pair of clusters that have the maximum associated score are merged. This means (considering
the way the score was defined) that the application classes from the two clusters (packages)
are cohesive enough in order to be placed in the same cluster.

The agglomerative hierarchical clustering process is performed until a single cluster is
obtained. From all the generated partitions, we need to identify the one that is likely to be
the “best” partitioning of the software system S into software packages. For this, we are
going to assign an overall score to a partition of a software system (set of software packages),
score that has to be maximized in order to obtain a better partitioning.

Let us consider a partition K = {K1,K2, ...,Kv} of a software system S, where Ki repre-
sents a software package. The overall score associated to partition K is defined in Formula
(3.2).

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 37

overallScore(K) =

v∑
i=1

sc(Ki,K)

v
(3.2)

where sc(Ki,K) expresses how well structured is the package Ki within the partition K and
is defined as in Formula (3.3).

sc(Ki,K) =

2∑
i=1

wi · Fi − w3 · F3

|Ki|2 − 1
+

5∑
i=4

wi · Fi (3.3)

In Formula (3.3) Fi (1 ≤ i ≤ 5) are the features that were described above and wi

(1 ≤ i ≤ 5) are the weights that are associated to these features. We mention that features
F6 and F7 (from Formula (3.1)) are not considered in Formula (3.3), since these features are
characterizing two packages (that will be merged during the clustering process), not a single
one.

3.3.2.4 The HASP algorithm

The main steps of the HASP algorithm are:

• Each application class from the software system is put in its own cluster (package).

• The following steps are repeated until a single cluster is obtained in the partition:

– For the current partition, the corresponding overallScore is computed.

– Select the pair of clusters (Ki,Kj) from the current partition K that maximize the
value score(Ki

⋃
Kj ,K∗) (Formula (3.1)) and merge these clusters.

In order to identify the most appropriate np number of clusters, the following analysis is
performed. We consider that K1,K2, . . .Kn (n is the number of application classes from the
software system) are the partitions generated by the HASP algorithm, where Ki represents
the partition with i clusters (1 ≤ i ≤ n). The sequence os = (os1, os2, . . . , osn) where
osi = overallScore(Ki), is analyzed as follows:

• The local maxima osi1 , osi2 , . . . , osik from the os sequence are computed. For each local
maximum osij (1 ≤ j ≤ k) the local minima, that are nearest the local maximum in the
sequence before and after it, are computed. Now, we associate to osij a value val(ij)
computed as the difference between the local maximum and the mean of the two local
minima.

• The position of the maximum value from the sequence val(i1), val(i2), . . . , val(in) is
considered to be the most appropriate number np of software packages, i.e. np =
argmaxj=1,n(val(ij)).

With the number of clusters identified using the analysis above, the solution reported by
the HASP algorithm is the partition containing np clusters, i.e. Knp.

We give next the HASP algorithm.

Algorithm HASP is

Input:
- the software system S = {s1, . . . , sn}, n ≥ 2

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 38

Output:
- Koptimal = {K1,K2, ...,Kv}, the partition of packages in S.
Begin

For i ← 1 to n do

Ki ← {si} //each class is put in its own cluster
endfor

K[n]← {K1, . . . ,Kn} //the initial partition
nc← n
//nc is the number of clusters in the current partition
While nc > 1 //until a single cluster is obtained

maxScore← 0 //the maximum score

For i∗ ← 1 to |K|-1 do

For j∗ ← i∗ + 1 to |K| do
K∗ ← K[nc] \ {Ki∗ ,Kj∗}
s← score(Ki∗

⋃
Kj∗ ,K∗)

If s > maxScore then

maxScore← s
i← i∗

j ← j∗

endif

endfor

endfor

Knew ← Ki ∪Kj

nc← nc− 1
K[nc]← (K[nc+ 1] \ {Ki,Kj}) ∪ {Knew}
endif

endwhile

@ determine the number np of clusters

Koptimal ← K[np]
End.

3.3.3 Assigning application classes to packages

In the following we aim at proposing an algorithm that will provide the appropriate software
package for a newly added application class.

Let us consider that K = {K1,K2, ...,Kv} is the actual partition into packages of the
software system S. A new application class C is added to the system. In order to decide what
is the most appropriate software package into which C should be added, we are reasoning as
follows. For each software package Ki (1 ≤ i ≤ v) we compute the score score(Ki

⋃
{C},K \

{Ki}) obtained by adding application class C to software packageKi. The maximum obtained
score will give us the software packages to which application class C should be assigned.

The algorithm is given below.

Algorithm AssignClass is

Input:
- the partition K = {K1,K2, ...,Kv} of S
- the application class C
Output:
- rez (1 ≤ rez ≤ v).
Begin

maxScore← 0 //the maximum score

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 39

For i ← 1 to v do

s← score(Ki
⋃
{C},K \ {Ki})

If s > maxScore then

maxScore← s
rez ← i

endif

endfor

//Krez is the suggested package for class C
End.

In some cases it is possible that the new class should be added into a newly created
package. Although the current version of our algorithm does not consider this case, it is
possible to add a threshold value t, and report Krez as a solution only if maxScore > t,
otherwise return v + 1 suggesting that a new package should be created. We intend to add
this improvement to the future version of the algorithm.

3.4 Experimental evaluation

In our experiments we will consider two open source software systems that will be restructured
in packages using the CASP approach introduced in this paper. The reasons for choosing
these two software systems are the following:

• They both are frameworks, which is important, because our method was designed to
restructure into packages the application classes from a framework.

• They are openly available.

• They were written in Java, and our current implementation of the Data Collection step
analyzes systems written in Java.

• They have a relatively small number of classes, which allows manual verification and
analysis.

3.4.1 Parameters tuning

The optimization of the weights w1, w2, · · ·w7 used for computing the score (Section 3.3.2)
of a software package within a software system is performed by a grid search method on a
validation set. Even if it is a method usually used for optimizing parameters of a supervised
learning method, we are using the grid search method within an unsupervised learning sce-
nario. As validation set we use a software framework that was introduced in [29] in order to
solve combinatorial optimization problems using reinforcement learning [100]. This frame-
work was used in [18, 28, 27] for solving with reinforcement learning several optimization
problems. For this software system a good partition into packages is known.

The grid search [16] makes repeated trials for each parameter across a specified interval.
For each combination of these parameters, the HASP algorithm (Section 3.3.2) is applied on
the software system used as validation set. The grid search procedure is guided by the CIP
evaluation measure (Section 3.4.2), which expresses how close is a partition to the known
partitioning, and thus has to be maximized. Consequently, we are searching for values for
the weights which are leading to the partition that is the most similar to the known partition
into packages.

In the grid search procedure, we are using the following sequences for the weights: wi =
(0.2, 0.2 + 1 · 10−2, 0.2 + 2 · 10−2, . . . , 0.8) for i = 1, 2, 3, 4, 5, 6, 7.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 40

The best values for the weights obtained through the grid search procedure are: w1 = 0.22,
w2 = 0.25, w3 = 0.2, w4 = 0.52, w5 = 0.72, w6 = 0.3, w7 = 0.36. These values will be used
in the experiments that will be presented below.

We have performed in [73] a study in order to evaluate how well packages in a software
system are structured using the overallScore evaluation measure and the weights that were
obtained above. Three open source software frameworks [1, 2, 3] were considered for exper-
imentation, and the conclusions of the study were that overallScore measure is capable of
differentiating between a good and a bad partitioning into packages of a software system,
which did not always happen in case of the other metrics taken from the literature. More-
over, overallScore has proven to be strongly positively correlated with the good structure of
packages from the considered software systems.

3.4.2 Evaluation measure

For evaluating how accurate are the partitions obtained by the HASP algorithm in com-
parison with a given structure of packages of the software system (considered to be a good
structure of packages), we use the CIP evaluation measure.

In the following, let us consider a software system S, a partition K = {K1, . . . ,Kv} (in

our case provided by HASP algorithm) and Kgood = {Kgood
1 , . . . ,Kgood

q } (a good structure
of packages that is apriori-known).

Cohesion of Identified Packages - CIP.

The cohesion of the software packages fromKgood in the partitionK, denoted by CIP (Kgood,K),

is defined as: CIP (Kgood,K) = 1
q

q∑
i=1

cip(Kgood
i ,K). cip(Kgood

i ,K) is the cohesion of package

Kgood
i in partition K and is defined as: cip(Kgood

i ,K) =

∑
k∈M

K
good
i

|Kgood
i ∩ k|

|Kgood
i ∪ k|

|M
K

good
i

| , where M
Kgood

i

is defined as: M
Kgood

i
= {k | k ∈ K, Kgood

i ∩ k 6= ∅}.
For a given software package p ∈ Kgood, cip(p,K) defines the degree to which the ap-

plication classes from the software package p belong together in clusters from the partition
K.

It can be easily proven that, if K is a partition of the software system S and Kgood is a
good structure of packages of S, then the following inequality holds: 0 ≤ CIP (Kgood,K) ≤ 1.

Larger values for CIP indicate better partitions with respect to Kgood, meaning that CIP
has to be maximized. If CIP (Kgood,K) = 1, it means that K is the optimal partition, as it
coincides with the good structure, Kgood, of packages.

3.4.3 Experiments

For each software system S considered for evaluation, two experiments are performed. The
way these experiments are performed is described below.

Experiment 1

During the first experiment the HASP clustering algorithm introduced in Section 3.3.2 is
applied in order to obtain a structure of packages that will be compared against the actual
structure of S. The experiment is conducted as follows:

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 41

• First, at the Data Collection step, the relevant information from the software S is
extracted. The evaluated software system is written in Java. In order to extract from
the systems the data needed in the Grouping step of our approach (Section 3.3) we use
ASM 3.0 [11], a Java bytecode manipulation framework. We use this framework in order
to extract the structure of the systems (attributes, methods, classes and relationships
between all these entities).

• The application classes are grouped in clusters using HASP algorithm and a partition
K = {K1,K2, ...,Kv} of S is provided. The obtained partition represents a structure of
packages in the software system S.

• In order to evaluate the “quality” of the partition K reported by our algorithm, it
is compared with a good partitioning Kgood into packages that is apriori-known. We
expect K to be nearly identical to Kgood. In order to capture the similarity of the two
partitions (the one obtained by HASP algorithm and the original/known one) the CIP
evaluation measure is used.

Experiment 2

During the second experiment the AssignClass algorithm introduced in Section 3.3.2 is
applied in order to identify the software package from the system S where a newly added
application class should be placed. The experiment will be detailed for each considered case
study.

3.4.3.1 Commons DbUtils framework

The first case study considered for evaluation is an open source software framework, Commons
DbUtils (version 1.5), a library consisting of a small set of classes, which are designed to make
working with JDBC easier [1]. It consists of 25 classes, placed in three packages:

• default package - contains 11 classes, these are the core classes and interfaces of the
system.

• handlers - contains 12 classes, implementations for the ResultSetHandler interface from
the default package.

• wrappers - contains 2 classes, two wrappers for the ResultSet class from the java.sql
package.

The exact classes from each package are presented on Table 3.3 and a simplified class diagram
of the software system is given on Figure 3.2.

Experiment 1. Results

We applied the HASP algorithm introduced in Section 3.3.2, for the DbUtils software
system, and it determined that the optimal number of clusters in the final partition is 4. The
values for the overallScore measure are presented on Figure 3.3, where the black vertical lines
depict the values associated to the local maxima, and the dashed line shows the maximum
of these values. The labels under the black lines show the exact values. From Figure 3.3 it
can be observed, that the maximal value is for the a partition with 4 clusters. The classes
placed in these 4 clusters are presented on Table 3.4.

Even if the resulting packages are not the same as in the original package structure of the
system (presented on Table 3.3), it can be observed that they are not very different either.
Cluster 3 corresponds to the the packages wrappers but it has one extra class, ProxyFactory,
that was originally in the default package. If we look at these classes and the relationships

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 42

Figure 3.2: The class diagram of the DbUtils framework.

Package Class Name

default

AbstractQueryRunner,
AsyncQueryRunner,
BasicRowProcessor,

BeanProcessor, DbUtils,
ProxyFactory, QueryLoader,

QueryRunner, ResultSetHandler,
ResultSetIterator, RowProcessor

handlers

AbstractKeyedHandler,
AbstractListHandler,

ArrayHandler, ArrayListHandler,
BeanHandler, BeanListHandler,

BeanMapHandler, ColumnListHandler,
KeyedHandler, MapHandler,

MapListHandler, ScalarHandler

wrappers
SqlNullCheckedResultSet,
StringTrimmedResultSet

Table 3.3: Packages and classes in the DbUtils system.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 43

Figure 3.3: The values of the overallScore measure for the DbUtils system.

between them, we can observe that the class ProxyFactory uses no class from the system and
is only used by the two classes from the wrappers package, so it is justified to be moved with
those classes.

Cluster 4 corresponds to the handlers package in the original structure, but it also has
the interface ResultSetHandler from the default package. Verifying the dependencies in the
system, we can observe that the ResultSetHandler interface uses no class from the system.
It is used by classes QueryRunner as parameter in some methods, class AsyncQueryRunner
in an inner class and is used by every class in the handlers package, which either implement
it directly or extend a class which implements it. Even if we can not say that interface Re-
sultSetHandler has only dependencies with classes from the handlers package, it has a larger
number of dependencies with the handlers package and implement or extend dependencies
are, in our opinion, stronger than use dependencies, so we consider that the structure of
Cluster 4 is justified as well.

Finally, Clusters 1 and 2 contain the classes which were originally in the default package
(without the two classes put into Cluster 3 and 4). Checking the dependencies again, we can
see that there is absolutely no dependency between the classes from the two clusters, but
there are dependencies inside each cluster. This means, that separating the default package
into two separate package does not increase coupling between packages but it increases the
cohesion inside the packages, so we believe this division is justified as well.

The results obtained at each step by the HASP algorithm on the DbUtils software are
given in Table 3.5.

Even if we consider that the results of the HASP algorithm can be justified, we computed
the value of the CIP metric for the results, considering as Kgood the original structure (from
Table 3.3). The value of the metric was 0.60813. Obviously, if we consider as Kgood the
results of the algorithm (from Table 3.4) the value of the CIP metric is 1.

Finally, we have run the HASP algorithm on the previous version of the DbUtils system,
version 1.4, which is very similar to version 1.5, but it does not have the class BeanMapHandler

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 44

Cluster Classes

Cluster 1

AbstractQueryRunner,
AsyncQueryRunner,

QueryRunner, QueryLoader,
DbUtils

Cluster 2
BasicRowProcessor,

RowProcessor, BeanProcessor,
ResultSetIterator

Cluster 3
ProxyFactory,

SqlNullCheckedResultSet,
StringTrimmedResultSet

Cluster 4

ResultSetHandler,
AbstractKeyedHandler,
AbstractListHandler,

ScalarHandler, ArrayHandler,
BeanHandler, BeanListHandler,
MapHandler, BeanMapHandler,

KeyedHandler, ArrayListHandler,
MapListHandler, ColumnListHandler

Table 3.4: Results of the HASP algorithm on the DbUtils system.

in package handlers. Our algorithm gave the same results (without the BeanMapHandler
class) as for version 1.5, the clusters from Table 3.4.

Experiment 2. Results

During the second experiment, several new application classes are added in DbUtils system
and we aim to determine the software package in which the application classes should be
added. For the second experiment, the algorithm introduced in Section 3.3.3, AssignClass,
will be used. We have decided to remove some application classes from the system, consider
the remaining ones as the correct structure and then apply the algorithm from Section 3.3.3
to determine in which package should the removed classes go. In order to thoroughly test
the AssignClass algorithm, we have decided not to pick some classes randomly, but to try
removing every class. Obviously, when we remove a class from the system, we have to remove
any other that depend on it (and the classes that depend on these ones, and so on) to be
able to consider the remaining classes as an existing system in which we add a new class.
Still, there are some classes, which are used by so many other ones, that removing all of them
would change the system radically (for example, the ResultSetHandler interface on which
all classes from the handlers package depend on). This is why, we have defined a threshold
value for the dependencies: if the number of dependencies is at most 3, then we remove the
class and the dependencies (no more than 3) and try to add the class to the system with
the AssignClass algorithm, otherwise we do not try to remove the given class. The results
of this experiment are presented on Table 3.6, where the first column shows the class that
is removed, the second column shows the number of dependencies of the class and the last
column summarizes the results of the experiment, or contains the corresponding message, if
the class was not removed. In order to reference the packages easier, we consider the following
names for the packages from Table 3.4: Cluster 1 - query, Cluster 2 - processor, Cluster 3 -
wrappers and Cluster 4 - handlers.

Being 25 classes in the DbUtils system, it is clear that Table 3.6 contains 25 lines, corre-
sponding to 25 possible runs of the algorithm, one for each class. Out of these, in 5 cases the

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 45

Step
Merged clusters

Score
Cluster 1 Cluster 2

1 ArrayHandler BeanHandler 2.773

2 AsyncQueryRunner QueryRunner 2.673

3 BasicRowProcessor RowProcessor 2.521

4 AbstractKeyedHandler AbstractListHandler 2.23

5 ArrayHandler, BeanHandler BeanListHandler 2.05

6 AbstractQueryRunner AsyncQueryRunner, QueryRunner 1.941

7 ArrayListHandler MapListHandler 1.92

8 ArrayListHandler, MapListHandler ColumnListHandler 1.925

9
ArrayHandler, BeanHandler,

MapHandler 1.838
BeanListHandler

10 AbstractKeyedHandler, AbstractListHandler ScalarHandler 1.752

11 SqlNullCheckedResultSet StringTrimmedResultSet 1.71

12 BasicRowProcessor, RowProcessor BeanProcessor 1.585

13 ResultSetHandler
AbstractKeyedHandler, 1.35

AbstractListHandler, ScalarHandler

14 BeanMapHandler KeyedHandler 1.28

15
ArrayHandler, BeanHandler, BeanMapHandler,

1.083
BeanListHandler, MapHandler KeyedHandler

16
AbstractQueryRunner,

QueryLoader 1.076
AsyncQueryRunner, QueryRunner

17 ProxyFactory
SqlNullCheckedResultSet,

1.032
StringTrimmedResultSet

18
BasicRowProcessor,

ResultSetIterator 0.991
RowProcessor, BeanProcessor

19
ResultSetHandler, ArrayHandler, BeanHandler,

0.96AbstractKeyedHandler, BeanListHandler, MapHandler
AbstractListHandler, ScalarHandler BeanMapHandler, KeyedHandler

20

ResultSetHandler, AbstractKeyedHandler, ArrayListHandler,

0.805
AbstractListHandler, ScalarHandler, MapListHandler,

ArrayHandler, BeanHandler, ColumnListHandler,
BeanListHandler, MapHandler,

BeanMapHandler, KeyedHandler

21
AbstractQueryRunner, AsyncQueryRunner, DbUtils

0.78
QueryRunner, QueryLoader

Table 3.5: Step-by-step results of the HASP algorithm.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 46

Class name Dependencies Result

AbstractKeyedHandler 2 Class placed correctly in handlers

ArrayHandler 7 Too many dependencies

AbstractListHandler 3 Class placed correctly in handlers

ArrayListHandler 0 Class placed correctly in handlers

BeanHandler 0 Class placed correctly in handlers

BeanListHandler 0 Class placed correctly in handlers

BeanMapHandler 0 Class placed correctly in handlers

ColumnListHandler 0 Class placed correctly in handlers

KeyedHandler 0 Class placed correctly in handlers

MapHandler 0 Class placed correctly in handlers

MapListHandler 0 Class placed correctly in handlers

ScalarHandler 0 Class placed correctly in handlers

SqlNullCheckedResultSet 0 Class placed correctly in wrappers

StringTrimmedResultSet 0 Class placed correctly in wrappers

AbstractQueryRunner 2 Class placed incorrectly

AsyncQueryRunner 0 Class placed correctly in query

BasicRowProcessor 10 Too many dependencies

BeanProcessor 10 Too many dependencies

DbUtils 3 Class placed incorrectly

ProxyFactory 2 Can not remove, wrapper becomes empty

QueryLoader 0 Class placed correctly in query

QueryRunner 1 Class placed incorrectly

ResultSetHandler 14 Too many dependencies

ResultSetIterator 0 Class placed correctly in processor

RowProcessor 10 Too many dependencies

Table 3.6: Results of the experiments with the AssignClass algorithm on the DbUtils frame-
work.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 47

class had too many dependencies, meaning that too many classes should have been removed,
so the experiment was not performed. We did not perform the experiment for the ProxyFac-
tory class either, because removing it and the two dependencies it has, would have meant
removing the whole wrappers package. We have obtained an accuracy of 84.2 %, since out of
the remaining 19 cases, when we have performed the experiment, in 16 cases the algorithm
suggested the correct package for the class in the experiment.

3.4.3.2 A Reinforcement Learning framework

The second case study considered for evaluation is an open source software framework avail-
able at [4], that was introduced in [29] in order to solve combinatorial optimization problems
using reinforcement learning [100]. This framework was used in [18, 28, 27] for solving with
reinforcement learning several optimization problems: the bidimensional protein folding prob-
lem, the DNA fragment assembly problem, the temporal ordering problem.

The RL software framework is realized in JDK 1.6 and has four basic modules: agent,
environment, reinforcement learning, and simulation.

As in a general agent-based system [111], the agent is the entity which interacts with
the environment, that receives perceptions and selects actions. The agent learns using rein-
forcement learning to achieve its goal, i.e. to find an optimal solution of the corresponding
optimization problem. Generally, the inputs of the agent are perceptions about the states
from the environment, the outputs are actions, and the environment offers rewards after in-
teracting with it. The interaction between the agent and the environment is controlled by a
simulation entity. The environment is assumed to be accessible to the agent, meaning that
the perceptions received by it are the states from the environment.

Agent. The agent is the entity that interacts with the environment, receives perceptions
(states) from it and selects actions. The agent learns by reinforcement and could have or not
a model of the environment. It is the basic class for all the agents. The specific agents will
implement the Agent interface. The main responsibility of the Agent class is to select the
most appropriate action it has to perform in the environment.

Environment. The environment basically defines the optimization problem to solve.
The environment has an explicit representation as a space of states. It is the basic class
for all environments. The specific environments will implement the Environment interface.
The Environment has a function that determines the environment to make a transition from
a state to another, after executing a specific action. This function also gives the reward
obtained after the transition. The environment stores an instance of its current state.

ReinforcementLearning. It is the class responsible with the reinforcement learning
process. The framework provides implementation for the Q− learning algorithm [100].

Simulation. It is the object that manages the interaction between the agent and the
environment. An instance of the simulation class is associated with an instance of an agent
and an environment at the creation moment. The simulation object is responsible with
collecting data, managing the learning process and providing the optimal policy that the
agent has learned.

Figure 3.4 shows a simplified UML diagram [47] of the interface, illustrating the core of
the RL framework.

The considered software system has ten packages, that are briefly described below. The
exact classes that can be found in each package are presented in Table 3.7.

• action - package that contains two interfaces, which are abstract representations of the
actions that an agent can take.

• actionselectionpolicy - a package which contains the ActionSelectionPolicy interface and
several implementations of it.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 48

Figure 3.4: The diagram of the RL programming interface

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 49

• environment - a package which contains two interfaces, representing the Environment
and a State of the environment.

• graph - concrete implementations for Action, State and Environment for problems where
the solution is a path in a graph.

• learningagent - package with the abstract ReinforcementLearning class and its imple-
mentation for QLearning, as well as the History class which records the sequence of
States and Actions used through the learning process.

• permutation - similarly to the graph package, this package contains concrete imple-
mentations for problems whose solution may be represented as a permutation. There
are two different actions and environments implemented in this package: Permutation-
ActionWhole and Permuta-tionEnvironmentWhole refer to cases when each state is a
whole permutation which is modified, while the other versions refer to the cases when
a permutation is built element-by-element.

• simulation - contains only the Simulation class.

• trace - contains a class ElibigilityTrace which is a mechanism for handling delayed
reward. There are two kinds of traces implemented, Accumulating and Replacing as
denoted by the EligibilityTraceType enum from this package.

• trainlistener - package with only one interface, RLTrainListener, whose implementation
can be used to record different information throughout the training process.

• utilities - contains the classes related to the Q-values needed for QLearning.

Experiment 1. Results

We applied the HASP algorithm, introduced in Section 3.3.2, for the Reinforcement
Learning framework presented in the previous section. The values of the overallScore measure
are presented in Figure 3.5, where the black vertical lines depict the values associated to the
local maximums. The dashed line represents the maximum of these values, corresponding to
the optimal number of clusters. In case of the Reinforcement Learning framework, this value
is for the partition with 11 clusters.

Although the original structure of the system (presented on Table 3.7), consists of only 10
clusters, the difference is small: nine packages correspond exactly in the original structure and
the result of our algorithm, the only difference is, that the permutation package is divided into
two: the first package consists of classes PermutationAction and PermutationActionWhole,
while the other package consists of the remaining 3 classes. Although the result with the 10
clusters would be optimal, this is still a good division. Obviously, all classes that belong to the
implementations for learning in a permutation medium should belong together, but generally
speaking, environment and state are closer together, than action is to these two. This is also
suggested by the fact, that in case of the abstract classes and interfaces, Environment and
State are placed together in a package, but interfaces belonging to the actions have their own
package. Also, in case of the other package with implementations for a given medium, graph,
during the clustering process, classes representing the state and the environment are merged
before adding the action class to them. Finally, we also mention, that at the next step, these
two clusters would be merged, leading to the optimal 10-cluster version. All of the above lead
us to believe that the result of the HASP algorithm for the reinforcement learning framework
are good. We computed the value of the CIP metric for this result, and it is 0.95, which is a
quite high value.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 50

Package Class name

agent Action, IndexedAction

actionselection-
ActionSelectionPolicy,
EpsilonGreedyPolicy,

policy
EpsilonSoftPolicy,

OptimalPolicy

environment Environment, State

graph
Direction, GraphEnvironment,

GraphAction, GraphState

learningagent
History, QLearning,

ReinforcementLearning

permutation

PermutationAction,
PermutationActionWhole,
PermutationEnvironment,
PermutationEnvironment-

Whole,
PermutationState

simulation Simulation

trace
EligibilityTrace,

EligibilityTraceType

trainlistener RLTrainListener

utilities AbstractQValues,
QValuesIndexed, QValuesMap

Table 3.7: Packages and classes in the Reinforcement Learning framework.

Figure 3.5: The values of the overallScore measure for the Reinforcement Learning system.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 51

Experiment 2. Results

During the second experiment, several new application classes are added in the RL frame-
work and we aim to determine the software package in which the application classes should
be added. For the second experiment, the algorithm introduced in Section 3.3.3 will be used.
Since the previous experiment provided a system with 11 clusters, while the original system
had only 10, we have decided to perform this experiment considering as the given system S
both cases. So, in Tables 3.8, 3.9 and 3.10 the second column, Score-10 contains the scores
when we consider as S the original structure of the software system, while the column Score-
11 contains the scores when we consider the structure provided by the HASP algorithm. In
case of the structure with 11 clusters, the package permutationaction refers to the package
with the two action classes, while permutation denotes the package with the other 3 classes.

The application classes that are added to RL framework are:

• SarsaLearning is a class which implements the SARSA learning algorithm, which is
similar to Q − learning, but uses the value of the actually performed action to deter-
mine its update, instead of the maximum available action [100]. SarsaLearning class
should belong to the learningagent software package, since it extends the Reinforce-
mentLearning class, and implements a learning algorithm, just like QLearning. The
values of the score for each package and the SarsaLearning class is presented in Table
3.8. The bold line corresponds to the highest score, i.e. it denotes the package in which
the SarsaLearning class should be placed.

• SarsaLambdaLearning is a class which implements SARSA(λ). λ refers to the use
of an eligibility trace [97] for obtaining a more general and efficient learning method.
The eligibility trace is one of the basic mechanisms used in reinforcement learning to
handle delayed reward. An eligibility trace is a record of the occurrence of an event
such as the visiting of a state or the taking of an action [100]. By associating one of such
traces to every possible action in every state, the following temporal credit assignment
is implemented: “Earlier states/actions are given less credit for the current temporal
difference error”. SarsaLearning class should belong to the learningagent software
package, since is is also an implementation of the ReinforcementLearning class, just
like the previous SarsaLearning class. The values of the score for each package and
the SarsaLambdaLearning class is presented in Table 3.9. The bold line corresponds to
the highest score, i.e. it denotes the package in which the SarsaLambdaLearning class
should be placed.

• SoftMaxPolicy is a class which implements the SoftMax [100] action selection pol-
icy used during the training of the RL agent. SoftMaxPolicy class should belong to
the actionselectionpolicy software package, since it is an implementation of a learning
policy, represented by the interface ActionSelectionPolicy, and the other similar im-
plementations are in this package. The values of the score for each package and the
SoftMaxPolicy class is presented in Table 3.10. The bold line corresponds to the highest
score, i.e. it denotes the package in which the SoftMaxPolicy class should be placed.

From Tables 3.8, 3.9 and 3.10 we can see that the results are the same for both the 10
cluster and the 11 cluster version. For some of the packages the exact values of the score
are the same as well in both cases, for other packages small differences exist, but these do
not influence the result, which is correct for every case. These obtained results lead us to
the conclusion that for all the newly added application classes, the algorithm introduced in
Section 3.3.3 provides the good software package in which the class should belong.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 52

Package Score - 10 Score - 11

learningagent 1.328 1.328

environment 1.138 1.169

utilities 1.09 1.09

actionselectionpolicy 1.053 1.053

graph 0.976 0.976

permutation 0.747 0.707

permutationaction - 0.3

action 0.607 0.638

trace 0.497 0.497

trainlistener 0.013 0.013

simulation -0.16 -0.16

Table 3.8: Scores for assigning the SarsaLearning class to a package.

Package Score - 10 Score - 11

learningagent 1.272 1.272

environment 1.195 1.226

trace 1.127 1.127

utilities 1.057 1.057

graph 0.968 0.968

actionselectionpolicy 0.861 0.861

permutation 0.734 0.687

permutationaction - 0.268

action 0.665 0.696

trainlistener -0.161 -0.161

simulation -0.251 -0.251

Table 3.9: Scores for assigning the SarsaLambdaLearning class to a package.

Package Score - 10 Score - 11

actionselectionpolicy 1.491 1.491

utilities 1.182 1.182

graph 0.976 0.976

environment 0.835 0.866

permutation 0.77 0.725

permutationaction - 0.355

action 0.632 0.663

learningagent 0.599 0.599

trace 0.522 0.522

trainlistener -0.1 -0.1

simulation -0.31 -0.31

Table 3.10: Scores for assigning the SoftMaxPolicy class to a package.

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 53

3.5 Discussion and comparison to related work

In this section, we aim to provide a detailed analysis of the CASP approach we have intro-
duced for software packages remodularization, as well as comparing our proposal to existing
similar approaches.

3.5.1 Analysis of our approach

Besides the evaluations that were performed and detailed in Section 3.4, in order to better in-
vestigate the effectiveness of the HASP algorithm introduced in Section 3.3.2.4, in identifying
a good structure of software packages, we have conducted some additional experiments.

For these experiments, we have used the DbUtils software system (that was used in the
experiments presented in Section 3.4.3.1) and two other open-source software frameworks
chosen from the Apache Commons project: Email, release 1.3.2 [3] and EL, release 1.0 [2].
Email is a framework for sending emails, built on top of the Java Mail API, but tries to
simplify it. It consists of 19 classes, divided into three packages: resolver, util and the default
package. For the Email system, the HASP algorithm provides a partition with three clusters.
In the HASP partition there are four classes which are placed in a different package than in
the original one.

The EL framework is a JSP 2.0 Expression Language interpreter consisting of 57 classes,
divided into two packages: parser and the default package. In this case, there is a big
difference between the original partition of EL and the partition provided by the HASP
algorithm. The original partition has two packages, while the HASP partition has seven. Out
of these seven packages (clusters), one corresponds exactly to the parser package from the
original partition, while the remaining six packages contain the classes which were originally
in the default package.

3.5.1.1 Evaluation measures

In order to objectively evaluate the results provided by the HASP algorithm, we have decided
to use some reference software measures from the literature, designed to evaluate a whole
partition or a package from a partition. We have chosen two measures and two multi-objective
approaches, that evaluate a whole partitioning of a software system: Modularization Quality,
Evaluation Metric Function, Maximizing Cluster approach and Equal-size Cluster approach.
Most of these measures consider the dependencies between classes and packages. When
computing the values of these measures, we considered the dependencies the same way as for
the score measure, but we do not weight them.

MQ, or Modularization Quality, is a measure introduced by Mancoridis et al. in [70],
which was used in many different approaches for the evaluation of a software system’s parti-
tioning [88], [69], [77], [68], [32], [12] and [44]. The MQ measure for a cluster (or package) is
computed considering the number of intra-cluster (or intra-package) relations and the num-
ber of inter-cluster (or inter-package) relations. The MQ value for a partition is the sum
of the values computed for the clusters. A similar measure is EVM, or Evaluation Metric
Function, introduced in [102], and used in [44], [12] for the evaluation of a software system’s
partitioning. For each cluster (package) from the partition, EVM rewards each class-pair that
has a dependency between them and penalizes those ones which do not have a dependency
between them. Then, similarly to MQ, the value for the whole partition is the sum of values
for clusters. For both measures higher values correspond to better partitions.

In [88] Praditwong et al. present software module clustering as a multi-objective problem,
and introduce two different sets of objectives, which could be used for building a set of Pareto-
optimal solutions [79]. The first approach is Maximizing Cluster approach, consisting of the
following five values:

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 54

• the sum of intra-cluster relations for all clusters;

• the sum of inter-cluster relations for all clusters;

• the number of clusters;

• the value of the MQ measure;

• the number of isolated clusters (clusters with only one class).

Out of these five values the second and the fifth should be minimized, while the others
should be maximized. According to [88] the Maximizing Cluster approach tries to capture the
characteristics of a good modularization. In a similar manner is defined a second approach,
called Equal-size Cluster approach, which contains a set of five values as well:

• the sum of intra-cluster relations for all clusters;

• the sum of inter-cluster relations for all clusters;

• the number of clusters;

• the value of the MQ measure;

• the difference between the maximum and minimum number of classes in a package.

Similarly to the first approach, the second and the fifth values should be minimized, while
the other three should be maximized.

3.5.1.2 Results analysis

The values of the MQ and EVM evaluation measures are presented in Table 3.11. For each
of the three considered case studies, we computed the value of these measures both for the
whole partition (denoted by Partition) and for the packages separately. In case of the DbUtils
and EL systems, the original and the HASP partitions contain a different number of clusters
(packages), in both cases the HASP partition having a higher number. In both cases, the
default package from the original partition is split into more packages (two for DbUtils and
six for EL) in the HASP partition. For these cases, we added the values computed for the
packages from the HASP partition and compare the sum to the value of the default package
from the original partition (for example, for the DbUtils system, we compare the values
for the default package from the original partition, with the sum of the values for the two
corresponding packages from the HASP partition).

In Table 3.11 the best values for the evaluation measures are marked with bold. We
can see that the MQ measure has an equal or a higher value for the HASP partition in all
cases, except one (the default package for the Email system). The EVM measure has mostly
negative values, but this is understandable, because usually there are a lot more class-pairs
in a package, which do not have a dependency, than pairs which do. Similarly to the MQ
measure, in case of the EVM measure, in most cases the HASP partition has a better values.
The only exception is the resolver package of the Email system. We can notice that even if
in case of the Email system, we have two cases when the value of a package was better for
the original partition, the values computed for the whole partition are better in case of the
HASP partition. Thus improvements in other packages compensate for the lower values for
those packages.

The values for the two multi-objective approaches are presented in Table 3.12, the best
values being marked with bold. When comparing two sets of objective functions, we can say
that one dominates the other, if it is better in at least one function and not worse in all the
others. This is the case for the DbUtils and Email systems, the HASP partition dominates

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 55

Case study Evaluated entity
MQ EVM

Original HASP Original HASP

DbUtils Partition 1.1559 3.0917 -78 -39

DbUtils wrappers package 0 1 -1 1

DbUtils handlers package 0.6154 0.7917 -42 -40

DbUtils default package 0.5405 1.3 -35 0

Email Partition 1.7231 1.7714 -33 -21

Email resolver package 0.8 0.8571 -2 -24

Email util package 0 0 -1 -1

Email default package 0.9231 0.9142 -30 4

EL Partition 1.8015 4.2415 -998 -210

EL parser package 0.8182 0.8182 -3 -3

EL default package 0.9833 3.4233 -995 -207

Table 3.11: Comparison of the values for the MQ and EVM measures for the original and
HASP partition of the three case studies.

Measure DbUtils Email EL
Original HASP Original HASP Original HASP

22 29 22 22 127 60
34 20 6 6 8 142

Maximizing Cluster 3 4 3 3 2 7
1.1559 3.0917 1.7231 1.7714 1.8015 4.2415

0 0 0 0 0 0

22 29 22 22 127 60
34 20 6 6 8 142

Equal-size Cluster 3 4 3 3 2 7
1.1559 3.0917 1.7231 1.7714 1.8015 4.2415

10 10 10 7 43 20

Table 3.12: Comparison of the values of the Maximizing Cluster and Equal-size Cluster
approaches for the original and HASP partitions of the three case studies.

the original for both approaches. In case of the EL system, we have non-dominating multi-
objective function values, the original partition has better values for the first two objective
functions, while the HASP partition has better values for the third, fourth and, in case of
the Equal-size Cluster approach, fifth objective function.

For the DbUtils and the Email systems all used measures suggest that the HASP partition
is better, but in case of the EL system we do not have a clear answer. This is why we have
decided to use one more metric for investigating this system. We have chosen the Distance
metric, which is computed for each package separately, and measures the distance of the
package from the main sequence: A + I − 1 = 0, where A denotes the Abstractness of the
package and I denotes its Instability [33]. Since the Distance metric gives a separate value for
each package and the two partitions we want to compare have a different number of packages,
we decided to take the average of the absolute values for the metric for each partition. In
this way we achieved a value of 0.5186 for the original partition and 0.4845 for the HASP
partition. Since we talk about the distance from the main sequence, we consider that lower
values correspond to a better partitioning, so the Distance metric suggests that the HASP
partition is better than the original one.

Therefore, taking into account all evaluation measures for the considered case studies
(including the evaluation for the Distance metric), the HASP partition provided better values

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 56

than the original partition or equal values for 25 measures out of the 29 evaluation measures
(equal values were obtained 4 times). As it was explained above, the remaining four cases
do not actually represent situations in which the HASP partition is worse than the original
one. All these results indicate a very good efficiency of the HASP algorithm.

We can conclude that CASP approach introduced in this paper would be useful for
assisting software developers in their daily work of refactoring software systems into packages.
Moreover, our approach is useful in different scenarios:

• It takes an existing software and provides a partitioning of application classes into
software packages.

• It is useful during the evolution of software systems. Considering an existing structure
of packages of a software system, when the system evolves and new application classes
are added, our method would suggest the developer the appropriate package where the
new application class should be added.

Considering the results of all the experimental evaluations performed, we can say that our
method and the features that we have defined are capable of finding a good package structure
for a software system which is a framework. For other architectures, we will investigate
features that would be relevant for the restructuring of the system.

3.5.2 Comparison to related work

In Section 3.2.2 we have presented some approaches from the literature that are similar to our
work. Out of the presented works, only two are capable of restructuring a whole system: [9]
and [84]. Both methods use as case study an open source software system, called Trama, but
they report slightly different results for it. We can not use Trama as a case study, because
it is not a framework, it is a system with a layered architecture (a package for persistence,
another for business and one for GUI).

Out of the two mentioned methods, the closest method to the one presented in this paper
is the approach presented by Alkhalid et al. in [9], which uses hierarchical clustering, just
like our method. This work presents two approaches and based on the description given in
[9], we applied these approaches on the DbUtils system. In the first approach the existing
packages are kept, but classes can be moved between packages if they are initialized more
times in a different package. Applying this method on the DbUtils system, the original
package structure is kept, because there are only a few initializations in the system: there is
a total of 15 initializations, but 11 of them are in cases when the constructor of a subclass
calls the constructor of the superclass. This small number of initializations means that there
are many possible structures for the classes, for which this approach would not suggest any
changes. Moreover, considering initialization the only dependency seems restrictive, because
interfaces and abstract classes are never initialized in a system.

The second method presented in [9] uses a vector-space representation and is based on
method-call dependencies. This representation seems better than the previous one, but we
still think that more types of dependencies should be considered. In [9] three linkage metrics
are used, single, complete and average, and a new algorithm is introduced, which is considered
to have the same results as the clustering algorithms, but its big advantage is the lower
complexity. We tried the single, complete and average linkage algorithms for the vector-
space representation created for classes from the DbUtils system. We have used as a stopping
criteria the point where the distance between all clusters was one. The results of these
experiments are summarized on Table 3.13, where the first column describes the clustering
method used, the second contains the number of clusters when the algorithm stopped and
the last two columns contain the value of the CIP metric presented in Section 3.4.2. The
value denoted by CIP 1 (represented in the third column of the table) is the value of the

CHAPTER 3. CUSTERING BASED SOFTWARE PACKAGES RESTRUCTURING 57

Method Clusters CIP 1 CIP 2

[9] - single link 14 0.4322 0.30

[9] - complete link 17 0.4115 0.2953

[9] - average link 14 0.4322 0.30

HASP 4 0.608 1

Table 3.13: Comparative results on the DbUtils system.

CIP metric when we consider Kgood to be the original structure of the DbUtils system. The
value denoted by CIP 2 (represented in the fourth column of the table) is the value of the
CIP metric when we consider as Kgood the partition given by the HASP algorithm. We have
added in the last line in Table 3.13 the value of the CIP metrics for the results of the HASP
method as well, in order to make the comparison of the results easier.

One thing to observe from Table 3.13 is that the algorithms stopped with a too high value
of clusters. In a system with 25 classes, 14 or 17 packages seem to be a lot. Also, in case of
the handler package, which originally has 12 classes, 8 of them are grouped into a cluster,
but the rest of them are in separate clusters. Also, the package with the 8 handler classes
contains the ResultSetIterator class as well, which has nothing to do with these classes (no
direct dependency) except for the fact that it uses methods from the ResultSetHandler class
just like the handler classes do.

Even if probably we could not reproduce the algorithms presented by Alkhalid et al.
in [9] perfectly, and the actual results would differ a little, we still think that our method
is better. For example, in case of software systems with abstract classes and interfaces,
where considering just initialization or method call as a dependency type is not sufficient to
construct the correct packages.

Chapter 4

Hidden dependencies identification

Maintenance activities such as bug fixes, updating existing features and adding new ones
make up the majority of time and costs allocated to a software project. Each of these changes
usually affects only part of the system, and determining the affected components (classes,
modules, methods etc.) is not a trivial problem. Impact analysis tries to identify, given a
component of a software system, the other components that would be affected by changes to
it [20]. Such methods usually consider only direct coupling between components, but there
exists indirect coupling [112] as well, which creates hidden dependencies, that cannot be found
using regular coupling measures, but not identifying them can have serious consequences [26].

4.1 Literature review

There are approaches which use previous versions of the software system and try to identify
those classes which were changed together in connection with the same bug report [38]. Gall
et al. introduce in [38] an approach, called CAESAR, that uses information about previous
versions of a system to discover logical dependencies and change patterns among modules.
The proposed method is experimentally evaluated on 20 releases of a large Telecommunica-
tions Switching System. Information such as version numbers of programs, modules, and
subsystems together with change reports are used for identifying common change patterns of
software modules. CAESAR determines hidden dependencies which are not obvious in the
source code, like modules that should be restructured. Instead of using the lines of code for
the previous versions of the software, the authors use structural information about programs,
modules, and subsystems, together with change reports for the releases and their version
numbers. The method proposed in [38] was capable to identify bugs which were fixed in one
versions of the system and which have appeared again in later versions in other parts of the
software.

One of the early works is [115], where Yu and Rajlich transform System Dependence
Graphs into Abstract System Dependence Graphs, to determine which class pairs have hidden
dependencies. The paper discusses how hidden dependencies impact the process of change
propagation and also discusses an algorithm that indicate the possible presence of hidden
dependencies. Hidden dependencies are considered to be design faults which contradict the
rule “if a class A is unaware of the existence of class B, it is also unconcerned about any
change to B”. More exactly, a dependence between Class A and B is a hidden dependence,
if: (1) class A and B are not neighbors in the ASDG, i.e there is no direct dependence; and
(2) there is a third class C, which is dependent on both classes, and there is data flow inside
the class C that occurs between the instance of class A and instance of class B. A simple
algorithm for determining hidden dependencies is introduced, and a JAVA example consisting
of three classes collaborating to manage a session is considered.

While traditional coupling measures cannot be used for finding hidden dependencies,

58

CHAPTER 4. HIDDEN DEPENDENCIES IDENTIFICATION 59

[86] presents how a conceptual coupling measure that considers identifier names, comments
and other textual elements of code can be used for impact analysis and can find hidden
dependencies as well. [86] reports precision and recall around 20%. Besides, some existing
approaches rely on historical data, which is not always available (and knowledge extracted
from it cannot be used for other projects), or on the creation of different graphs which can
be expensive for large systems.

In case of large software systems, computing Abstract System Dependence Graphs can be
expensive, so other approaches were introduced which are based on the order in which different
methods are called (call trace): if a method is always called after another method, there might
be a dependency (hidden or not) between the classes where these methods are [105]. Vanciu
and Rajlich propose in [105] a dynamic technique for identifying hidden dependencies. It
is based on computing ”execute completely after” relations which are filtered based on pre-
and postconditions that are generated dynamically. For evaluation, open source software
systems like JUnit, Drawlets and Apache FtpServer are used. The authors show that hidden
dependencies exist even in well-designed software, like the ones considered for evaluation.
For the case studies used for evaluation, the technique proposed in [105] obtained a precision
between 46% and 59% for discovering hidden dependencies.

In 2014, Kirbas et al. [58] have investigated the influence of the evolutionary coupling on
defect proneness. A positive correlation between evolutionary coupling and defect measures,
such as number of defects and defect density, have been confirmed by numerical experiments
performed for a large financial legacy software system. Two evolutionary coupling measures
derived from modification requests (MR) have been used in this study.

In 2015, Kouroshfar et al. [60] have studied the effects of architecturally dispersed co-
changes on software quality. It has been experimentally shown that the changes involv-
ing multiple architectural modules are more correlated with defects than the intra-module
co-changes. The study corroborates the relevance of considering architecture in predicting
software defects.

In 2016, Akbarinasaji et al. [8] have proposed a suite of six metrics of logical dependency
among source files in a software system. The impact of these metrics on defect prediction
performance has been evaluated by applying two learning models, the Logistic Regression
and the Naive Bayes, on three different software projects. The metrics have been used as
features of the training data, their values being derived from the timestamp information in the
change history of files. The experimental results have confirmed that, if the values of logical
dependency are high, they significantly improve the performance of the defect prediction
models.

Bell studies in [15] the influence of hidden dependencies identification for software testing.
The author shows that increasing the efficiency and the effectiveness of testing through a good
knowledge of the hidden dependencies between tests contribute to improving the software
reliability. In real software systems, there are hidden dependencies between tests, which
makes the testing process harder. In such situations, the tests cannot be run in parallel,
since they are not independent (i.e. a test outcome is influenced by the execution of other
test). It has been shown in the software engineering literature [15] that these dependencies
are often difficult and hidden from the software developers. Bell develop in [15] a software
system called VMVM for detecting different types of dependencies between tests and use the
detected information to significantly reduce the testing time (with around 60% in average).
VMVM is a Java implementation of a technique called Unit Test Virtualization, a technique
which isolates the side-effects of each unit test from other tests. It is based on a hybrid static-
dynamic analysis and automatically identifies the code segments that may create side-effects.
These segments are isolated in a container similar to a virtual machine.

Chapter 5

Conclusions

We have presented in this report the original scientific results which were obtained for achiev-
ing the objectives proposed in the project’s work plan for the year 2016. Our main scientific
objectives were related to the development of new classification algorithms for identifying
entities with defects in software systems, unsupervised learning methods for software packages
restructuring and hidden dependencies identifocation using unsupervised learning methods.

The report presented in the first chapter the original results we have obtained in the
direction of software defect prediction using fuzzy self-organizing maps and fuzzy decision
trees. The experimental evaluation which was performed on open-source software systems
provided results better than most of the similar existing approaches and highlighted a very
good performance of the proposed approaches. Further work will be carried out in order to
extend the experimental evaluation of the fuzzy decision tree. We also aim to investigate a
hybridization between the fuzzy DT model and relational association rules [94], since we are
confident that relations between the values for different software metrics would be relevant
in discriminating between defective and non-defective software entities.

In the second chapter we have introduced a novel hierarchical clustering-based approach,
that can be used for software remodularization at the package level. A hierarchical clustering
algorithm HASP is introduced in order to group application classes from a software system
in packages. The experiments, which were performed on two open source case studies, have
demonstrated the potential of our proposal. We have also emphasized the advantages of
our approach in comparison with similar existing approaches. Future work will be made
in order to extend the experimental evaluation of the algorithms proposed in this paper on
other open source and real software systems. We will investigate features that would be
relevant for restructuring software systems with different architectures than frameworks, as
well as alternative methods to decide the appropriate number of clusters (software packages)
[80]. Extensions of the proposed methods to fuzzy approaches [99] as well as other clustering
methods [113] may be further analyzed.

The third chapter presented a literature review on the problem of hidden dependencies
identification. Novel machine learning based models and methods for solving this problem
represent the major objective of the project in 2017.

60

Bibliography

[1] Commons dbutils. http://commons.apache.org/proper/commons-dbutils/index.html.

[2] El. http://commons.apache.org/proper/commons-el/.

[3] Email. http://commons.apache.org/proper/commons-email/.

[4] Reinforcement learning framework. http://www.cs.ubbcluj.ro/∼gabis/rl.

[5] G. Abaei, Z. Rezaei, and A. Selamat. Fault prediction by utilizing self-organizing map
and threshold. In 2013 IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), pages 465–470, Nov 2013.

[6] Wasif Afzal, Richard Torkar, and Robert Feldt. Resampling methods in software quality
classification. International Journal of Software Engineering and Knowledge Engineer-
ing, 22(2):203–223, 2-12.

[7] Rezwan Ahmed and George Karypis. Algorithms for mining the evolution of conserved
relational states in dynamic networks. Knowledge and Information Systems, 33(3):603–
630, 2012.

[8] Shirin Akbarinasaji, Behjat Soltanifar, Bora Çağlayan, Ayse Basar Bener, Andriy Mi-
ranskyy, Asli Filiz, Bryan M. Kramer, and Ayse Tosun. A metric suite proposal for
logical dependency. In Proceedings of the 7th International Workshop on Emerging
Trends in Software Metrics, WETSoM ’16, pages 57–63, New York, NY, USA, 2016.
ACM.

[9] A. Alkhalid, M. Alshayeb, and S.A. Mahmoud. Software refactoring at the package
level using clustering techniques. IET Software, 5(3):274–286, 2011.

[10] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors and
omissions in software repositories. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 298–308, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] ObjectWeb: Open Source Middleware. http://asm.objectweb.org/.

[12] Márcio De Oliveira Barros. Evaluating the importance of randomness in search-based
software engineering. In Proceedings of the 4th International Conference on Search
Based Software Engineering, pages 60–74, 2012.

[13] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, 2012.

[14] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Software re-
modularization based on structural and semantic metrics. In 17th Working Conference
on Reverse Engineering, pages 195–204, 2010.

61

BIBLIOGRAPHY 62

[15] Jonathan Bell. Making Software More Reliable by Uncovering Hidden Dependencies.
PhD thesis, Graduate School of Art and Sciences, Columbia University, 2016.

[16] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
J. Mach. Learn. Res., 13:281–305, February 2012.

[17] A. Beszedes, T. Gergely, J. Jasz, G. Toth, T. Gyimothy, and V. Rajlich. Computation
of static execute after relation with applications to software maintenance. In 2007 IEEE
International Conference on Software Maintenance, pages 295–304, Oct 2007.

[18] Maria-Iuliana Bocicor, Gabriela Czibula, and Istvan-Gergely Czibula. A reinforcement
learning approach for solving the fragment assembly problem. In Proceedings of the
2011 13th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, SYNASC ’11, pages 191–198, Washington, DC, USA, 2011. IEEE
Computer Society.

[19] Gary D. Boetticher. Advances in Machine Learning Applications in Software Engi-
neering, chapter Improving the Credibility of Machine Learner Models in Software
Engineering. IGI Global, 2007.

[20] Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using coupling measurement for
impact analysis in object-oriented systems. In Proceedings of the IEEE International
Conference on Software Maintenance, ICSM ’99, pages 475–482, Washington, DC, USA,
1999. IEEE Computer Society.

[21] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale
Panichella, and Sebastiano Panichella. Multi-objective cross-project defect prediction.
In Proceedings of the 6th International Conference on Software Testing, Verification
and Validation, pages 252–261, 2013.

[22] C. Catal, U. Sevim, and B. Diri. Software fault prediction of unlabeled program mod-
ules. In Proceedings of the World Congress on Engineering (WCE), pages 212–217, Dec
2009.

[23] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357,
2002.

[24] Mingming Chen and Yutao Ma. An empirical study on predicting defect numbers. In
Proceedings of the 27th International Conference on Software Engineering and Knowl-
edge Engineering, pages 397–402, 2015.

[25] B. Clark and D. Zubrow. In Software Engineering Symposium, pages 1–35, Carreige
Mellon University, 2001.

[26] Daniel Conte de Leon and Jim Alves-Foss. Hidden implementation dependencies in high
assurance and critical computing systems. IEEE Trans. Softw. Eng., 32(10):790–811,
October 2006.

[27] Gabriela Czibula, Iuliana M. Bocicor, and Istvan-Gergely Czibula. Temporal Ordering
of Cancer Microarray Data through a Reinforcement Learning Based Approach. PLoS
ONE, 8(4):e60883+, April 2013.

[28] Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan Gergely Czibula. An experiment on
protein structure prediction using reinforcement learning. Studia Universitatis Babes-
Bolyai Informatica, LVI(1):25–34, 2011.

BIBLIOGRAPHY 63

[29] Istvan Gergely Czibula, Gabriela Czibula, and Maria-Iuliana Bocicor. A reinforce-
ment learning based framework for solving optimization problems. Studia Universitatis
Babes-Bolyai Informatica, LVI(3):3–8, 2011.

[30] Istvan-Gergely Czibula, Gabriela Czibula, Zsuzsanna Marian, and Vlad-Sebastian
Ionescu. A novel approach using self-organizing maps for detecting software faults.
Studies in Informatics and Control, 25(2):0 – 20, 2016.

[31] Tera-promise repository. http://openscience.us/repo/.

[32] D. Doval, S. Mancoridis, and B. S. Mitchell. Automatic clustering of software systems
using a genetic algorithm. In Proceedings of the Software Technology and Engineering
Practice. IEEE Computer Society, 1999.

[33] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, and Andre Cavalcante Hora. Soft-
ware metrics for package remodularization. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2011.

[34] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[35] MarkJ. Embrechts, ChristopherJ. Gatti, Jonathan Linton, and Badrinath Roysam.
Hierarchical clustering for large data sets. In Petia Georgieva, Lyudmila Mihaylova,
and Lakhmi C Jain, editors, Advances in Intelligent Signal Processing and Data Mining,
volume 410 of Studies in Computational Intelligence, pages 197–233. Springer Berlin
Heidelberg, 2013.

[36] Tom Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–874,
2006.

[37] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[38] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Proceedings of the International Conference on Software
Maintenance, ICSM ’98, pages 190–198, Washington, DC, USA, 1998. IEEE Computer
Society.

[39] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The misuse of
the nasa metrics data program data sets for automated software defect prediction. In
Proceedings of the Evaluation and Assesment in Software Engineering, pages 96–103,
2011.

[40] A.A. Shahrjooi Haghighi, M. Abbasi Dezfuli, and S.M. Fakhrahmad. Applying mining
schemes to software fault prediction: A proposed approach aimed at test cost reduction.
In Proceedings of the World Congress on Engineering 2012 Vol I, WCE 2012,, pages
1–5, Washington, DC, USA, 2012. IEEE Computer Society.

[41] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explorations,
11(1), 2009.

[42] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A system-
atic literature review on fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–1304, 2011.

BIBLIOGRAPHY 64

[43] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[44] Mark Harman, Stephen Swift, and Kiarash Mahdavi. An empirical study of the ro-
bustness of two module clustering fitness functions. In Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’05, pages 1029–1036,
2005.

[45] A. Hasenfuss and Barbara Hammer. Relational topographic maps. In Michael R.
Berthold, John Shawe-Taylor, and Nada Lavrac, editors, Advances in Intelligent Data
Analysis VII, Proceedings of the 7th International Symposium on Intelligent Data Anal-
ysis, volume 4723. Springer, 2007.

[46] Richard J. Hathaway and James C. Bezdek. Nerf c-means: Non-Euclidean relational
fuzzy clustering. Pattern Recognition, 27(3):429–437, 1994.

[47] http://www.omg.org/technology/documents/formal/uml.htm. UML webpage.

[48] Rui hua Chang, Xiaodong Mu, and Li Zhang. Software defect prediction using non-
negative matrix factorization. JSW, 6(11):2114–2120, 2011.

[49] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, 1999.

[50] C. Z. Janikow. Fuzzy decision trees: issues and methods. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 28(1):1–14, 1998.

[51] Yuan Jiang, Ming Li, and Zhi-Hua Zhou. Software defect detection with rocus. J.
Comput. Sci. Technol., 26(2):328–342, 2011.

[52] S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507. World Scientific, 1996.

[53] M. Khalilia and M. Popescu. Fuzzy relational self-organizing maps. In 2012 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, June 2012.

[54] Taghi M. Khoshgoftaar, Yudong Xiao, and Kehan Gao. Software quality assessment
using a multi-strategy classifier. Information Sciences, 259(0):555 – 570, 2014.

[55] Peter K. Kihato, Heizo Tokutaka, Masaaki Ohkita, Kikuo Fujimura, Kazuhiko Kotani,
Yoichi Kurozawa, and Yoshio Maniwa. Spherical and torus som approaches to metabolic
syndrome evaluation. In Masumi Ishikawa, Kenji Doya, Hiroyuki Miyamoto, and
Takeshi Yamakawa, editors, ICONIP (2), volume 4985 of Lecture Notes in Computer
Science, pages 274–284. Springer, 2007.

[56] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. Dealing with noise in
defect prediction. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 481–490, New York, NY, USA, 2011. ACM.

[57] Younghoon Kim, Kyuseok Shim, Min-Soeng Kim, and June Sup Lee. Dbcure-mr: An
efficient density-based clustering algorithm for large data using mapreduce. Inf. Syst.,
42:15–35, 2014.

BIBLIOGRAPHY 65

[58] Serkan Kirbas, Alper Sen, Bora Caglayan, Ayse Bener, and Rasim Mahmutogullari.
The effect of evolutionary coupling on software defects: An industrial case study on
a legacy system. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, pages 6:1–6:7, New York,
NY, USA, 2014. ACM.

[59] Frank Klawonn and Frank Hppner. What is fuzzy about fuzzy clustering? under-
standing and improving the concept of the fuzzifier. volume 2810 of Lecture Notes in
Computer Science, pages 254–264. Springer, 2003.

[60] Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam Malek, and Yuan-
fang Cai. A study on the role of software architecture in the evolution and quality of
software. In Proceedings of the 12th Working Conference on Mining Software Reposi-
tories, MSR ’15, pages 246–257, Piscataway, NJ, USA, 2015. IEEE Press.

[61] Andreas Khler, Matthias Ohrnberger, and Frank Scherbaum. Unsupervised feature
selection and general pattern discovery using self-organizing maps for gaining insights
into the nature of seismic wavefields. Computers & Geosciences, 35(9):1757 – 1767,
2009.

[62] J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision, 2(3):261–272, 1992.

[63] Peng Lei and Hu Zheng. Clustering properties of fuzzy kohonen’s self-organizing feature
maps. Journal of Electronics, 12(2):124 – 133, 1995.

[64] Wei Liu, Sanjay Chawla, David A. Cieslak, and Nitesh V. Chawla. N.: A robust
decision tree algorithms for imbalanced data sets. In In: Proceedings of the Tenth
SIAM International Conference on Data Mining, pages 766–777, 2010.

[65] Ruchika Malhotra. A defect prediction model for open source software. In Proceedings
of the World Congress on Engineering, volume II, July 2012.

[66] Ruchika Malhotra. Comparative analysis of statistical and machine learning methods
for predicting faulty modules. Applied Soft Computing, 21:286–297, 2014.

[67] Ruchika Malhotra. Comparative analysis of statistical and machine learning methods
for predicting faulty modules. Applied Soft Computing, 21:286–297, 2014.

[68] Ali Safari Mamaghani and Mohammad Reza Meybodi. Clustering of software systems
using new hybrid algorithms. In Proceedings of the Ninth IEEE International Confer-
ence on Computer and Information Technology, pages 20–25, 2009.

[69] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool
for the recovery and maintenance of software system structures. In In Proceedings of
the IEEE International Conference on Software Maintenance, pages 50–59, 1999.

[70] Spiros Mancoridis, Brian S. Mitchell, C. Rorres, Yih-Farn Chen, and Emden R.
Gansner. Using automatic clustering to produce high-level system organizations of
source code. In International Workshop on Program Comprehension, pages 45–53,
1998.

[71] C. Manning and H. Schutze. Foundation of statistical natural language processing. MIT,
1999.

BIBLIOGRAPHY 66

[72] Z. Marian, I.G. Mircea, I.G. Czibula, and G. Czibula. A novel approach for software
defect prediction using fuzzy decision trees. page to be published, Timisoara, Romania,
2016. IEEE Computer Science.

[73] Zsuzsanna Marian. On evaluating the structure of software packages. Studia Universi-
tatis Babes-Bolyai Informatica, LIX(1):58–70, 2014.

[74] Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Software packages
refactoring using a hierarchical clustering-based approach. Computing and Informatics,
under review:1–30, 2016.

[75] Zsuzsanna Marian, Gabriela Czibula, Istvan-Gergley Czibula, and Sergiu Sotoc. Soft-
ware defect detection using self-organizing maps. Studia Universitatis Babes-Bolyai,
Informatica, LX(2):55–69, 2015.

[76] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–13, 2007.

[77] Brian S. Mitchell and Spiros Mancoridis. On the evaluation of the bunch search-based
software modularization algorithm. Soft Comput., 12(1):77–93, 2008.

[78] Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.

[79] Ankur Moitra and Ryan O’Donnell. Pareto optimal solutions for smoothed analysts. In
Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC ’11,
pages 225–234, New York, NY, USA, 2011. ACM.

[80] Stefania Montani and Giorgio Leonardi. Retrieval and clustering for supporting business
process adjustment and analysis. Information Systems, 40(0):128 – 141, 2014.

[81] Jaechang Nam and Sunghun Kim. Heterogeneous defect prediction. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 508–519.
ACM, 2015.

[82] Ahmet Okutan and Olcay Taner Yildiz. Software defect prediction using bayesian
networks. Empirical Software Engineering, 19(1):154–181, 2014.

[83] Orange data mining. http://orange.biolab.si/.

[84] Wei-Feng Pan, Bo Jiang, and Bing Li. Refactoring software packages via community
detection in complex software networks. International Journal of Automation and
Computing, 10(2):157–166, 2013.

[85] Mikyeong Park and Euyseok Hong. Software fault prediction model using clustering
algorithms determining the number of clusters automatically. International Journal of
Software Engineering and Its Applications, 8(7):199–205, 2014.

[86] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using infor-
mation retrieval based coupling measures for impact analysis. Empirical Softw. Engg.,
14(1):5–32, February 2009.

[87] D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc., informed-
ness, markedness & correlation. Journal of Machine Learning Technologies, 2(1):37–63,
2011.

[88] Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering, 37(2):264–282,
2011.

BIBLIOGRAPHY 67

[89] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software
fault prediction metrics: A systematic literature review. Information and Software
Technology, 55(8):1397–1418, 2013.

[90] Danijel Radjenovi, Marjan Heriko, Richard Torkar, and Ale ivkovi. Software fault pre-
diction metrics: A systematic literature review. Information and Software Technology,
55(8):1397 – 1418, 2013.

[91] D. Rodŕıguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules to
detect defective modules: A subgroup discovery approach. Inf. Sci., 191:14–30, May
2012.

[92] Santonu Sarkar, Avinash C. Kak, and Girish Maskeri Rama. Metrics for measuring the
quality of modularization of large-scale object-oriented software. IEEE Transactions
on Software Engineering, 34(5):700–720, 2008.

[93] Giuseppe Scanniello, Carmine Gravino, Andrian Marcus, and Tim Menzies. Class
level fault prediction using software clustering. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Testing, pages 640–645, 2013.

[94] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Commu-
nications & Control, I(S.):439–444, June 2006.

[95] Gabriela Serban and Istvn Gergely Czibula. Object-oriented software systems restruc-
turing through clustering. In Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh,
and Jacek M. Zurada, editors, ICAISC, volume 5097 of Lecture Notes in Computer
Science, pages 693–704. Springer, 2008.

[96] Tarćısio G. S.Filó, Mariza A. S. Bigonha, and Kecia A. M. Ferreira. A catalogue of
thresholds for object-oriented software metrics. In First International Conference on
Advances and Trends in Software Engineering, 2015.

[97] Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligi-
bility traces. Mach. Learn., 22, January 1996.

[98] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151–159, 1999.

[99] Basma Soua, Amel Borgi, and Moncef Tagina. An ensemble method for fuzzy rule-based
classification systems. Knowledge and Information Systems, 36(2):385–410, 2013.

[100] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[101] Eric Chen-Kuo Tsao, James C. Bezdek, and Nikhil R. Pal. Fuzzy kohonen clustering
networks. Pattern Recognition, 27(5):757 – 764, 1994.

[102] A. Tucker, S. Swift, and X. Liu. Variable grouping in multivariate time series via
correlation. IEEE TSMC, Part B, 31(2):235–245, 2001.

[103] M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu, and J. Ki-
noshita. Fuzzy decision trees by fuzzy id3 algorithm and its application to diagnosis
systems. In Proceedings of the Third IEEE Conference on Fuzzy Systems, 1994. IEEE
World Congress on Computational Intelligence.,, pages 2113–2118 vol.3, 1994.

BIBLIOGRAPHY 68

[104] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008.

[105] R. Vanciu and V. Rajlich. Hidden dependencies in software systems. In Software
Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–10, Sept 2010.

[106] Swati Varade and Madhav Ingle. Hyper-quad-tree based k-means clustering algorithm
for fault prediction. International Journal of Computer Applications, 76(5):6–10, Au-
gust 2013.

[107] Nitesh V.Chawla. Data Mining and Knowledge Discovery Handbook, chapter Data
Mining for imbalanced datasets: an overview. Springer US, 2010.

[108] Oliver Vogel, Ingo Arnold, Arif Chughtai, and Timo Kehrer. Software Architecture - A
Comprehensive Framework and Guide for Practitioners. Springer, 2011.

[109] Petri Vuorimaa. Fuzzy self-organizing map. Fuzzy Sets and Systems, 66:223–231, 1994.

[110] G. Wahba, Y. Lin, and H. Zhang. GACV for support vector machines, or, another way
to look at margin-like quantities. Advances in Large Margin classifiers, pages 297–309,
2000.

[111] Gerhard Weiß, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[112] Hong Yul Yang, Ewan Tempero, and Rebecca Berrigan. Detecting indirect coupling. In
Proceedings of the 2005 Australian Conference on Software Engineering, ASWEC ’05,
pages 212–221, Washington, DC, USA, 2005. IEEE Computer Society.

[113] Xun Yi and Yanchun Zhang. Equally contributory privacy-preserving k-means cluster-
ing over vertically partitioned data. Information Systems, 38(1):97 – 107, 2013.

[114] Liguo Yu and Alok Mishra. Experience in predicting fault-prone software modules
using complexity metrics. Quality Technology & Quantitative Management, 9(4):421–
433, 2012.

[115] Zhifeng Yu and V. Rajlich. Hidden dependencies in program comprehension and change
propagation. In Program Comprehension, 2001. IWPC 2001. Proceedings. 9th Interna-
tional Workshop on, pages 293–299, 2001.

[116] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets Syst.,
69(2):125–139, 1995.

[117] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353, 1965.

[118] Kuan Zhang, David Lo, Ee-Peng Lim, and Philips Kokoh Prasetyo. Mining indirect
antagonistic communities from social interactions. Knowledge and Information Systems,
5(3):553–583, 2013.

[119] Jun Zheng. Predicting software reliability with neural network ensembles. Expert
Systems with Applications, 36(2, Part 1):2116 – 2122, 2009.

