
BABEŞ BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

SCIENTIFIC REPORT
October 2015- December 2015

MACHINE LEARNING FOR SOLVING SOFTWARE
MAINTENANCE AND EVOLUTION PROBLEMS

–Învăţare automată ı̂n probleme privind evoluţia şi

ı̂ntreţinerea sistemelor informatice–

Project leader: Assoc. prof. CZIBULA István-Gergely

Project code: PN-II-RU-TE-2014-4-0082

Contract no.: 263/01.10.2015

2015

Contents

1 Introduction 2

2 Software defect detection 4
2.1 Literature review . 4

3 Unsupervised software defect detection 6
3.1 Self-organizing maps . 6
3.2 Methodology . 7

3.2.1 Data pre-processing . 7
3.2.2 The SOM model . 7

3.3 Experimental evaluation . 9
3.3.1 Data sets . 9
3.3.2 Data pre-processing . 9
3.3.3 Results . 10

3.4 Discussion and comparison to related work 12
3.5 Design of the AMEL system . 14

4 Adaptive association rule mining 17
4.1 Background on relational association rule mining 18

4.1.1 Example . 19
4.2 Methodology . 21
4.3 Experimental evaluation . 26

4.3.1 Experiments . 26
4.3.2 Synthetic data . 27

4.4 Discussion . 31
4.4.1 Analysis of the ARARM method . 31
4.4.2 Comparison to related work . 34

5 Conclusions 36

1

Chapter 1

Introduction

The present project proposes several research directions towards using machine learning tech-
niques in the resolution of practical problems in software engineering. Since maintenance and
software evolution problems are of utmost importance to the modern programmer, there ex-
ists a grown interest in the automation of as many processes in the lifecycle of software as
possible, as well as the development of adequate mathematical models.

The major objective of our project is to contribute to improving the development process
of software systems and their quality by obtaining innovative results in the search-based
software engineering domain. An integrated software system (AMEL) will be also developed,
with the purpose of assisting software developers in the maintenance and evolution stages of
the software lifecycle, in activities such as: defect prediction, package-level software refactoring
and the identification of hidden dependencies in software systems.

The problems tackled have a major practical importance since software developers face
them daily, therefore the development of automated techniques which offer solutions to these
problems would lead to more correct and error-free software. Since it is very hard to identify
direct solutions, classification methods based on machine learning are extremely useful in
solving the aforementioned problems.

In this report we will present the original scientific results which were obtained for achiev-
ing the objectives proposed in the project’s work plan for the year 2015. The first scientific
objective is related to the development of new classification algorithms (SOM, fuzzy SOM,
fuzzy RAR) for identifying entities with defects in software systems. The second objective is
connected to the design of the AMEL integrated software system as well as the development
of the module related to defect detection.

The report is organized as follows. In Chapter 2 we present the problem of software defect
detection, emphasizing the relevance of the problem, as well as existing related approaches
for solving the problem. Our original approach for identifying the defects in software systems
is introduced in Chapter 3. The last section from Chapter 3 presents the design of the
AMEL system, as well as details regarding its development process. An original approach for
adaptive relational association rule mining which can be used for defective software entities
detection is introduced in Chapter 4.

The scientific results we have obtained during the period October 2015 - December 2015
are:

• An unsupervised learning based approach using self-organizing maps (SOM) for soft-
ware defect detection.

• An approach for adaptive relational association rule mining which is useful for detecting
defective software entities.

• 2 scientific papers: 1 ISI paper (in a SCI-E journal) [16] and 1 BDI paper [40].

2

CHAPTER 1. INTRODUCTION 3

We mention that the 2014 impact factor of our ISI publication is 2.810.

Chapter 2

Software defect detection

In order to increase the efficiency of quality assurance, defect detection tries to identify those
modules of a software where errors are present. In many cases there is no time to thoroughly
test each module of the software system, and in these cases defect detection methods can
help by suggesting which modules should be focused on during testing.

Identifying the software entities (classes, modules, methods, functions, etc.) that are de-
fective is of major importance as it facilitates further software evolution and maintenance. In
order to deliver high quality software on time, software project managers, quality managers
and software developers need to continuously monitor, detect and correct software defects at
all stages of the development process. Software defect prediction helps in detecting, tracking
and solving software anomalies that might have an effect on human safety and lives, partic-
ularly in safety critical systems. Defect prediction also allows changes to be made earlier in
the software lifecycle, leading to a lower software cost and improving customer satisfaction.
Recent results show that researchers should concentrate on improving the quality of the data
in order to overcome the limits of the existing software prediction models [30].

Although many methods for software defect prediction do exist within the software engi-
neering literature, recent researches are still carried out for proposing more accurate software
defect predictors and for overcoming the drawbacks and limitations of the existing models.

2.1 Literature review

A review on unsupervised learning-based approaches existing in the defect prediction litera-
ture will be provided in the following.

Abaei et al. proposed in [1] a fault prediction method by utilizing self-organizing maps
and thresholds. Two experiments are conducted in this paper: the first one considers the
removal of the modules’ labels and re-computing them afterwards by taking threshold values
into account for some selected attributes (the ones for which threshold values are known).
In the second experiment, a SOM is used for both clustering and evaluating the input data.
Threshold values are used as well for labeling the units from the trained SOM. For this second
experiment they report a good Overall Error, and in most cases their proposed solution
improves classification of unlabeled program modules in terms of FPR (False Positive Rate)
and FNR (False Negative Rate). One drawback to their approach is that they do not obtain
good results when the data set is very small.

Another approach is presented in [4] that predicts software fault using a Quad Tree-based
K-Means algorithm. The difference to the original K-Means algorithm is that the cluster
centers are found by using Quad Trees. They evaluate their approach on various data sets,
and compute the FPR, FNR and Overall Error for them. These values indicate that their
approach is slightly better than other cluster center initialization techniques and they achieve
slightly better results from fewer number of iterations.

4

CHAPTER 2. SOFTWARE DEFECT DETECTION 5

The method presented in [54] uses the K-Means clustering algorithm as well, but it uses
Hyper Quad Trees for determining the cluster centers. They present that Hyper Quad Trees
are more efficient than simple Quad Trees because they produce more accurate centroids.
After the K-Means algorithm is run, a threshold value is used to determine which cluster
represents the defective and which represents the non-defective entities. The results for some
public data sets confirm obtaining better outcomes in terms of FPR and Overall Error when
comparing this approach to simple Quad Tree approach.

Tosun et al. used in [53] network measures to identify defective modules in software
systems. Their approach uses the Naive Bayes classifier, together with a Call Graph Based
Ranking (CGBR) framework. The experimental evaluation was performed on both small
and large data sets and for three cases: complexity metrics only, network metrics only and
a combination between them. The results show a great performance of applying network
metrics for large data sets, but they do not provide significant improvement for small projects.

A clustering-based approach is presented in [10], where the Xmeans algorithm is used,
an algorithm which is similar to K-means, but it can automatically determine the optimal
number of clusters. The authors use the implementation of this algorithm from WEKA [25],
and when the clusters are created, software metric threshold values are applied to the mean
vector of each cluster in order to decide whether it represents the defective or the non-defective
entities. They claim that this method proved better results than a simple threshold-based
approach, fuzzy c-means and k-means.

Another unsupervised software fault prediction model is given by Park and Hong in
[43] where clustering algorithms that determine the number of clusters automatically are
used. They have a pre-processing step, where attribute selection is performed, using the
CfsSubsetEval method from WEKA. Results achieved with the Xmeans and EM models
from WEKA (which can automatically determined the optimal number of clusters) were
compared to other results produced with Xmeans (in [10]) and Quad Tree based K-Means
algorithm. They conclude that both Xmeans and EM have good results if attribute selection
is not performed, results that are better than the existing ones in most of the considered
cases.

Chapter 3

An approach for software defect
detection using self-organizing maps

In the original paper [40] we have addressed the problem of software defect detection, an
important problem which helps to improve the software systems’ maintainability and evolu-
tion. In order to detect defective entities within a software system, a self-organizing feature
map was proposed. The trained map was able to identify, using unsupervised learning, if
a software module is defective or not. We experimentally evaluated our approach on three
open-source case studies, also providing a comparison with similar existing approaches. The
obtained results emphasized the effectiveness of using self-organizing maps for software defect
detection and confirmed the potential of our proposal.

We are proposing in this chapter an unsupervised machine learning method based on
self-organizing maps for detecting defective entities within software systems [40]. The self-
organizing map architecture was previously applied in the literature for defect detection, but
using a kind of hybrid approach, where different threshold values for some software metrics
were also used [1]. To our knowledge, there is no approach in the search-based software
engineering literature similar to ours. The unsupervised model introduced in this paper
proved to outperform most of the similar existing approaches, considering the data sets used
for evaluation.

The rest of the chapter is structured as follows. Section 3.2.2 presents the fundamentals
of self-organizing maps. Our proposal for identifying software defects using self-organizing
feature maps is introduced in Section 3.2. Section 3.3 provides an experimental evaluation of
our approach, while an analysis of the obtained results and comparison with existing similar
work is given in Section 3.4.

3.1 Self-organizing maps

A self-organizing map (SOM) [49] is a type of artificial neural network that is trained using
unsupervised learning to produce a low-dimensional (usually two-dimensional) representation
of the training samples, called a map [22]. Self-organizing maps use a neighborhood function
to preserve the topological relationships in the input space and are related to the category
of competitive learning networks. Self-organizing maps are considered in the neural networks
literature as the most innovative form of unsupervised learning.

The SOM provides a topology preserving mapping from the multidimensional input space
to the map neurons (units). Each neuron from the input layer of a SOM is connected to each
neuron from the output layer and each connection has an associated weight. The topology
preservation property means that a SOM groups similar input instances on neurons that are
close on the SOM [32]. The map is usually trained using the Kohonen algorithm [49].

The trained self-organizing map is able to provide clusters of similar data items [36]. This

6

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 7

particular characteristic of SOMs makes them appropriate for data mining tasks that involve
classification and clustering of data items [36]. The SOM can be used as an effective tool for
clustering as well as a tool for visualizing high-dimensional data.

3.2 Methodology

In this section we introduce our unsupervised neural network model for defect identification
in software systems.

The main idea of this approach is to represent an entity (class, module, method, function)
of a software system as a multidimensional vector, whose elements are the values of different
software metrics applied to the given entity. We consider that a software system S is a set of
components (called entities) S = {s1, s2, ..., sn}. We are considering a feature set of software
metrics SM = {sm1, sm2, ..., smk} and thus each entity si ∈ S from the software system can
be represented as a k-dimensional vector, having as components the values of the software
metrics from SM, si = (si1, si2, . . . , sik) (sij represents the value of the software metric smj

applied to the software entity si).
For each software entity, the label of the instance (defect or non-defect) is known. We

mention that the labels will be used only in the pre-processing step and for evaluating the
performance of the model.

3.2.1 Data pre-processing

The first step before applying the SOM approach is the data pre-processing step. During this
step, the input data is scaled to [0,1] using the Min-Max normalization method, and then a
feature selection step will be applied. Details about the feature selection step will be given in
the experimental part of the paper (Section 3.3). After applying the feature selection step,
m software metrics (features) are selected to be further used for building the SOM.

Regarding the normalization method, we have to mention that in our approach the min-
imum and maximum values for the software metrics (features) from the training data are
used for the Min-Max normalization step. We have focused in this paper only on the un-
supervised scenario of grouping the existing entities from a software system into defective
or non-defective. In a supervised learning scenario, in which new testing data is used, it is
not useful to use for normalization the minimum and maximum values for the features from
the training data. Instead, it would be a good idea to use, for each software metric, the
minimum and maximum values for that software metric. Further extensions of our approach
will investigate this situation.

3.2.2 The SOM model

Before designing the SOM model, the input data set is pre-processed. For the training step
of the SOM, a distance function between the input instances is required. We are considering
the distance between the high-dimensional representation of two software entities si and sj
as the Euclidean Distance between their corresponding vectors of software metrics values.
We have chosen the Euclidean distance because it is the most often used distance measure
for SOM-based approaches and because, intuitively, considering the m-dimensional instances
(preprocessed as mentioned in Section 3.2.1), the Euclidean distance will assign low distances
to similar entities that are very likely to have the same output class (defect or not). Nev-
ertheless, in the future we intend to extend our approach to use other distance measures as
well.

The set of pre-processed software entities from the data set S are grouped into clusters
using a SOM. For the self-organizing map, the torus topology is used (Figure 3.1). In geome-
try, a torus is a surface of revolution generated by revolving a circle in the three dimensional

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 8

space about an axis coplanar with the circle. It is shown in the literature that this topology
provides better neighborhood than the conventional one [33].

Figure 3.1: A torus

The goal of this step is to obtain two clusters corresponding to the two classes of instances:
defects and non-defects. For grouping the software entities the following steps are performed.

• Map Construction. For a given number of epochs (training episodes), perform the
following. Each m-dimensional training instance (software entity) is fed to the map.
For each instance si the following steps are performed:

1. Matching. The neuron having its weight vector closest (considering the Euclidean
distance) to instance si is declared the “winning” neuron. This is a competition
phase, in which the output units from the map compete to match the input in-
stance.

2. Updating. After the “winning neuron” was identified, the connection weights
of the winning unit and its neighbors are updated, such that are moved in the
direction of the input instance by a factor determined by a learning rate.

• Visualization. After the training phase (the steps described above) was completed, in
order to visualize the obtained map, the U-Matrix method [31] is used. The U-Matrix
value of a particular node from the map is computed as the average Euclidean distance
between the node and its closest 4 or 8 neighbors. These distances can be then be
viewed as heights giving a U-Matrix landscape. The U-Matrix may be interpreted as
follows [31]: high places on the U-Matrix encode data that are dissimilar while the data
falling in the same valleys represent input instances that are similar. Thus, instances
within the same valley can be grouped together to represent a cluster. Each cluster
visualized on the map identifies a class of instances.

Once the map was built, it may also be used in a supervised learning scenario for clas-
sifying a new software entity. First, the “winning neuron” corresponding to this instance is
determined (as indicated at the Matching step above). The cluster (class) to which the
winning neuron belongs will indicate the class membership of the given entity.

3.2.2.1 Testing

For evaluating the performance of the SOM model, we are using several evaluation measures
from the supervised classification literature. Since the training instances were labeled, the
labels are used to compute the confusion matrix for the two possible outcomes (non-defect
and defect). Considering the defective class as the positive one and the non-defective class
as the negative one, the confusion matrix [51] for the defect detection task consists of: the
number of true positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN).

Considering the values computed from the confusion matrix, the following evaluation
measures will be used in this paper:

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 9

1. False Positive Rate (FPR), computed as FP
FP+TN

.

2. False Negative Rate (FNR), computed as FN
FN+TP

.

3. Overall Error (OE), computed as FN+FP
FN+FP+TN+TP

.

We have decided to use these measures, because they are used in papers presenting similar
approaches, so a direct comparison of the results is possible. But the data sets used for the
experiments are imbalanced, so we have decided to compute the value of a fourth performance
measure as well: the Area Under the ROC Curve (AUC) [23]. The ROC curve is a two-
dimensional plot of sensitivity vs. (1-specificity), which in our case contains one single point,
linked to the (0, 0) and (1, 1) points.

3.3 Experimental evaluation

In this section we provide an experimental evaluation of the SOM model (described in Section
3.2) on three case studies which were conducted on open source data sets. We mention that
we have used our own implementation for SOM, without using any third party libraries.

3.3.1 Data sets

We have used three openly available data sets for the experimental evaluation of our model,
called Ar3, Ar4 and Ar5, which can be downloaded from [19]. All three data sets come from
a Turkish white-goods manufacturer embedded software implemented in C. They all contain
the value of 29 different McCabe and Halstead software metrics, computed for the functions
and methods from the software systems, and one class label, denoting whether the entity is
defective or not. The Ar3 data set contains metric values for 63 entities, out of which 8 are
defective. The Ar4 data set contains 107 entities, out of which 20 defective, while the Ar5
data set has 36 entities, out of which 8 are defective.

For the SOM used in the experiments, the following parameter setting was used: the
number of training epochs was set to 100000, the learning coefficient was set to 0.7, the radius
was computed as half of the maximum distance between the neurons and the neighborhood
function. We have tried out different parameter settings and we have achieved the best results
with these values. However, we will perform in the future a thorough study to investigate
the effect of different parameter settings.

3.3.2 Data pre-processing

In order to analyze the importance of the features, we are using the information gain mea-
sure. The information gain (IG) of a feature expresses the expected reduction in entropy
determined by partitioning the instances according to the considered feature [42]. More ex-
actly, the IG measure indicates the relevance of a feature in the defect classification task.
Since the software metrics values (features values) are real numbers, in order to compute the
information gain of the attributes we first discretize their values by dividing their interval of
variation into ten sub-intervals.

For a better data analysis, we have computed the information gain of the features from
the data set obtained using all three data sets (Ar3, Ar4 and Ar5) together. The information
gain values for the features are shown in Figure 3.2.

Starting from the IG values of the software metrics, we have chosen a threshold value τ
and considered only the attributes whose IG was higher than this threshold. Out of these
attributes, we selected those that measure different characteristics of the software system.
For the threshold τ we have selected the value 0.163, because we have achieved the best

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 10

Figure 3.2: Information gain for the features.

results with this value. Out of the 18 software metrics whose value was higher than τ ,
we have selected the following 9 metrics: halstead vocabulary, total operands, total operators,
executable loc, halstead length, total loc, condition count, branch count, decision count. These
selected attributes were used in the experimental evaluation on all three considered data
sets. We mention that a different, possibly automatic, attribute selection method can also
be implemented considering the IG values and will be further investigated.

3.3.3 Results

We are presenting in this section the results we have obtained by applying the SOM model
on the Ar3, Ar4 and Ar5 data sets. For each data set considered for evaluation, the ex-
periments are conducted as follows. First, the data pre-processing step is applied and then
the methodology indicated in Section 3.2 is used for an unsupervised construction of a torus
SOM. The U-Matrix corresponding to the trained SOM will be visualized (the red labels
on the U-Matrix represent the defective entities and the yellow labels represent the non-
defective ones). Then, the evaluation measures presented in Section 3.2.2.1 will be computed
for evaluating the performance of the obtained results.

3.3.3.1 The Ar3 data set

A torus SOM, consisting of 150x8 nodes, was trained on the set of software entities from the
Ar3 data set. Figure 3.3 depicts the U-Matrix visualization of the trained SOM.

Visualizing the U-Matrix for the resulting map, we have identified the two clusters, rep-
resenting the defective and non-defective entities. The cluster with the defective entities
contains 6 defective entities and 1 non-defective entity, thus we have 1 FP entity and 2 FN
ones. All the other entities are placed in the correct cluster. The values of the performance
measures from Section 3.2.2.1 are presented in the first three cells of the first row of Table
3.1.

3.3.3.2 The Ar4 data set

A torus SOM, consisting of 150x8 nodes, was trained on the set of software entities from the
Ar4 data set. The U-Matrix visualization of the obtained SOM is illustrated in Figure 3.4.

Visualizing the U-matrix for the resulting map, we have identified the two clusters which
represent the defective and non-defective entities. The cluster with the defective entities
contains 10 defective entities and 2 non-defective entities. Consequently we have 10 FN

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 11

Figure 3.3: U-Matrix for the Ar3 data set.

Figure 3.4: U-Matrix for the Ar4 data set.

entities and 2 FP ones. The values of the performance measures are presented in the middle
three cells of the first row of Table 3.1.

3.3.3.3 The Ar5 data set

A torus SOM, consisting of 150x8 notes, was trained on the set of software entities from the
Ar5 data set. The U-Matrix visualization of the trained SOM is presented in Figure 3.5.

From Figure 3.5 we can observe that the obtained SOM indicates a good topological
mapping of the input instances, and also identifies subclasses within the defective and non-
defective classes. Most of the defective entities are grouped together (there is only one FN),
but there is also one non-defective entity in this cluster, so we have 1 FP as well. The values
of the performance measures for this data set are presented in the last three cells of the first
row of Table 3.1.

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 12

Figure 3.5: U-Matrix for the Ar5 data set.

3.4 Discussion and comparison to related work

An analysis of the approach we have introduced in Section 3.2 for detecting the defective
entities from software systems will be provided in the following. A discussion on the obtained
experimental results, as well as a comparison of them with similar approaches from the
literature is conducted.

As presented in the previous section, our approach was capable of separating the defective
and non-defective entities in two clusters, obtaining a good topological mapping of the input
instances. Even if the separation was not perfect, for all three data sets we had both false
positive and false negative entities. A major advantage of the self-organizing map is that
it does not require supervision and no assumption about the distribution of the input data
is made. Thus, it may find unexpected hidden structures from the data being investigated.
Moreover, as seen from our experiments (Section 3.3), it is interesting that the SOM is able
to detect, within the defective/non-defective class, subclasses of instances. This would be
very useful, from a data mining perspective, since it may provide useful knowledge for the
software developers.

As the accuracy of the trained SOMs depends on the choice of some parameters (number
of training epochs, learning coefficient, neighborhood function), we have to measure it. One
method for evaluating the quality of the resulting map is to calculate the average quantization
error over the input samples, defined as the Euclidean norm of the difference between the
input vector and the best-matching model [34]. Figures 3.6, 3.7 and 3.8 give a graphical
representation of the average quantization error during the training steps, for each case
study considered for evaluation. It can be easily seen that while the error fluctuates at the
beginning of the training phase, it decreases during it, and after the training is completed,
a very small average quantization error of the trained maps is obtained (1.6 × 10−6 for Ar3,
1.7× 10−4 for Ar4 and 6.7× 10−13 for Ar5), which shows the accuracy of the trained maps.

Considering the subclasses identified within the clusters for the defective and non-defective
entities as further work we propose to analyze these subclasses to identify the characteristics
of the software entities placed in them.

Table 3.1 presents the values of the FPR, FNR and OE performance measures computed
for the results of our approach, but it also contains values reported in the literature for
some existing approaches, presented in Section 2.1. The Hyper Quad Tree-based approach
presented in [54] does not report FNR values, this is marked with “NR” in the table.

From Table 3.1 we can see, that even if our approach does not provide the best results
in each case, it has better results than most of the approaches. Out of 51 cases in total, our

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 13

Figure 3.6: Average Quantization Error for the Ar3 data set.

Figure 3.7: Average Quantization Error for the Ar4 data set.

algorithm has a better or equal value for a performance measure in 43 cases, which represents
84.3% of the cases.

The first line of Table 3.2 presents the value of the AUC measure computed for our
approach. As presented in Section 3.2.2.1, for computing the value of the AUC measure we
need to compute the sensitivity and specificity of the classification. Since sensitivity is equal
to 1 − FNR and (1 − specificity) is equal to FPR, we computed the value of the AUC
measure for those approaches from the literature which report both of these values. They
are presented in Table 3.2 as well, and for each data set the best value is marked with bold.
Our approach has the highest AUC value for the Ar5 data set, the second highest value for
the Ar3 data set and the fourth highest value for the Ar4 data set. Interestingly, for the Ar3
and Ar4 data sets the best value is achieved by the other SOM-based approach presented in
the literature, suggesting that SOMs are indeed suitable for this problem.

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 14

Figure 3.8: Average Quantization Error for the Ar5 data set.

Ar3 Ar4 Ar5

Approach FPR FNR OE FPR FNR OE FPR FNR OE

Our SOM 0.0182 0.25 0.0476 0.0230 0.5 0.1121 0.0357 0.125 0.0556

SOM and 0 0.25 0.0556 0.1034 0 0.0938 0.0714 0.25 0.1111
threshold [1]

K-means - 0.3454 0.25 0.3333 0.0459 0.45 0.1214 0.1428 0.125 0.1388
QT [4]

K-means - 0.0263 NR 0.0263 0.1875 NR 0.1846 0.0246 NR 0.0246
Hyper QT [54]

XMeans [10] 0.3455 0.25 0.3333 0.4483 0.05 0.3738 0.1429 0.125 0.1389

XMeans [43] 0.0727 0.25 0.0952 0.023 0.6 0.1308 0.149 0.125 0.1389

EM [43] 0.1091 0.25 0.127 0.023 0.6 0.1308 0.149 0.25 0.1667

Table 3.1: Comparison of the performance of our method to existing approaches.

3.5 Design of the AMEL system

The AMEL system is designed to be highly scalable and versatile, as it can be regarded
either as a framework or as a stand-alone software product. This is acheived by enforcing a
3-tier layered architecture to the software design (see Figure 3.9) which clearly separates the
presentation layer (represented by any form of graphical user interface) from the business
layer which manipulates data from the underlying data layer (currently storing data in
designated .xml files). The system is developed using JDK 8 and the default GUI is designed
and implemented using the Swing toolkit.

The development process follows the Contract Driven Design (CDD) approach, enabling
efficient interface-based programming which facilitates the systems’s evolution and maintain-
ability.

The Graphical User Interface (GUI) of AMEL will allow users to easily work with all of
AMEL’s scientific modules (one for each of the problems we plan to research: Software Defect
Prediction, Package-level Software System Refactoring, Identifying Hidden Dependencies in
Software Sysems. The class diagram for our proposed design can be seen in Figure 3.9.

Since each problem is complex, the three modules will have to be separate subsystems.
Each subsystem will offer user friendly ways to work with all of its features, starting from
the input data and ending with the presentation of the results. Since the three models will

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 15

Approach Ar3 Ar4 Ar5

Our SOM 0.866 0.739 0.92

SOM and threshold [1] 0.875 0.948 0.839

K-means - QT [4] 0.702 0.752 0.866

XMeans [10] 0.702 0.751 0.866

XMeans [43] 0.839 0.689 0.863

EM [43] 0.820 0.689 0.801

Table 3.2: Comparison of AUC values.

mostly be independent, it will be possible to use each one as a standalone application.
The GUI of the AMEL system, as well as the actual problem-solving modules it encom-

passes, will be written using cross-platform programming languages and libraries, ensuring
that the system will be usable on most operating systems in use today. Moreover, we are
also considering providing either a text-based interface or standalone libraries that expose
our problem-solving functionalities, in order to make integrating our work into other systems
possible.

As common helper functionalities, we plan to implement automatic data generation and
generic cross-validation methods, which will be exposed through a main user interface.

Figure 3.10 presents the simplified class diagram for the implementation of the Self-
Organizing Maps approach, which is a part of the defect detection module.

The module was developed to be general and easily extensible, and it is divided into five
packages:
• The som package contains classes which represent some of the basic elements of a self-

organizing map: a neuron of the map (represented by class SOMNeuron), the best
matching unit (class BMU), a listener, which can be used to log information during the
training process (class SOMTrainingListener), and, obviously, the self-organizing map
itself (class SOM).

• The topology package contains the abstract representation of a self-organizing map
topology and implementations for different existing topologies: rectangular, two-dimen-
sional lattice and the torus that was used for the experimental evaluation of the above-
presented approach.

• The traindata package contains representations of different training data: a randomly
generated array, data from a file, filtered data and normalized data.

• The trainsamplechooser package contains the implementation of different stategies for
choosing an input data during the training process.

• The umatrix package contains the classes needed for the creation and visualization of
the U-Matrix for the trained map.

CHAPTER 3. UNSUPERVISED SOFTWARE DEFECT DETECTION 16

Figure 3.9: Package diagram

Figure 3.10: UML diagram for the defect detection module

Chapter 4

A novel approach to adaptive
association rule mining

This chapter paper focuses on the adaptive relational association rule mining problem. Rela-
tional association rules represent a particular type of association rules which describe frequent
relations that occur between the features characterizing the instances within a data set. We
aim at re-mining an object set, previously mined, when the feature set characterizing the
objects increases. An adaptive relational association rule method, based on the discovery of
interesting relational association rules, is proposed. This method, called ARARM (Adaptive
Relational Association Rule Mining) adapts the set of rules that was established by mining
the data before the feature set changed, preserving the completeness . We aim to reach the
result more efficiently than running the mining algorithm again from scratch on the feature-
extended object set. Experiments testing the method’s performance on several case studies
are also reported. The obtained results highlight the efficiency of the ARARM method and
confirm the potential of our proposal.

It is well known that mining different kinds of data is of great interest in various domains
such as medicine, bioinformatics, bioarchaeology, as it can lead to the discovery of useful
patterns and meaningful knowledge.

Association rule mining [7] means searching attribute-value conditions that occur fre-
quently together in a data set [26], [52], [55]. Ordinal association rules [8] are a particular
type of association rules. Given a set of records described by a set of characteristics (fea-
tures or attributes), the ordinal association rules specify ordinal relationships between record
features that hold for a certain percentage of the records. However, in real world data sets,
features with different domains and relationships between them, other than ordinal, exist.
In such situations, ordinal association rules are not powerful enough to describe data reg-
ularities. Consequently, relational association rules were introduced in [47] in order to be
able to capture various kinds of relationships between record features.The DRAR method
(Discovery of Relational Association Rules) was introduced for mining interesting relational
association rules within data sets [47].

Relational association rule mining can be used in solving problems from a variety of
domains, such as: data cleaning, natural language processing, databases, healthcare, bioin-
formatics, bioarchaeology, etc. We have previously applied, so far, relational association rule
mining in different data mining tasks such as: medical diagnosis prediction [6], predicting
if a DNA sequence contains a promoter region or not [15], software defect prediction [17],
software design defect detection [18], data cleaning [8].

The method DRAR for relational association rule mining starts with a known set of ob-
jects, measured against a known set of features and discovers interesting relational association
rules within the data set. But there are various applications where the object set is dynamic,
or the feature set characterizing the objects evolves. Obviously, for obtaining the interesting

17

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 18

relational association rules within the object set in these conditions, the mining algorithm
can be applied over and over again, beginning from scratch, every time when the objects or
the features change. But this can be inefficient.

In paper [16], we proposed an adaptive relational association rule method, named Adaptive
Relational Association Rule Mining (ARARM), that is capable to efficiently mine relational
association rules within the object set, when the feature set increases with one or more
features. The ARARM method starts from the set of interesting rules that was established
by applying DRAR before the feature set changed and adapts it considering the newly added
features. The result is reached faster than running DRAR again from scratch on the feature-
extended object set.

We have to mention that the adaptive relational association rule mining method, proposed
in paper [16], is a novel approach. There exist in the data mining literature approaches which
consider the adaptive association rule mining process for particular problems, but none of
them deal with relational association rules as in our proposal.

The remaining of the chapter is organized as follows. A background on relational associ-
ation rule mining is given in Section 4.1. The Adaptive Relational Association Rule Mining
(ARARM) method is described in Section 4.2. Section 4.3 presents the experimental evalua-
tion of our approach and shows the efficiency of the proposed method on several case studies.
An analysis of the adaptive approach introduced in this paper, as well as a discussion on the
obtained results and comparison to related work are given in Section 4.4.

4.1 Background on relational association rule mining

There is a continuous interest in applying association rule mining [50] in order to discover
relevant patterns and rules in large volumes of data. Data mining methods [58], [3] are applied
in various domains such as medicine, bioinformatics, bioarchaeology, software engineering.

In order to be able to capture various kinds of relationships between record attributes,
the definition of ordinal association rules from [8], [9] was extended in [47] towards relational
association rules.

In the following we will briefly review the concept of relational association rules, as well
as the mechanism for identifying the relevant relational association rules that hold within a
data set.

Let R = {r1, r2, . . . , rn} be a set of instances (entities or records in the relational model),
where each instance is characterized by a list of m attributes, (a1, . . . , am). We denote by
Φ(rj, ai) the value of attribute ai for the instance rj. Each attribute ai takes values from a
domain Di, which contains the empty value denoted by ε. Between two domains Di and Dj

relations can be defined, such as: less (<), equal (=), greater or equal (≥), etc. We denote by
M the set of all possible relations that can be defined on Di x Dj and by A = {a1, . . . , am}
the attribute set.

Definition 1 [47] A relational association rule is an expression (ai1 µ1 ai2 µ2 ai3 . . . µ`−1 ai`),
where {ai1 , ai2 , ai3 , . . . , ai`} ⊆ A, aij 6= aik , j, k ∈ {1 . . . `}, j 6= k and µi ∈ M is a relation
over Dij ×Dij+1

, Dij is the domain of the attribute aij . If:

a) ai1 , ai2 , ai3 , . . . , ai` occur together (are non-empty) in s% of the n instances, then we
call s the support of the rule,

and

b) we denote by R′ ⊆ R the set of instances where ai1 , ai2 , ai3 , . . . , ai` occur together and
Φ(r′, aij) µ1 Φ(r′, aij+1

) is true ∀1 ≤ j ≤ `− 1 and for each instance r′ from R′; then
we call c = |R′|/|R| the confidence of the rule.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 19

The length of a relational association rule is given by the number of attributes in the rule.
Users usually need to uncover interesting relational association rules that hold within a data
set; they are interested in relational rules which hold in a minimum number of instances,
that are rules with support at least smin, and confidence at least cmin (smin and cmin are
user-provided thresholds).

A relational association rule in R is called interesting [47] if its support s is greater than
or equal to a user-specified minimum support, smin, and its confidence c is greater than or
equal to a user-specified minimum confidence, cmin.

In [9] an A-Priori [2] like algorithm, called DOAR (Discovery of Ordinal Association
Rules), was introduced in order to efficiently find all ordinal association rules (i.e. relational
association rules in which the relations are ordinal) of any length, that hold over a data set.
The DOAR algorithm was proven to be correct and complete and it efficiently explores the
search space of the possible rules [9].

The DOAR algorithm was further extended in [47, 15] towards the DRAR algorithm
(Discovery of Relational Association Rules) for finding interesting relational association rules,
i.e. association rules which are able to capture various kinds of relationships between record
attributes. The DRAR algorithm provides two functionalities: (a) it finds all interesting
relational association rules of any length; (b) it finds all maximal interesting relational asso-
ciation rules of any length, i.e. if an interesting rule r of a certain length l can be extended
with one attribute and it remains interesting (its confidence is greater than the threshold),
only the extended rule is kept.

So far, relational association rules were successful in different data mining tasks in do-
mains like: medicine (for diagnosis prediction [6]), bioinformatics (for predicting if a DNA
sequence contains a promoter region or not [15], software engineering [17, 18], as well as for
data cleaning tasks [8].

4.1.1 Example

In order to better explain the concept of relational association rules and the extension of
DOAR algorithm [9] that is used for discovering relational association rules, we give an
example of a relational association rule mining task within a software system.

Let us consider the Java code example shown in Figure 4.1. The example is taken from
[48] and was used by the authors in order to illustrate the Move Method refactoring.

The dataset considered in the mining process consists of a set of software entities (in-
stances), each software entity being characterized by a set of software metrics (features char-
acterizing the instances).

We consider in our example that a software entity can be either an application class, or
a method from an application class. The software metrics considered in our experiment are:

1. Depth in Inheritance Tree (DIT) [14].

2. Number of Children (NOC) [14].

3. Fan-In (FI) [29] [38].

4. Fan-Out (FO) [29] [38].

We have previously used these software metrics in [39] for a clustering based automatic
identification of refactorings that would improve the internal structure of a software system.

Using the above mentioned software metrics, each software entity from the system pre-
sented in Figure 4.1 can be represented as a 4-dimensional vector, having as components the
values of the considered metrics. The corresponding dataset is given in Table 4.1.

As all attributes in our experiment have numerical values, we have defined two possible
binary relations between the attributes: < and >.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 20

public class Class_A {

public static int attributeA1;

public static int attributeA2;

public static void mA1(){

attributeA1 = 0;

mA2();

}

public static void mA2(){

attributeA2 = 0;

attributeA1 = 0;

}

public static void mA3(){

attributeA2 = 0;

attributeA1 = 0;

mA1();

mA2();

}

}

public class Class_B {

private static int attributeB1;

private static int attributeB2;

public static void mB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.mA1();

}

public static void mB2(){

attributeB1=0;

attributeB2=0;

}

public static void mB3(){

attributeB1=0;

mB1();

m2();

}

}

Figure 4.1: Java code example

Table 4.1: Dataset corresponding to the system from Figure 4.1

Entity DIT NOC FI FO
Class A 1 0 3 1
Class B 1 0 0 2
mA1 1 0 2 1
mA2 1 0 2 0
mA3 1 0 0 2
mB1 1 0 1 1
mB2 1 0 1 0
mB3 1 0 0 2

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 21

Table 4.2: Interesting relational association rules extracted from the dataset given in Table
4.1

Length Rule Confidence
2 DIT > NOC 1
2 NOC < FI 0.625
2 NOC < FO 0.75
2 FI > FO 0.5
3 DIT >NOC < FI 0.625
3 DIT > NOC < FO 0.75
3 NOC <FI >FO 0.5
4 DIT> NOC < FI > FO 0.5

Table 4.3: Maximal interesting relational association rules extracted from the dataset given
in Table 4.1

Length Rule Confidence
3 DIT > NOC <FO 0.75
4 DIT > NOC < FI >FO 0.5

We executed the DRAR algorithm with minimum support threshold of 0.9 and minimum
confidence threshold of 0.4. The discovered interesting relational rules are shown in Table
4.2 and the maximal interesting association rules are given in Table 4.3. For each discovered
rule, its confidence is also provided.

As it can be seen in the results above, interesting relational association rules can be
discovered within the set of software entities. Further analysis of these relational association
rules may provide relevant information regarding the analyzed software system.

4.2 Methodology

In this section, we introduce the adaptive relational association rule mining approach, as
well as an algorithm called ARARM (Adaptive Relational Association Rule Mining) that is
capable to efficiently mine relational association rules within a data set, when the feature set
increases with one or more features.

Let us consider a data set R = {r1, r2, . . . , rn} consisting of high-dimensional instances
(objects). Each instance is characterized by a list of m attributes (also called features),
(a1, . . . , am) and is therefore described by an m-dimensional vector ri = (ri1, . . . , rim). Dif-
ferent types of relations can be defined between the values of the features characterizing the
instances from the data set. We denote by Rel the set of all possible relations that can
be defined between the features values. As presented in Section 4.1, interesting relational
association rules that are able to express relations (from the set Rel) between the features
values may be discovered using the DRAR method [15].

The measured set of features is afterwards extended with s (s ≥ 1) new features, numbered
as m + 1,m + 2, . . . ,m + s. After extension, the objects’ feature vectors become rexti =
(ri1, . . . , rim, ri,m+1, . . . ri,m+s), 1 ≤ i ≤ n. The set of extended instances is denoted by
Rext = {rext1 , rext2 , . . . , rextn }.

Considering certain minimum support and confidence thresholds (denoted by smin and
cmin), we want to analyze the problem of mining interesting relational association rules within

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 22

the data set Rext, i.e. after object extension, and starting from the set of rules discovered
in the data set R before the feature set extension. We aim at obtaining a better time
performance with respect to the mining from scratch process. We denote in the following
by RAR the set of interesting relational association rules having a minimum support and
confidence within the data set R, and by RARext the set of interesting relational association
rules having a minimum support and confidence within the extended data set Rext.

Certainly, the newly arrived features can generate new relational association rules. The
new set of rules RARext could be of course obtained by applying the DRAR method from
scratch on the set of extended objects. But we try to avoid this process and replace it with
one less expensive, but preserving the completeness of the rule generation process. More
specifically, we will propose a method called ARARM (Adaptive Relational Association Rule
Mining), which starts from the set RAR of rules mined from the data set before feature
extension and adapts it (considering the newly added features) in order to obtain the set of
interesting relational association rules within the set of extended objects Rext. Definitely,
through the adaptive process, we want to preserve the completeness of the DRAR method.

Let us denote by l the maximum length of the rules from the set RAR and by RARk

(1 ≤ k ≤ l) the set of interesting relational association rules of length k discovered in the

data set R (before the feature set extension). Obviously, RAR =
l⋃

k=1

RARk.

In the following we give a brief description of the idea of discovering the set RARext

through adapting the set RAR of rules mined in the data set R before feature extension.
The ARARM algorithm identifies the interesting relational association rules using an

iterative process that consists in length-level generation of rules, followed by the verification of
the candidates for minimum support and confidence compliance. ARARM performs multiple
passes over the data set Rext. In the first pass, it calculates the support and confidence of
the 2-length rules and determines which of them are interesting, i.e. verify the minimum
support and confidence requirements. Every subsequent pass over the data consists of two
phases. The k-length (k ≥ 2) rules from Rext will certainly contain the k-length rules from
RAR (the interesting rules discovered in the data set before extension) - if such rules exist.
But, there is another possibility to obtain a k-length rule in the extended data set, through
generating a candidate rule through joining two k − 1-length rules from RARext (generated
at the previous iteration). During the second phase, a scan over Rext is performed in order
to compute the actual support and confidence of the candidate rules generated as described
above. At the end of this step, the algorithm keeps the rules that are deemed interesting
(have minimum support and satisfy the confidence requirements), which will be used in the
next iteration. The process stops when no new interesting rules were found in the latest
iteration.

At a certain iteration performed by the ARARM algorithm, the candidate generation
process (denoted by GenCandidates in the algorithm from Figure 4.3) is essentially the
same as the candidates generation process of the DRAR method [9] (the particularities of
generating the candidates in the ARARM algorithm will be discussed afterwards). More
specifically, for joining two k − 1 length rules in order to obtain a k-length candidate rule,
there are four possibilities which are illustrated in Figure 4.2. Similarly to the proof presented
in [9] it may be proven that the candidate generation process ensures the correctness and
completeness of the ARARM algorithm.

In the following we denote by µ−1 the inverse of the relation denoted by µ.
Regarding the binary relations that may be defined between the attributes domains, we

mention that we do not assume any particular property (such that the transitivity property),
both DRAR and ARARM are working with general relationships between the attributes
domains. Supposing we have three attributes a1, a2 and a3 and the set of relations {<,>,=},
the relational association rules r1 = (a1 < a2 < a3) and r2 = (a1 < a3 > a2) are viewed as

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 23

rule1 ≡ (a1µ1ai1µ1ai2 . . . µk−3aik−2
),

rule2 ≡ (ai1µ1ai2 . . . µk−3aik−2
µ2a2), (1)

⇒ c ≡ (a1µ1ai1µ1ai2 . . . µk−3aik−2
µ2a2),

or
rule1 ≡ (ai1µ1ai2 . . . µk−3aik−2

µ1a1),
rule2 ≡ (a2µ2ai1µ1ai2 . . . µk−3aik−2

), (2)
⇒ c ≡ (a2µ2ai1µ1ai2 . . . µk−3aik−2

µ1a1),
or

rule1 ≡ (a1µ1ai1µ1ai2 . . . µk−3aik−2
),

rule2 ≡ (a2µ2aik−2
µ−1

k−3
. . . ai2µ

−1
1

ai1), (3)

⇒ c ≡ (a1µ1ai1µ1ai2 . . . µk−3aik−2
(µ2)

−1
a2),

or
rule1 ≡ (ai1µ1ai2 . . . µk−3aik−2

µ1a1),

rule2 ≡ (aik−2
µ−1

k−3
. . . ai2µ1

−1ai1µ
2a2), (4)

⇒ c ≡ (a2(µ2)
−1

ai1µ1ai2 . . . µk−3aik−2
µ1a1).

Figure 4.2: The candidate generation process in the ARARM algorithm

distinct rules (otherwise, if the transitivity of the relation < would be considered, then r2
would be seen as a generalization of r1). Furthermore, there are no constraints placed on the
relationships. Thus, the rules a1 = a2 < a3 and a2 = a1 < a3 are considered by ARARM
distinct rules (even if they are equivalent since = is a symmetric relation). Obviously, if one
would need to deal with relations having particular properties (e.g transitive or symmetric),
after the set of relational association rules are discovered by ARARM (or DRAR), a filtering
step may be added. This step may be used to remove equivalent rules, like those from the
examples above.

Figure 4.3 gives the ARARM algorithm.
In the algorithm presented in Figure 4.3, by

⊕
we have denoted a special “add” operation.

If r is a relational association rule and L is a set of relational association rules, by r
⊕

L
we refer to the set of relational association rules obtained by adding r to L if L does not
contain the “mirror” rule of r. If L contains the “mirror” of r, then r

⊕
L equals to L. We

mention that by the “mirror” of a relational association rule r ≡ (a1µ1a2µ2 . . . µn−1an) we
refer to the rule r−1 ≡ (anµ

−1
n−1

. . . µ−1
2

a2µ
−1
1

a1) (e.g the “mirror” of the rule a1 < a2 > a3
is the rule a3 < a2 > a1). The special operation

⊕
we have used in constructing the set of

relational association rules assures that the resulting set does not contain duplicate rules (i.e
rules together with their mirrors). For optimization reasons, when applying the

⊕
operation,

the verification if the “mirror” of rule r is in L is skipped, when appropriate. For example,
the candidate generation process may generate a “mirror” of a rule only if the set Rel of
relations used in the mining process contains at least a rule µ together with its inverse µ−1.
Only in this case, when adding a rule r with the

⊕
operation into a set L we must verify if

the “mirror” of r is in L.
The most important step in the ARARM algorithm is the candidate generation process

(denoted by the GenCandidates function), which is also computationally expensive. This
function has as a parameter a set Rules of k-length relational association rules and returns a
set of k+1 length relational association rules generated fromRules through the join operations
depicted in Figure 4.2. The main idea of the candidate generation process is the following.
All distinct combinations of two rules (r1, r2) from the set Rules are considered. If r1 and
r2 match for join (in one of the four cases indicated in Figure 4.2, the rule rjoin obtained by
joining r1 and r2 is constructed and is added to the resulting set of rules. Obviously, since
r1 and r2 are k-length rules, rjoin will be a k + 1-length rule. The GenCandidates function
is described in Figure 4.4.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 24

Algorithm ARARM is:

Input: - the set R of m-dimensional entities

- the set Rel of relations used in the mining process

- the extended data set Rext of m+ s dimensional entities

- the minimum confidence (cmin) and support (smin) thresholds

- the set RAR of interesting relational association rules from the data

set R

Output: - the set RARext of all interesting relational association rules that

hold over Rext

RAR2 ← the set of 2 length rules from RAR;

C ← RAR2 ∪ { (ai1µ1ai2) | ai1 , ai2 ∈ A, i1 = 1 . . .m+ s, i2 = m+1 . . .m+ s, i1 < i2 µ1 ∈ Rel };

Scan Rext and compute the support and confidence of candidates in C;

Keep the interesting rules from C ⇒ AdaptiveRules;

k ← 2;

termination← false;

RARext ← AdaptiveRules

While (¬termination) do

C ← GenCandidates(AdaptiveRules);

Scan Rext and compute the support and confidence of candidates in C;

Keep the interesting rules from C ⇒ L;

RARk ← the set of k length rules from RAR;

AdaptiveRules← L ∪RARk

If AdaptiveRules = ∅ then

termination← true

Else

k ← k + 1;

For each r ∈ AdaptiveRules do

RARext ← r
⊕
RARext

EndFor

EndIf

End;

End ARARM

Figure 4.3: The ARARM algorithm

It has to be stated that running the ARARM method with m = 0 provides the set
of interesting relational association rules discovered in the input data set of s-dimensional
entities. Thus, this running is equivalent with applying the DRAR method on the data set of
s-dimensional entities. It can be seen in the GenCandidates function (Figure 4.4) that two
rules are joined during the adaptive candidate generation process only if at least one rule has
at least an attribute from the additional attributes, which are present only in the enlarged
attribute set. Obviously, it is not necessary to join rules which contain only attributes from
the original attribute set, since the joint rules are already known (these rule are in the set
RAR of relational rules discovered in the set of m-dimensional entities). This way, when
generating the k-length relational association rules from the extended data set of m + s
dimensional entities, the candidate generation process (expressed by the GenCandidates
function) is not applied on the set of k − 1 length rules from the set off interesting rules
extracted from the data set of m-dimensional entities. Thus, unlike in the DRAR algorithm
applied from scratch on the m+ s dimensional entities, the join operations between the k− 1
length rules from the data set of entities before the attribute set extension are skipped.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 25

Function GenCandidates (Rules) is:

Input: a set Rules of k-length relational association rules

Output: returns a set NewRules of k + 1 length relational association rules

obtained by joining

the rules from Rules

NewRules← ∅

n← number of rules from the set Rules

For i← 1 to n− 1 do

For j ← i+ 1 to n do

ri← the i-th rule from Rules

rj ← the j-th rule from Rules

If ri or rj contain at least a newly added attribute (from the set

{am+1, am+2, . . . , am+s})

If ri matches for join with ri in one of the cases (1)-(4) from Figure 4.2

then

rjoin← the rule obtained by joining ri and rj

NewRules← rjoin
⊕

NewRules

EndIf

EndIf

EndFor

EndFor

return NewRules

EndGenCandidates

Figure 4.4: The GenCandidates function

The time savings in the ARARM execution time come from the time reduction of the
candidate generation process as well as from an reduced number of support and confidence
computations (a detailed analysis will be given in Section 4.3.2). Obviously, as seen from
Figure 4.4, the step of computing the support and confidence for the rules from the set RAR
is skipped, since for these rules we already have their support and confidence. Certainly, the
reduction in the execution time of the ARARM increases with the increase of the set RAR.
This usually happens when decreasing the number s of added attributes. A smaller number of
added attribute means a larger set of already known rules and this implies a smaller number
of rules generated by GenCandidates function, as well as less time for support and confidence
computations.

In the current implementation of the ARARM method, we did not deal with optimizing
the rules matching step in the candidate generation process described in Figure 4.2. Since the
same implementation for this step is used both in the ARARM and DRAR implementation,
a more efficient implementation of it will lead to lower running times for both methods. Still,
it will not significantly impact the improvement in running time (in %) of ARARM with
respect to DRAR (what we are interested in). We will further investigate optimizations of
the rules matching step in order to increase the efficiency of the candidate generation process
(e.g using efficient data structures such as hash tables or canonical forms).

The current implementation of the ARARM algorithm provides the functionality of dis-
covering all interesting relational association rules of any length, as well as the functionality
of finding all maximal interesting relational association rules of any length. Moreover, we
have parameterized the set of features used in the mining process, thus it is very easy to
remove certain features from the mining process.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 26

4.3 Experimental evaluation

In order to show the effectiveness of the adaptive relational association rule mining method
that was introduced in Section 4.2, we consider in the following two case studies that will
be further described. All the experiments presented in this section were carried out on a PC
with an Intel Core i7 Processor at 1.87 GHz, with 8 GB of RAM.

4.3.1 Experiments

In the experiments we have performed for discovering the interesting relational association
rules within the data sets, we have initially considered m attributes characterizing the in-
stances within the data set and afterwards the set of features was extended with s attributes.
The experiments were made considering different values for the minimum support and confi-
dence thresholds (smin and cmin) and different type of relational association rules, i.e maximal
rules vs. all rules (as indicated in Section 4.1). For each performed experiment, the set of
interesting relational association rules on the m + s dimensional instances were obtained in
two ways:

1. by applying the DRAR method from scratch on the data set after the feature set
extension (containing all m+ s features).

2. by adapting (through the ARARM algorithm) the rules obtained on the data set before
the feature set extension (containing m features).

We mention that the same set of interesting relational association rules is discovered in
data, independent to the way the rules were generated (1. or 2.), but, obviously, we are
expecting the running time of the adaptive algorithm to be lower than the running time of
the DRAR method applied from scratch.

For all experiments that will be presented in the following, we aim at emphasizing that
ARARM has a lower running time that DRAR applied from scratch on the set of m +
s dimensional entities. The adaptive method we propose in this paper uses intermediary
interesting relational association rules in order to obtain subsequent ones, thus avoiding the
need to start the mining algorithm from the very beginning each time. Due to the temporal
evolution of the attribute set, at a given time t when there are available the values of the
first m attributes for the instances, the set RAR of rules discovered in the data set of m-
dimensional entities are extracted. Assuming that at time t+1 new values for the attributes
are procured, the ARARM method uses the existing rules from RAR and efficiently obtains
new accurate relational association rules that include the latest available data. Thus, the
running time of the ARARM algorithm (Figure 4.3) is not influenced by the time needed to
mine the rules on the data set before the attribute set extension.

For implementation, we have developed a Java API which allows the discovery, in an
adaptive manner (using the ARARM algorithm introduced in Section 4.2), of interesting
relational association rules which occur within a data set. The API can be used to uncover
(adaptive) relational association rules in various data sets, independent of the objects (in-
stances) within the data set, the type of features characterizing the instances, as well as the
relations that are defined between the features.

The experiments that will be presented in Section 4.3.2 were performed using theARARM
API.

In all the data sets which will be further considered for evaluation, we are dealing with
numerical attributes. Before applying the relational association mining process, we first
normalize the data using the min-max normalization method. For all the experiments, two
possible relations between the attributes values are considered in the relational association
rule mining process: Rel = {≤, >}. It has to be noted that for the first human skeletal

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 27

remains data set which contains missing attribute values, the minimum support threshold
smin used in the mining process is less than 1, for all the other data sets smin is set to 1.

Regardless of the threshold cmin value, the ARARM method adaptively mines the set of
interesting relational association rules having a minimum confidence of cmin within a data set,
when new attributes are added to the data set. Even if the minimum confidence threshold
value is irrelevant, in our experiments we have selected the value for cmin such that the
number of discovered rules in data to be large enough. This way, with a reasonable number
of rules, the time reduction of the ARARM algorithm with respect to DRAR may be better
illustrated. Heuristics for selecting appropriate values for the threshold cmin would be useful
when applying the ARARM algorithm in concrete data mining tasks.

4.3.2 Synthetic data

In the following we aim at testing the performance of the ARARM algorithm on larger data
sets. We have to mention that the time performance of the ARARM algorithm for adaptive
relational association rule mining depend not only on the dimensionality of the data set
(number of instances and attributes), but mainly on the number of interesting relational
associations rules which were discovered in data. Since not the data set is relevant in our
study, but its dimensionality, we have considered two synthetic data sets which were obtained
by merging publicly available data sets from the NASA repository [41] which are used in the
software defect prediction literature.

Our goal is to investigate the effectiveness of the ARARM algorithm when (1) the number
of attributes characterizing the instances within the data sets is large (the first synthetic data)
and when (2) the number of instances within the data set is large. Obviously, in both cases,
the number of relational association rules mined in data may be very large and this also
depends on the minimum confidence threshold.

The first synthetic data set considered in our experiments consists of 125 instances char-
acterized by 116 attributes. The experiments were performed by applying the adaptive
ARARM algorithm and the DRAR algorithm applied from scratch after the feature set ex-
tension. Different values for the initial number of attributes (m) and the minimum confidence
threshold cmin are considered for discovering all the relational association rules within the
data set. The obtained results are presented in Tables 4.4 and 4.5 where the improvement
achieved through the adaptive process is marked with bold. In these tables, nm denotes the
number of rules discovered in the data set before the attribute set extension (containing m
attributes) and nm+s represents the number of rules mined in the data set after the attribute
set extension (containing m+ s attributes).

From Tables 4.4 and 4.5 one can observe that, for all the experiments, the ARARM
method has a lower running time than the DRAR method applied from scratch. Even if the
number of relational association rules mined in the data set is large, our adaptive method
obtains an average improvement in running time of 21%, which indicates the effectiveness of
the ARARM method.

The second synthetic data set used for evaluating the ARARM method consists of 2366
instances characterized by 38 attributes. The experiments were performed by applying the
adaptive ARARM algorithm and the DRAR algorithm applied from scratch after the feature
set extension using a minimum confidence threshold of 0.82. A number of 38811 interesting
relational association rules were discovered in data. Different values for the initial number of
attributes (m) are considered in our experiments. Table 4.6 presents the performed experi-
ments and the obtained results. For all the performed experiments, there is an improvement
achieved through the adaptive process and it is marked with bold. In this table nm denotes
the number of interesting relational association rules discovered in the data set before the
feature set extension (containing m features) and nm+s represents the rules obtained in the
extended data set (with m+ s features).

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 28

Expe- cmin No. of No. of No. of No. of Time from Time Improvement
riment attributes added rules rules scratch adaptive in running

(m) attributes (s) nm nm+s (ms) (ms) time (%)

1 0.96 26 90 23 13437 3350 3000 10.45
2 0.96 30 86 40 13437 3350 2908 13.19
3 0.96 34 82 64 13437 3350 2928 12.6
4 0.96 38 78 208 13437 3350 2918 12.9
5 0.96 42 74 310 13437 3350 2940 12.24
6 0.96 46 70 366 13437 3350 2932 12.48
7 0.96 50 66 366 13437 3350 2924 12.72
8 0.96 54 62 369 13437 3350 2897 13.52
9 0.96 58 58 399 13437 3350 2907 13.22
10 0.96 102 14 3688 13437 3350 2684 19.88
11 0.96 103 13 4050 13437 3350 2615 21.94
12 0.96 104 12 4642 13437 3350 2518 24.84
13 0.96 105 11 4646 13437 3350 2472 26.21
14 0.96 106 10 4815 13437 3350 2466 26.39
15 0.96 107 9 4920 13437 3350 2457 26.66
16 0.96 108 8 5140 13437 3350 2408 28.12
17 0.96 109 7 5150 13437 3350 2387 28.75
18 0.96 110 6 5412 13437 3350 2295 31.49
19 0.96 111 5 6772 13437 3350 2156 35.64
20 0.96 112 4 7124 13437 3350 2014 39.88
21 0.96 113 3 9218 13437 3350 1517 54.72
22 0.96 114 2 11280 13437 3350 884 73.61
23 0.96 115 1 11358 13437 3350 880 73.73

24 0.94 26 90 41 65887 57173 56195 1.71
25 0.94 30 86 72 65887 57173 55978 2.09
26 0.94 34 82 114 65887 57173 56484 1.21
27 0.94 38 78 389 65887 57173 56505 1.17
28 0.94 42 74 578 65887 57173 56469 1.23
29 0.94 46 70 719 65887 57173 56523 1.14
30 0.94 50 66 723 65887 57173 56595 1.01
31 0.94 54 62 808 65887 57173 56634 0.94
32 0.94 58 58 1077 65887 57173 56596 1.01
33 0.94 102 14 16501 65887 57173 51653 9.65
34 0.94 103 13 18226 65887 57173 50474 11.72
35 0.94 104 12 20835 65887 57173 49335 13.71
36 0.94 105 11 20936 65887 57173 49547 13.34
37 0.94 106 10 21917 65887 57173 48986 14.32
38 0.94 107 9 22652 65887 57173 48236 15.63
39 0.94 108 8 24010 65887 57173 47319 17.24
40 0.94 109 7 24082 65887 57173 47101 17.62
41 0.94 110 6 25067 65887 57173 46478 18.71
42 0.94 111 5 31230 65887 57173 41997 26.54
43 0.94 112 4 33094 65887 57173 40225 29.64
44 0.94 113 3 43893 65887 57173 29575 48.27
45 0.94 114 2 54613 65887 57173 18465 67.7
46 0.94 115 1 55106 65887 57173 18111 68.32

Table 4.4: Results for the first synthetic data set for smin = 1

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 29

Expe- cmin No. of No. of No. of No. of Time from Time Improvement
riment attributes added rules rules scratch adaptive in running

(m) attributes (s) nm nm+s (ms) (ms) time (%)

47 0.935 26 90 59 147042 292652 291665 0.34
48 0.935 30 86 95 147042 292652 292531 0.04
49 0.935 34 82 159 147042 292652 292556 0.03
50 0.935 38 78 511 147042 292652 292021 0.22
51 0.935 42 74 757 147042 292652 288363 1.47
52 0.935 46 70 980 147042 292652 290428 0.76
53 0.935 50 66 1020 147042 292652 288040 1.58
54 0.935 54 62 1251 147042 292652 289367 1.12
55 0.935 58 58 1896 147042 292652 285637 2.4
56 0.935 102 14 38434 147042 292652 259216 11.43
57 0.935 103 13 42142 147042 292652 254846 12.92
58 0.935 104 12 47967 147042 292652 247048 15.58
59 0.935 105 11 48179 147042 292652 246894 15.64
60 0.935 106 10 50424 147042 292652 245175 16.22
61 0.935 107 9 52070 147042 292652 240410 17.85
62 0.935 108 8 55007 147042 292652 234799 19.77
63 0.935 109 7 55217 147042 292652 234950 19.72
64 0.935 110 6 57679 147042 292652 230088 21.38
65 0.935 111 5 70601 147042 292652 209675 28.35
66 0.935 112 4 75478 147042 292652 201583 31.12
67 0.935 113 3 99043 147042 292652 147498 49.6
68 0.935 114 2 122452 147042 292652 89480 69.42
69 0.935 115 1 123500 147042 292652 86725 70.37

Table 4.5: Results for the first synthetic data set for smin = 1 and cmin = 0.935

Table 4.6 reveals that, for all the experiments performed on the second synthetic data,
the ARARM method is more performant (from the running time point of view) than the
DRAR method applied from scratch.

For a better analysis of the ARARM performance on the second synthetic data set, the
running time (both for the ARARM and DRAR methods) was decomposed in: time for
support and confidence computations and time for the candidate generation process. The
obtained values are indicated in Table 4.7. nscscratch and nscadaptive represent the number of
support and confidence computations performed by the DRAR method applied from scratch
and by the ARARM method, respectively. By tscscratch and tscadaptive we denote the time
needed for the support and confidence computations performed by the DRAR and ARARM
methods. The time needed for the candidate generation process is represented by tcgscratch
(for DRAR) and by tcgadaptive (for ARARM).

Analyzing the results indicated in Table 4.7 we observe that the time for support and
confidence computations performed by ARARM decreases as the number rules found on the
data set of m-dimensional instances is large enough and increases. The results reveal that the
performance of ARARM (with respect to DRAR) is significant when the number nm of rules
is large. Figure 4.5 illustrates, for each experiment performed on the second synthetic data,
the percentage of execution time used by ARARM and DRAR for confidence and support
computations, as well as for the candidate generation process. We note that as the number
nm of rules increases, the reduction in execution time of the adaptive method given by the
support and confidence computations becomes greater.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 30

Experiment No. of No. of nm nm+s Time from Time Improvement
attributes added scratch adaptive in running

(m) attributes (s) (ms) (ms) time (%)

1 15 23 76 38811 36314 34435 5.17
2 16 22 93 38811 36314 34361 5.38
3 17 21 102 38811 36314 34544 4.87
4 18 20 201 38811 36314 34635 4.62
5 19 19 290 38811 36314 34781 4.22
6 20 18 381 38811 36314 34887 3.93
7 21 17 580 38811 36314 34770 4.25
8 22 16 905 38811 36314 34527 4.92
9 23 15 1314 38811 36314 34266 5.64
10 24 14 1813 38811 36314 34167 5.91
11 25 13 2988 38811 36314 33772 7
12 26 12 4041 38811 36314 32982 9.18
13 27 11 4132 38811 36314 32891 9.43
14 28 10 4215 38811 36314 32993 9.15
15 29 9 6476 38811 36314 31701 12.7
16 30 8 7279 38811 36314 31101 14.36
17 31 7 10676 38811 36314 29154 19.72
18 32 6 14077 38811 36314 26928 25.85
19 33 5 16711 38811 36314 25071 30.96
20 34 4 25882 38811 36314 16888 53.49
21 35 3 32937 38811 36314 8740 75.93
22 36 2 32937 38811 36314 8740 75.93
23 37 1 32963 38811 36314 8702 76.04

Table 4.6: Results for the second synthetic data set for smin = 1 and cmin = 0.82.

Figure 4.5: The candidate generation process influence on the ARARM running time for the
second synthetic data set.

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 31

Experiment nscscratch nscadaptive tscscratch tscadaptive tcgscratch tcgadaptive

1 49744 49458 20204 18370 16110 16065
2 49744 49412 20204 18277 16110 16084
3 49744 49311 20204 18367 16110 16177
4 49744 49190 20204 18339 16110 16296
5 49744 49052 20204 18313 16110 16468
6 49744 48920 20204 18590 16110 16297
7 49744 48640 20204 18297 16110 16473
8 49744 48172 20204 18143 16110 16384
9 49744 47615 20204 17969 16110 16297
10 49744 46980 20204 17943 16110 16224
11 49744 45518 20204 17406 16110 16366
12 49744 44109 20204 16757 16110 16225
13 49744 43945 20204 16784 16110 16107
14 49744 43771 20204 16737 16110 16256
15 49744 41150 20204 15724 16110 15977
16 49744 40205 20204 15312 16110 15789
17 49744 36588 20204 14055 16110 15099
18 49744 32983 20204 12635 16110 14293
19 49744 30042 20204 11588 16110 13483
20 49744 19741 20204 7524 16110 9364
21 49744 9652 20204 3667 16110 5073
22 49744 9652 20204 3667 16110 5073
23 49744 9546 20204 3601 16110 5101

Table 4.7: Additional results for the second synthetic data set.

4.4 Discussion

In the following we aim to analyze the method proposed in this paper by emphasizing its
advantages and drawbacks, as well as comparing ARARM method with other related ap-
proaches existing in the data mining literature.

4.4.1 Analysis of the ARARM method

Experiments were conducted in Section 4.3 in order to test the usefulness of ARARM method
on five data sets: a gene expression data set, two human skeletal remains data sets and two
synthetic data sets.

There are no existing approaches in the literature that deal with the adaptive relational
association rule mining problem. Thus, we have conducted our evaluations towards comparing
the running time of the adaptive method with the running time of the non-adaptive ones.
We have focused on highlighting that the ARARM method provides the results faster than
the DRAR method applied from scratch.

In order to conclude about the efficiency of the adaptive method against the non-adaptive
one, we depict in Figures 4.6 and 4.7 (for each experiment we have performed on the case
studies considered for evaluation in Section 4.3) the reduction (in percentage) of the running
time of ARARM with respect to the running time of DRAR.

We notice that, for all the experiments represented in Figures 4.6 and 4.7, the running
time for ARARM is less than the running time of DRAR applied from scratch. Larger the
value on the y-axis is, greater is the reduction in the execution time of the ARARM method.
Thus, the time needed to adaptively discover the interesting relation association rules is less

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 32

Figure 4.6: Results for the first synthetic data

than the time needed to obtain the rules non-adaptively, i.e by running from scratch the
algorithm for finding the rules, and this emphasizes the effectiveness of our proposal.

Figure 4.7: Results for the second synthetic data

To conclude about the performance of the ARARM method introduced in this paper,
additional experiments were performed. The experiments were performed on an open source
data set from the NASA repository [41] which was used in the literature for software defect
prediction. The PC1 data set is built for functions from a flight software for earth orbiting
satellite, written in C. Experiments were performed on the subset of PC1 consisting of
644 instances which are non-defects. On this data set, a total number of 40947 relational
association rules having a minimum confidence of 0.9 were identified.

Experiments with different number of instances (which lead to different number of rela-
tional association rules) are performed on the PC1 non-defects data set (with a minimum
confidence threshold of 0.9, m = 35 and s = 2). Figure 4.8 depicts how the running time
of ARARM decreases with respect to the running time of DRAR regarding the number of
considered instances. The performance of ARARM in comparison with DRAR considering

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 33

the number of discovered relational association rules is illustrated in Figure 4.9.

Figure 4.8: ARARM performance - number of instances vs. running time for the PC1 data
set.

Figure 4.9: ARARM performance - number of rules vs. running time for the PC1 data set.

From Figures 4.8 and 4.9 one can conclude that the adaptive relational association rule
method is more effective (in running time performance) than the the non-adaptive one.

Table 4.8 indicates, for each data set we have considered in our experimental evaluation,
the reduction in the average running time of ARARM with respect to the average running
time of DRAR applied from scratch.

In order to perform a statistical analysis the obtained results, for each case study con-
sidered for evaluation, we computed a 95% Confidence Interval (CI) [5] for the average of
running time reductions obtained by applying the ARARM method.

Data set Average of Average of running Average of running ARARM running
number of time for ARARM times for DRAR time reductions

rule (ms) from scratch (ms) (%)

First synthetic data 75455 112907.54 137110.59 21.75 ± 4.7
Second synthetic data 38811 33161 36314 20.38±2.46

PC1 data set 25637 4767 15389 71.18±3.58

Table 4.8: Average running time reduction for the performed experiments. A 95% CI is used
for the values on the fifth column.

The reduction in running time obtained through the adaptive method is natural. It
comes from the fact that the ARARM method starts from the set of relational association
rules discovered in the data set of m-dimensional instances and adapts it (using the adaptive

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 34

algorithm from Figure 4.3) considering the newly added s attributes. This, obviously, is more
effective, since we are starting from the set of relational association rules identified in the data
set of m-dimensional instances and adapt it, instead of running the relational association rule
mining method from scratch on the m + s dimensional instances. It is very likely that the
adaptation time decreases with decreasing of the number of added attributes. Clearly, the
reduction in running time of ARARM with respect to DRAR increases as the number n of
rules from the data set before the feature set extension is larger. When n becomes close to
0, then the ARARM running time becomes closer to the running time of DRAR.

From Table 4.8 we notice an average of 38% for the ARARM running time reduction with
respect to the running time from scratch. We note that, when the number of rules is very
large (e.g 147042 in Table 4.6) the reduction in running time obtained through the adaptive
mining algorithm (an average of 30% when adding at least 14 new attributes) is significant,
since it may lead to saving hours (even days) of running.

Considering the experiments from Section 4.3 and the comparisons shown above, we can
conclude that ARARM is more efficient, from the running time point of view, than DRAR
applied from scratch. Still, there may be situations in which the running time of ARARM
is not significantly smaller than the running time of DRAR applied from scratch. These
situations occur when a small number of interesting relational association rules occur within
the data set before the feature set extension. As shown by the experimental results, this
usually happens when the number s of initial attributes is small.

An extension of the ARARM method to a fuzzy approach [11, 12] would be relevant
in practical applications, where we are dealing we noisy data. We are currently working
on extending the concept relational association rules towards fuzzy relational association
rules and developing a method (similar to DRAR) for mining interesting fuzzy relational
association rules in data sets. Afterwards, it would be possible to investigate the adaptive
fuzzy relational association rule mining. The fuzzy extension of the ARAM method will be
one of our further research.

The main goal of the proposed ARARM algorithm is to adaptively mine relational asso-
ciation rules within a data set. The ARARM method is complete and it reduces the time
needed to discover the rules from scratch, when the attribute set increases. Certainly, it
would be of great interest to analyze the relational association rules which were discovered
in data (as shown in Section 4.1). Further work will be carried out in order to investigate
the usefulness of the mined information [12, 13]. We plan to use the ARARM method for
classification tasks: in software engineering for predicting defective software entities (see the
PC1 data set).

4.4.2 Comparison to related work

The adaptive relational association rule mining approach introduced in Section 4.2 is inno-
vative, since there are no existing similar approaches in the data mining literature. Existing
approaches deal with non-relational associational rules and they are adaptive with respect to
other aspects, like data dependent parameters. Thus, we can not compare our approach with
the existing ones, since the perspectives are different. Still, we will present in the following
several existing data mining methods that are somehow similar with our approach.

Sarda and Srinivas [45] present an adaptive algorithm for incremental mining of associa-
tion rules, which is able to decide based on the type of increment – similar or significantly
different – whether to scan the original database for updating the rules obtained in earlier
mining processes. This approach deals with incremental rule mining, in which new instances
are added to the data set, unlike ours in which new features are added to the existing objects.

Het et al propose in [28] an adaptive fuzzy association rule mining approach for decision
support. Their algorithm, called FARM −DS, builds a decision support system for binary
classification problems in biomedical applications, which besides the class label also returns

CHAPTER 4. ADAPTIVE ASSOCIATION RULE MINING 35

the rules fired for an unseen sample. The parameters of the algorithm are adaptive in the sense
that they are data-dependent and optimized by cross validation. Our ARARM algorithm is
essentially different from the FARM −DS algorithm, since the only adaptive viewpoint in
[28] is related to parameters optimization.

An association rule mining model with dynamic adaptive thresholds is introduced in [46].
Their algorithm, called DASApriori is an extension of Apriori algorithm for finding large
item sets. They propose two minimum support counts: Dynamic Minimum Support and
Adaptive Minimum Support and two confidence thresholds: Dynamic Minimum Confidence
and Adaptive Minimum Confidence.

Zhang et al introduce in [57] an adaptive association rule mining technique, which adapts
the support value according to the F-score obtained through prior classification in order to
classify web video content based on mixed visual and textual information. The support in this
case is computed as a measure for the similarity of the set of terms characterizing the videos
under classification. A similar technique for adapting the support value is presented in [37],
in which the minimum support threshold is established during the rule generation process in
order to maintain the number of generated rules within a desired range. An algorithm called
FRG−AARM , using a similar approach to the aforementioned paper in order to devise an
efficient market basket analysis method, is introduced in [20].

The adaptive association rule mining approaches [46, 57, 37, 20] described above focus
on adapting the support value used in rule generation to the actual training data set, such
that the generated rules are relevant. However, the algorithm proposed in our paper is
adaptive to changes in the nature of the data set, such as the appearance of new features
over time, whereas the articles which were presented above focus on improving the quality
of the generated rules by adapting certain parameters of the rule mining process such as the
support value to the data set particularities.

Chapter 5

Conclusions

We have presented in this report the original scientific results which were obtained for achiev-
ing the objectives proposed in the project’s work plan for the year 2015. Our main scientific
objectives were related to the development of new classification algorithms for identifying
entities with defects in software systems and to the design of the AMEL integrated software
system.

The report presented in the first chapter our original approach for identifying the defects
in software systems using self-organizing feature maps. The proposed approach may be used
for an unsupervised detection of software defects. The experimental results obtained on three
open-source data sets reveal a good performance of the proposed approach, it provides better
results than many of the existing approaches report in the literature.

Future work will be done in order to extend the evaluation of the proposed machine
learning based model on other open source case studies and real software systems. We will also
investigate the applicability of fuzzy [56] self-organizing maps for software defect detection,
as well as to further consider techniques for data pre-processing and feature selection.

The second contribution of the report was an original approach for adaptive relational
association rule mining which can be used for defective software entities detection. We have
approached the problem of adaptive relational association rule mining and we proposed a
novel algorithm, called ARARM for adapting the set of relational association rules mined
in a data set, when the feature set describing the objects increases. The experiments were
performed on case studies for software defect detection for which the application of adaptive
relational association rule mining is useful. The obtained results on these data sets proved
that the result were reached more efficiently using the proposed method than running the
mining algorithm again from scratch, on the feature-extended object set.

A possible direction to continue our research would be to extend the linear “chain-like”
representation for relational association rules to more complex structures. The problem of
relational association rule mining may be viewed as a special case of finding frequent chains in
a database of labeled graphs [24]. Relational association rules may be viewed as the frequent
chains (frequent linear graphs) in this graph database. Using this representation, one may be
able to compute the labeled graph canonical form [27] which can be used to avoid reporting
duplicate rules (especially “mirror” rules), leading this way to a more efficient filtering. This
representation for relational association rules also suggests an extension to allow more general
graphs, like trees or graphs including cycles.

As future work we also plan to extend the evaluation of the ARARM method to different
data sets and real life problems. In addition, an extension of the method proposed in this
paper to a fuzzy approach [44, 12] and other approaches for mining association rules [35, 21]
will be further considered.

36

Bibliography

[1] G. Abaei, Z. Rezaei, and A. Selamat. Fault prediction by utilizing self-organizing map
and threshold. In 2013 IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), pages 465–470, Nov 2013.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[3] Rezwan Ahmed and George Karypis. Algorithms for mining the evolution of conserved
relational states in dynamic networks. Knowledge and Information Systems, 33(3):603–
630, 2012.

[4] P.S. Bishnu and V. Bhattacherjee. Software fault prediction using quad tree-based k-
means clustering algorithm. IEEE Transactions on Knowledge and Data Engineering,
24(6):1146–1150, June 2012.

[5] L.D. Brown, T.T. Cat, and A. DasGupta. Interval estimation for a proportion. Statistical
Science, 16:101–133, 2001.

[6] Gabriela ¸Serban, Istvan Gergely Czibula, and Alina Câmpan. Medical diagnosis predic-
tion using relational association rules. In Proceedings of the International Conference on
Theory and Applications of Mathematics and Informatics (ICTAMI’07), pages 339–352,
2008.

[7] Toon Calders, Nele Dexters, Joris J.M. Gillis, and Bart Goethals. Mining frequent
itemsets in a stream. Inf. Syst., 39(0):233 – 255, 2014.

[8] Alina Câmpan, Gabriela ¸Serban, and Andrian Marcus. Relational association rules and
error detection. Studia Universitatis Babes-Bolyai Informatica, LI(1):31–36, 2006.

[9] Alina Campan, Gabriela Serban, Traian Marius Truta, and Andrian Marcus. An algo-
rithm for the discovery of arbitrary length ordinal association rules. In DMIN, pages
107–113, 2006.

[10] C. Catal, U. Sevim, and B. Diri. Software fault prediction of unlabeled program modules.
In Proceedings of the World Congress on Engineering (WCE), pages 212–217, Dec 2009.

[11] Gaik-Yee Chan, Chien-Sing Lee, and Swee-Huay Heng. Defending against xml-related
attacks in e-commerce applications with predictive fuzzy associative rules. Applied Soft
Computing, 24(0):142 – 157, 2014.

[12] Chun-Hao Chen, Ai-Fang Li, and Yeong-Chyi Lee. A fuzzy coherent rule mining algo-
rithm. Applied Soft Computing, 13(7):3422 – 3428, 2013.

[13] Chun-Hao Chen, Ai-Fang Li, and Yeong-Chyi Lee. Actionable high-coherent-utility fuzzy
itemset mining. Soft Computing, 18(12):2413–2424, 2014.

37

BIBLIOGRAPHY 38

[14] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object-oriented
design. In Conference Proceedings on Object Oriented Programming Systems, Languages,
and Applications, pages 197–211, 1991.

[15] Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan Gergely Czibula. Promoter se-
quences prediction using relational association rule mining. Evolutionary Bioinformatics,
8:181–196, 04 2012.

[16] Gabriela Czibula, Istvan Gergely Czibula, Adela Sârbu, and Ioan-Gabriel Mircea. A
novel approach to adaptive relational association rule mining. Applied Soft Computing
journal, 36:519–533, November 2015.

[17] Gabriela Czibula, Zsuzsanna Marian, and István Gergely Czibula. Software defect pre-
diction using relational association rule mining. Inf. Sci., 264:260–278, 2014.

[18] Gabriela Czibula, Zsuzsanna Marian, and István Gergely Czibula. Detecting software
design defects using relational association rule mining. Knowledge and Information
Systems, January 2014.

[19] Tera-promise repository. http://openscience.us/repo/.

[20] M. Dhanabhakyam and M. Punithavalli. An efficient market basket analysis based
on adaptive association rule mining with faster rule generation algorithm. The SIJ
Transactions on Computer Science Engineering and its Applications, 1(3):105–110, 2013.

[21] YaJun Du and HaiMing Li. Strategy for mining association rules for web pages based
on formal concept analysis. Applied Soft Computing, 10(3):772 – 783, 2010.

[22] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[23] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874,
2006.

[24] Joseph A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of
Combinatorics, 17:1–384, 2014.

[25] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explorations,
11(1), 2009.

[26] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[27] S. G. Hartke and A. J. Radcliffe. Mckay’s canonical graph labeling algorithm. Contemp.
Math., 479:99–111, 2009.

[28] Yuanchen He, Yuchun Tang, Yan-Qing Zhang, and Rajshekhar Sunderraman.
Adaptive fuzzy association rule mining for effective decision support in biomedical ap-
plications. Int. J. Data Min. Bioinformatics, 1(1):3–18, June 2006.

[29] S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, 7(5):510–518, September 1981.

[30] Rui hua Chang, Xiaodong Mu, and Li Zhang. Software defect prediction using non-
negative matrix factorization. JSW, 6(11):2114–2120, 2011.

BIBLIOGRAPHY 39

[31] S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507. World Scientific, 1996.

[32] Andreas Khler, Matthias Ohrnberger, and Frank Scherbaum. Unsupervised feature se-
lection and general pattern discovery using self-organizing maps for gaining insights into
the nature of seismic wavefields. Computers & Geosciences, 35(9):1757 – 1767, 2009.

[33] Peter K. Kihato, Heizo Tokutaka, Masaaki Ohkita, Kikuo Fujimura, Kazuhiko Kotani,
Yoichi Kurozawa, and Yoshio Maniwa. Spherical and torus som approaches to metabolic
syndrome evaluation. In Masumi Ishikawa, Kenji Doya, Hiroyuki Miyamoto, and Takeshi
Yamakawa, editors, ICONIP (2), volume 4985 of Lecture Notes in Computer Science,
pages 274–284. Springer, 2007.

[34] Teuvo Kohonen, Ilari T. Nieminen, and Timo Honkela. On the quantization error in
SOM vs. VQ: A critical and systematic study. In Advances in Self-Organizing Maps,
7th International Workshop, WSOM 2009, St. Augustine, FL, USA, June 8-10, 2009.
Proceedings, pages 133–144, 2009.

[35] R.J. Kuo, C.M. Chao, and Y.T. Chiu. Application of particle swarm optimization to
association rule mining. Applied Soft Computing, 11(1):326 – 336, 2011.

[36] J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision, 2(3):261–272, 1992.

[37] Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Efficient adaptive-support associ-
ation rule mining for recommender systems. Data Min. Knowl. Discov., 6(1):83–105,
2002.

[38] Sayyed Garba Maisikeli. Aspect Mining Using Self-Organizing Maps With Method Level
Dynamic Software Metrics as Input Vectors. PhD thesis, Graduate School of Computer
and Information Sciences Nova Southeastern University, 2009.

[39] Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Using software met-
rics for automatic software design improvement. Studies in Informatics and Control,
21(3):249–258, 2012.

[40] Zsuzsanna Marian, Istvan Gergely Czibula, Gabriela Czibula, and Sergiu Sotoc. Soft-
ware defect detection using self-organizing maps. Studia Universitatis Babes-Bolyai,
LX(2):55–69, December 2015.

[41] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fayola Peters,
and Burak Turhan. The promise repository of empirical software engineering data, June
2012.

[42] Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.

[43] Mikyeong Park and Euyseok Hong. Software fault prediction model using clustering
algorithms determining the number of clusters automatically. International Journal of
Software Engineering and Its Applications, 8(7):199–205, 2014.

[44] Slobodan Ribaric and Tomislav Hrkac. A model of fuzzy spatio-temporal knowledge
representation and reasoning based on high-level petri nets. Inf. Syst., 37(3):238 – 256,
2012.

BIBLIOGRAPHY 40

[45] N. L. Sarda and N. V. Srinivas. An adaptive algorithm for incremental mining of asso-
ciation rules. In Proceedings of the 9th International Workshop on Database and Expert
Systems Applications, DEXA ’98, pages 240–, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[46] C. S. Kanimozhi Selvi and A. Tamilarasi. Association rule mining with dynamic adap-
tive support thresholds for associative classification. In Proceedings of the International
Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007)
- Volume 02, ICCIMA ’07, pages 76–80, Washington, DC, USA, 2007. IEEE Computer
Society.

[47] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

[48] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In
CSMR ’01: Proceedings of the Fifth European Conference on Software Maintenance and
Reengineering, pages 30–38, Washington, DC, USA, 2001. IEEE Computer Society.

[49] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151–159, 1999.

[50] Basma Soua, Amel Borgi, and Moncef Tagina. An ensemble method for fuzzy rule-based
classification systems. Knowledge and Information Systems, 36:385–410, 2013.

[51] Stephen V. Stehman. Selecting and interpreting measures of thematic classification
accuracy. Remote Sensing of Environment, 62(1):77 – 89, 1997.

[52] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining,
(First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[53] Ayse Tosun, Burak Turhan, and Ayse Basar Bener. Validation of network measures
as indicators of defective modules in software systems. In Proceedings of the 5th In-
ternational Workshop on Predictive Models in Software Engineering, PROMISE 2009,
Vancouver, BC, Canada, May 18-19, 2009, pages 5–14, 2009.

[54] Swati Varade and Madhav Ingle. Hyper-quad-tree based k-means clustering algorithm
for fault prediction. International Journal of Computer Applications, 76(5):6–10, August
2013.

[55] Renato Vimieiro and Pablo Moscato. A new method for mining disjunctive emerging
patterns in high-dimensional datasets using hypergraphs. Inf. Syst., 40:1–10, March
2014.

[56] Lotfi A. Zadeh. A summary and update of ”fuzzy logic”. In 2010 IEEE International
Conference on Granular Computing, GrC 2010, San Jose, California, USA, 14-16 Au-
gust 2010, pages 42–44, 2010.

[57] Chengde Zhang, Xiao Wu, Mei-Ling Shyu, and Qiang Peng. Adaptive association rule
mining for web video event classification. In IRI, pages 618–625. IEEE, 2013.

[58] Kuan Zhang, David Lo, Ee-Peng Lim, and Philips Kokoh Prasetyo. Mining indirect
antagonistic communities from social interactions. Knowledge and Information Systems,
5(3):553–583, 2013.

