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The main contributions of the project are presented in what follows.

1 Critical node detection problem

1.1 Critical node problem - kMaxComp

In the general formulation of the critical node detection problem we seek to find nodes which are more important
than others with respect to a predefined measure. Several graph properties were studied as measures, e.g. the
pairwise connectivity which needs to be minimized by deleting k nodes (which is one of the most popular), or
minimizing the largest component size by deleting & nodes. In [4] three versions of the CNDP are studied:
minimizing the largest components size, minimizing the pairwise connectivity and maximizing the number of
connected components.

Firstly, we focus on the problem introduced in [74, 73], which is also described in [4]. The problem consists
in removing k nodes such that the number of remaining components to be maximal (we denote this problem
kMazComp). Formally, if S denotes the set of deleted nodes, and H(G[V \ S]) denotes the set of components of
graph G without the set of nodes S, the kMaxComp problem consists in:

wma [H(GIV \ S]],

such that |S| < k,

where |A| denotes the cardinality of set A.

As the CDNP was proved to be NP-hard for several connectivity measures [74] different solving methods has to
be proposed. However, kMaxComp did not get very much attention. In [74] a Mixed Integer linear programming
approach is proposed, and we find a a general integer programming framework in [82]. For a special class of graphs
(trees and series-parallel graphs) a dynamic programming approach is designed [73]. In [4] a genetic algorithm is
described to solve the problem and two greedy algorithms are presented.

1.1.1 Noisy Extremal Optimization

Extremal optimization (EO) [14, 15] is a simple and powerful combinatorial optimization algorithm which was
successfully adapted for different practical problems, e.g. graph partitioning [13], load balancing problem [23]. A
variant of EO called NoisyEO [59] was used successfully for the community detection problem.

In the standard variant of the EO two individuals are used during the search: s and Spest; Spest preserves the
best solution found so far by s based on an overall fitness f(). EO individuals are represented as composed of
several components that can be evaluated separately. The standard EO maximizes each component of a potential
solution by randomly replacing the one with the worst fitness. The outline of the standard EO is presented in
Algorithm 1.

In [59] NoisyEO is presented as a variant of EO that proposes the use of a network shifting mechanism to
induce diversity in the search. We employ the same mechanism to escape local optima for the CDNP problem.
The network shift consists in randomly deleting edges in the network with a probability pspn;r+ whenever the search
stagnates. The search takes place for a number of generations G on the shifted network, moving the solution away



Algorithm 1 Standard EO

Initialize s at random;
Sbest := S; //Spest Preserves the best solution found so far
while a termination condition is not met do
find 4,,;, component in s with the smallest fitness value
randomly reassign s; . in s;
if f(s) > f(Spest) then
Shest += S
end if
end while

Algorithm 2 CN-FEO algorithm
Parameters:

e Probability of shift - pepife;
e Number of generations between switching networks - G;

e Total number of generations - NrGen;

Randomly initialize (s, Spest);
repeat
if spest does not change in GG generations and there is no noise then
Induce noise with probability pspife;™ ;
Reinitialize sp.s; with the current s value
end if
if There has been noise for G generations then
Return to the original network
end if
Perform search using the current network (CN-EO(s, spest) iteration);
until Maximum number of generations;
Return spes: with highest fitness achieved on a non-noisy network.
* Modify network by randomly deleting edges with probability psn; st

from a local optimum. We call this approach Critical Nodes - EO (CN-EQO). The outline of CN-EO is presented
in Alg. 2. A step of the CN-EO is outlined in Alg. 3.

Encoding Individual s is represented as a vector of integers of size k representing the critical nodes. Values are
from the range 1 and the number of nodes in the graph.

Fitness function Within CN-EO there are two fitness functions used: one to evaluate individual s and a different

one for evaluating each component of s. The overall fitness value of s = (s1,..., s;) is computed as the number of
components of the graph, after removing the k nodes:
f(s) = H(GIV \ {s1,..., sk }])] 1)
The fitness value of a node i in s is computed as its marginal contribution to f(s):
fi(s) = f(s) = f(s\ 1), (2)

where s\ ¢ denotes the set of nodes in s without node 4.

Network shift The network shift is used to induce diversity in the search by modifying the search space instead
of the EO individuals. After a number of generations G the EO search stagnates (there in no change in spest) the
network is modified by removing edges with a probability pgxif:. To preserve some information, the search of s
continues, but Spes: is randomly reinitialized in order to be easily replaced by the new values discovered by s. The
search on the modified network takes place for G generations, after which it is resumed on the original network.

1.1.2 Numerical experiments

Parameter settings CN-EO has only three specific parameters: MaxGen is set to 5000, G is set to 10 and
Pshift to 0.01. The effect of varying these parameters is expected to be similar to that found in [59] and is not a
subject of this study.



Algorithm 3 CN-EO(s, spest) iteration

For current configuration s evaluate f;(s), i € {1,...,k}.
Find the node with the worst fitness and replace it randmly with another one;
if (f(s) > f(Spest)) then
set Spest 1= S.
end if

Benchmarks A set of synthetic benchmarks [1] for the CNDP problem were proposed in [80]. The benchmark
set contains three different type of graphs: Barabdsi-Albert (BA), Erdés-Rényi (ER) and Forest-fire (FF) graphs.
BA graphs are scale free networks, ER graphs are random networks, FF graphs simulate how fire spreads through
a forest.

Table 1 describes basic network measures of the used benchmarks: number of nodes (]V]), number of edges
(|E|), average degree ({d)), density of the graph (p), and average path length (Ig). Table 2 describes the set of

Table 1: Synthetic benchmark test graphs and basic properties.

Graph  [V] Bl @ » Io
BA500 500 499 1.996 0.004 5.663
BA1000 1000 999 1.998 0.002 6.045
BA2500 2500 2499 1.999 0.001 6.901
BA5000 5000 4999 2.000 0.000 8.380
ER235 235 350 2.979 0.013 5.338
ER466 466 700 3.004 0.006 5.973
ER941 941 1400 2.976 0.003 6.558
ER2344 2344 3500 2.986 0.001 7.516
FEF250 250 514 4.112 0.017 4.816
FF500 500 828 3.312 0.007 6.026
FF1000 1000 1817 3.634 0.004 6.173
FF2000 2000 3413 3.413 0.002 7.587

real networks used for numerical experiments, with the same measures as in the case of the synthetic networks.
Real networks are from different research areas, e.g biological networks (Ecoli, HumanDis).

Table 2: Real graphs and basic properties.

Graph V| |E| (d) p Il Ref.
Bovine 121 190 3.140 0.026 2.861 [69]
Circuit 252 399  3.167 0.012 5.806 [62]
EColi 328 456 2.780 0.008 4.834 [85]
USAir97 332 2126 12.807 0.038 2.738 [70]
HumanDis 516 1188  4.605 0.008 6.509 [38]
EUFlights 1191 31610 53.081 0.044 2.622 [66]

Comparison with other methods For comparisons we use three algorithms described in [4]: a greedy algorithm
(G1) based on node deletion from the candidate critical node set, another greedy algorithm (G3), based on the node
addition to the candidate critical node set and a genetic algorithm from an evolutionary algorithm framework using
greedy rules (GA). The proposed genetic algorithm uses problem specific variation operators and it is combined
with a local search mechanism.

Table 3 presents obtained results for synthetic and real world datasets. Mean value, standard deviation mini-
mum and maximum value are reported over ten independent runs. We also indicate the best known results obtained
in [4] and the corresponding method. It can be observed that CN-EO finds the maximum number of connected
components when compared to the best known results from the literature. On average CN-EO is better than the
best known results for seven datasets.

Figure 1 depicts the smallest test network, the bovine network, which represents protein interactions, and the
obtained critical nodes by CN-EO. It can be seen that CN-EO identifies the nodes that, if removed, generated
the maximum number of connected components in the network. We find that in this case they are also the nodes
with the highest degree, but this is not always the case for all networks. We notice that the problem has multiple
solutions that lead to the same maximal number of connected components for k = 3.



Table 3: CN-EO results. Best known results indicate the best value reported by other methods as well as the
method reporting it.

CN-EO Best known result
Graph k  Mean Std.dev. Min Max (from literature)
BA500 50 314,8 1,75 313 318 313 (GA, Gy, G2)

BA1000 7 594,5 9,46 585 604 590 (GA, Gy, G2)
BA2500 100 1091,3 37,74 1023 1146 1129 (GA, G17G2)

ER235 50 66,7 1,83 65 71 8 (GA)
ERA66 80 1089 345 102 114 110 (GA)
ER941 140 1944 7,73 184 207 206 (GA)
FF250 50 93 1,15 92 9 92 (GA, Gy, Go)
FF500 110 2013 3602 99 217 215 (GA)
FF1000 150 3228 13,50 298 344 340 (GA)
Bovine 3 77,6 070 77 79 77 (GA, Gl, Go)
Circuit 25 31,4 2,95 28 36 31 (GA)
EUFlights 119 60,5 76,02 11 206 211 (GA, Gs)
Ecoli 15 171,8 2,10 169 175 169 (GA, G1)
USair97 33 40,6 44,84 3 106 104 (GA, Go)
HumanDis 53 152,7 3,80 148 158 148 (GA, Go)

1.1.3 A stock market network application

There is a grown interest in constructing and and analyzing economic networks. Nodes can represent banks,
directors, investigators, depending on the studied problem [27]. One of the first applications is the stock market
analysis from a network perspective [21]. In [32] the Chinese stock market is analysed as a directed network with
an influential model. We analyse the financial stock market network described in [53] from the critical nodes
perspective. The network is obtained from the analysis of temporal correlations among the time-series of 62
stocks in the New York Exchange Market from the period 2012-2014. We use an unweighted version of the graph
where we deleted all edges with weight smaller than 1.2 (edges mean the distance calculated based on the Pearson
coefficient). The obtained a network with 62 nodes and 618 edges.

We obtained by NoisyEO the first 3, 4, 5, 6, 7 and 8 most critical nodes. The results are analysed also from
a network measure perspective: degree of the nodes, betweenness and closeness centralities were obtained. We
indicate the rank of the nodes ordered decreasing. The novelty of searching for critical nodes in a stock market
example consists in finding important nodes, other ones as based on the above mentioned traditional measures.
As seen in Table 4 based on the critical nodes we can set up another order of importance of the certain stock.

Table 4: Critical nodes and network centrality measures in the New York Exchange Market

Node Stock  Critical Degree Closeness Betweenness
no. Name node (k) (rank) Centrality (rank) centrality (rank)
52 S k=3 61 (1) 1(1) 301.62 (1)

51 SO k=3 48 (3-4) 0.82 (3-4) 164.151 (2)
25 ETR k=3 48 (3-4) 0.82 (3-4) 140.60 (3)

6 AVP k=4  51(2) 0.85 (2) 127.76 (4)
54 UIS k=5 44 (5-6) 0.78 (5-6) 68.25 (6)

59 WMT k=6 44 (5-6) 0.78 (5-6) 82.50 (5)

5 ARC k=7 41 (7) 0.75 (7) 52.61 (7)

1 AEP k=8 38 (9) 0.72 (9) 52 (8)

1.2 Critical node problem - pairwise connectivity

The most studied version of the k-vertex-CNDP is the minimization of pairwise connectivity, called the Critical
Node Problem. Given a graph G = (V, E), where V denotes the set of nodes, E denotes the set of edges and
a positive integer k, the problem consists of finding a subset of the vertices S C V at most k& nodes, such that
the deletion of these nodes minimizes the pairwise connectivity in the remaining graph G = (V' \ S, F). Pairwise
connectivity can be expressed as [52]:

o=y M Q

C€G[V\S]



Figure 1: Bovine network (obtained critical nodes are marked with red, & = 3)

where C;, i = 1...k are the connected components of the remaining graph G = (V' \ S, E), §; represents the size
of the component C;.

This variant is an NP-complete problem on general graphs [5]. As solving methods, an exact approach using
Integer Linear Programming was proposed [5], in [82] a mixed integer programming formulation is described
for several variants of the CNDP. As stochastic approaches, we mention a Greedy Randomized Adaptive Search
Procedure [68], a Memetic Algorithm [88], and an evolutionary framework [4].

Another variant based on the pairwise connectivity is the bi-objective critical node detection problem, proposed
in [81]. In [7] a cardinality-constrained variant is proposed. [83] proposed and formalizes the distance-based critical
node detection problem.

1.2.1 Extremal Optimization

To escape from local optima another variant of the EO is used, the NoisyEO [59]. It uses a network shifting
mechanism to induce diversity in the search. This mechanism was used successfully for the maximization of
connected components, Critical Nodes -EO (CN-EO) in [34].

Improvement of EO In the standard version of EO the worst component (in our case the node) is randomly
replaced. A natural way to improve this step is to guide the replacement to an ”important” node. More central
nodes (based on three network measures) will be chosen as new components, that is nodes which have their
centrality above the average centrality value of the network will be chosen.

The following centrality measures are used:

e degree centrality - measures the degree of each node:

_ deg(v)
W=

where deg(v) is the degree of node v and |V is the number of nodes.

e closeness centrality - captures the average shortest distances from a node to all other nodes:
1
Zw;ﬁv d(w7 1)) ’

where d(w,v) denotes the shortest distance between node v and w.

Cc(v) =

e betweenness centrality - measures how a certain node lies on the shortest paths of other nodes:
Jst ('U)
Colv) = D ==,
sAvEL 9st
where s,t € V, g5 is the total number of shortest paths, gs:(v) is the number of shortest paths, where v lies.

For NEO the same centrality measures are used, but the selection of the new node is based on a p.q,q probability:
with a probability of prq.nq the nodes with the centrality value over the average value of the network are selected,
in the rest a random value is chosen.

1.2.2 Numerical experiments

Parameter setting For each variant of the EO algorithm the maximum number of generations (iterations) is
set to 5000. The algorithm does not have other parameters that need setting. In the case of the NEO MaxGen is
set to 5000, G is set to 10, pspipe to 0.01, and prena to 0.8.



Benchmarks For the numerical experiments we use the benchmarks described in Section 1.1.2.

1.2.3 Comparisons with other methods

[4] presents three algorithms for the CNDP: two variants of a greedy algorithm (G and G2), one of them is based
on node deletion and the other one is based on node addition and a third algorithm is a genetic algorithm from
an evolutionary algorithm framework using greedy rules (GA). To the four variants of the EO algorithm, we refer
them as: R — EO the base algorithm, Cp — EO is the degree based approach, Cz — FO is the approach that uses
betweenness and Cc — EO is the closeness based algorithm. Similarly, the four variants of the NEO algorithm are
denoted by R — NEO, Cp — NEO, Cg — NEO, respectively Co — NEO.

Table 5 presents the results obtained for the synthetic and real-world networks. Although we present best
known results from the literature, the direct comparison with our methods is not fair as we report the averages
and standard deviation over ten independent runs while the results reported by the literature are probably best
obtained values (the authors of the study do not report average values, number of independent runs). As a general
conclusion we can establish that using different centrality measures speeds up the convergence of the algorithm to
the solutions, but it does not ensure better results in all cases. Another important conclusion is, that we cannot use
only best nodes regarding a certain measure, critical nodes can appear between other nodes, as well. For example
nodes with highest closeness centrality are not as good as randomly selected nodes.

Table 5: Results for different real and synthetic networks (mean and standard deviation for ten independent runs)
for the EO and NEO variants. The column ”Best known results” presents the best results found in the literature
according to [4], the authors do not specify if these values represent means or minimum values over multiple runs

Network |k R— EO Cg — FEO Cec — EO Cp —EO Best known
R—- NEO Cg—NEO Cc — NEO Cp—-NEO result
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1.3 Combined critical node and edge detection problem

The critical node and edge detection problem (CNEDP) consists of finding a set W C V' containing k nodes and
a set ' C E having [ edges in a given graph G = (V, E), which deleted maximally degrades the graph according
to a given measure o. We denote this introduced problem by (k,)-CNEDP.

In this article we study as a network connectivity measure the pairwise connectivity. The objective function,
which needed to be minimized is the following:

0;(6; — 1
3 (2 ),

C;€G[V\A]

f(A) = (4)

where A C V, C; is the set of connected components in the remaining graph, after the deletion of nodes and edges,
and ¢; is the size of the connected component C;.
1.3.1 Methods

We propose two algorithms to solve the (k,[)-CNEDP a Greedy algorithm and a Genetic Algorithm described in
more details in [48].



1.3.2 Experimental set-up

Benchmarks The used synthetic networks are presented in Section 1.1.2. In Table 6 the set of real networks
used for numerical experiments is presented, including the source of the network.

Table 6: Real graphs and basic properties.

Graph V| |E| (d) P e Ref.
Bovine 121 190 3.140  0.026  2.861 [69]
Circuit 252 399 3.167  0.012  5.806 [62]
Dolphins 62 159  5.1290 0.0841 3.3570 [51]
Ecoli 328 456 2.780  0.008  4.834 [60],(85]
Football 115 613 10.6609 0.0935 2.5082 [37],[51]
Hamsterster 2426 16631 13.7106 0.0057 2.4392 [70]
HumanDis 516 1188 4.605  0.008  6.509 [38]
Karate 34 78  4.5882 0.1390 2.4082 [51],[87]
Zebra 97 111 82222 0.3162 13590 [51],[76]

The number of critical nodes (k) is 5% of the total nodes, while the number of critical edges (1) is set to 3% of
the total number of edges (proportions are set general, to emphasize critical nodes and edges on different type of
networks). The maximum generation number for both GA variants was set to 5000.

1.3.3 Results and discussion

Table 7 presents the results obtained from the genetic algorithm (GA;), genetic algorithm with time-varying
mutation (GAs) and from the greedy algorithm. GA; and G Az outperformed the greedy algorithm in most cases.
Ounly in the case of the Football network did both algorithms perform in the same way (with standard deviation
equal to 0). However, analyzing the results, in the case of the Football network the values for k& and [ were too
small, because there was no change from the initial population in GA; and GAs. The incorporation of time-varying
mutation did not significantly improve the results.

Table 7: Results for synthetic and real graphs. Mean values and standard deviation over 10 independent runs are
presented. A (*) indicates best result based on a Wilcoxon sign-rank test

Graph GA; GAy Greedy
BA500 650.70 £ 82.62* 835.00 £ 259.57 5722.90 £ 33.20
BA1000 1947.20 + 235.93* 2021.10 £ 255.62* 362555.90 £ 924.58
ER250 15296.30 4+ 785.33* 14976.70 4+ 623.52* 25066.70 + 156.40
ER500 61664.60 + 1532.08*  62929.20 4 2215.60* 100357.40 + 568.82
FF250 7905.50 £ 1212.81* 7909.70 & 619.53* 25508.20 + 1052.20
FF500 12303.30 4= 4858.39*  12342.90 £ 4493.16*  105350.50 £ 4396.26
Bovine 16.50 + 20.66* 29.20 £ 25.50* 1337.10 £+ 31.78
Circuit 274.00 4 332.22* 274.70 + 417.62* 24110.10 £ 1448.70
Dolphins 1220.40 + 14.55* 1230.20 £ 15.75* 1711.00 £ 0.00
Ecoli 447.60 + 465.91* 1338.40 £ 1467.07* 47649.30 £ 576.69
Football 5995.00 £ 0.00* 5995.00 £+ 0.00* 5995.00 4 0.00*
HumanDis 531.70 + 859.40* 3927.30 +9258.98  113625.90 4+ 1521.87
Karate 355.90 £ 41.98* 315.00 &+ 10.54* 411.10 4 80.67
Zebra 165.20 4 7.32* 166.40 4 8.98* 237.00 £ 0.00

Regarding the running time of both methods (GA; and greedy), in small networks, as expected, greedy runs
faster (e.g. in the case of dolphins network 2.47 + 0.02 seconds running time has the greedy algorithm, and
183.64 + 0.48 seconds the GA;), but in a larger network the GA; has better running time (e.g. for the FF500
network the greedy runs in average 1420.66 + 63.48 seconds and the GA; 1294.3 + 25.15 seconds).

1.3.4 Application: new network robustness measure proposal

As an application of critical node and edge detection, we introduce a new network robustness measure. In the
literature several robustness measure exist, trying to capture different properties of the networks. For example [26]
describes different measures to characterize network robustness: k, - vertex connectivity - the minimal number of
vertices which need to be removed to disconnect the graph, k.- edge connectivity - the same measure for edges,
diameter of the graph (d), average distance (d—), average efficiency (F) - considering shortest paths, maximum edge
betweenness (bom), average vertex betweenness (b,), average edge betweenness (b.) - these measures considering
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Figure 2: Pearson’s correlation coefficients between network robustness mesures

shortest paths. The average clustering coefficient (C) is a proportion of triangles and connected triples. Algebraic
connectivity (A2) is the second smallest eigenvalue of the Laplacian matrix of G, a number of spanning trees (¢)
counts the possible different spanning trees of the graph, while effective graph resistance (Kirchhoff index) (R)
investigates the graph as a network circuit.

We study several real-world networks from different application fields. The above mentioned network measures
are calculated for the studied networks, as presented in Table 8. As we can see, the majority of the indices
cannot be used for disconnected networks (in this example, the E-road network is disconnected), this is one of the
motivations to introduce the new measure to analyze the network robustness, based on the (k,1)-CNEDP.

Table 8: Network robustness measures for studied networks

Measure Networks

USAir97 E-road Mouse-cortex Cat_brain 494-bus 662-bus Infect-dublin Infect-hyper Route-views
ko 1 ) 1 3 1 1 1 1 1
ke 1 9 1 3 1 1 1 1 1
d 6 oo 8 3 26 25 9 3 9
d— 2.73 oo 4.27 1.69 10.47 10.24 3.63 1.65 3.70
E 0.40 9 0.27 0.66 0.11 0.11 0.32 0.67 0.29
bem 0.06 - 0.16 0.01 0.19 0.18 0.12 0.01 0.02
by 618.65 - 506.01 86.38 2827.38 3716.30 947 148.75 15227.74
be 70.76 - 369.78 4.84 1180.51 1429.46 110.10 4.77 5586.99
C 0.62 0 0.02 0.66 0.04 0.04 0.45 0.53 0.25
Ao 0.12 0 0.03 2.88 -4.75 -5.14 0.19 0.99 -25.84
€ 3.37e+4-234 0 6.41e410 1.45e+4-81 0 1.004 oo 1.7e4169 o]
R 45538.19 oo 47450.21 262.08 -4.56e4-18 1.78e+18 30563.17 527.78 1587664.19
NE ll 0.66 0.33 0.09 1.00 0.28 0.64 0.92 1 0.39

The introduced measure (N E} ;) has the following form:

2. (k,1)-CNEDP
(n—k—-1n-%k-2)

NE,, =

is the worst possible value of pairwise connectivity, after deleting k nodes, n is the number of nodes
in the original network, NEj; € [0,1].
In the case of the USAir97 network, for example:

(n—k—1)(n—k—2)
2

2. 35264
NEy g = = 0.66.
20T 332 - 21— 1)(332 — 21 — 2)

The NE); can be seen as a measure which based on the number of deletion of nodes and edges quantifies
the network robustness. To analyse the results a correlation matrix was built (without the results of the E-road
network), the new measure - NEj,; (new m) was compared with d,d—,E,bem,b, and C. As presented in Figure 2
a weak correlation exists between the new measure and the clustering coefficient (C).

1.4 Critical nodes as influential nodes -cooperative game theoretic approach

The Influence Maximization Problem, connected to a diffusion model, can be described by using the influence
function in the following manner.



Influence function Given a graph G = (V, E), a spreading set S C V and a propagation (diffusion) model D,
the influence function fp(S) represents the expected number of nodes activated by the set S under the model D,
where fp(S):2V — R*.

IMP Given a graph G = (V, E), a propagation model D, a number k € N*, the influence maximization problem
aims to maximize the influence function fp(.5):

ma S
SQVJS}TSka( )7

where || is the cardinality of the set S.

Propagation, or diffusion models, try to answer the central question of how information spreads in a network
[39]. They can be divided in two main classes: deterministic and probabilistic. Examples of deterministic models
are the majority threshold model [79], where a node will be active if half of the neighbors is already active, or the
unanimous threshold model [19], where the activation depends on the degree of a certain node.

The Independent Cascade Model (ICM) [47] is one of the most widely used diffusion models. ICM uses a
probability p to activate nodes starting from a given node set Ag, of size k, of the graph G = (V, E). Ag is
considered the initial current active node set and the aim is to construct set A of activated nodes influenced by Aj.
In each step of the cascade, nodes in the current active set B activate their neighbors with probability p. Activated
nodes are added to the cascade set A. The cascade stops if no node in the current active set B has activated any
neighbor. The size of A, denoted by o(Ap) is returned as the result of the cascade and called the influence set of
Ap.

Then the IMP problem based on ICM can be formulated as:

max S
SCV,|S|<k from(S),

where f]CM(S) = CT(S)

1.4.1 Proposed method - Shapley Influence Maximization Extremal Optimization (SIM-EQ)

In this section we will describe our proposed algorithm named, the Shapely Influence Maximization Extremal
Optimization approch, the SIM-EO.

Encoding: Fach individual is composed from a set of nodes that represent a potential solution to the influence
maximization problem of length k. Each node in this set can be considered a separate component to this solution,
allowing us to potentially evaluate contribution on a per-node basis.

Fitness: There are two fitness functions used in the algorithm. Firstly we need to identify the value assigned to
each solution, in order to compare our current solution to past results. We use the ICM as a good representation
for the influence spread in a network. Secondly we need to identify the contribution for each node to a potential
solution so that we can replace the components with extremal value (minimal contribution). A good possibility is
the employment of the Shapley value of each node in relation to the total value of the whole solution.

Shapley Value Approzimation: The Shapley value proposed in [72] is a popular solution concept used in
cooperative game theory used to establish the contribution of each player to the total value of the game. A
cooperative coalitional game can be described as a double A = (N, v), where:

e N is the set of players;
e v:2Y — R is the characteristic function, mapping subsets of players to real numbers.

The Shapley value ¢; of a player i measures the average contribution of player ¢ to all possible players coalitions
and can be computed as:

o= > BHELSE D50 3y - u(s) )

SCN\{i}

where N is the set of players and | - | denotes the cardinality of the set.

While a typical Shapley value calculation would consider every possible coalition of nodes, it would be too
costly, based on performance issues. We use an approximation of the Shapley Value, in which a few distinct
orderings are selected of size k, for these nodes we calculate node contribution.

Monte Carlo Network Generation: Usually the tests are conducted on a single network using a standard
variation of the Independent Cascade as the propagation model. This can be improved by introducing a Monte
Carlo network generation. This works by starting from our initial , from which edges are removed, until a small
percent of edges remain significantly improving our calculation speed. We use the probability factor from the
Independent Cascade algorithm and introduce it at the point of network creation, creating multiple networks with
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the aforementioned method and removing the probabilistic nature of the Cascade, since its randomness is now
introduced in the network generation.

SIM-EO outline: The SIM-EO algorithm starts with the Monte Carlo Network Generation. We generate a
starting individual with size k representing our potential solution. For each iteration, until a desired number of
iteration have passed, we calculate the contribution values for every node and rank them based on the results. We
randomly replace a number m of the worst values with new ones (the number of replaced nodes start high and
settle at one per iteration). A high value of m (with respect to the number of components of the configuration)
emphasizes the exploration capabilities of the algorithm, a small value puts in the foreground the exploitation.

The value of m is adapted using the maximum number of iterations (T,4,) and the actual iteration number

T 2-T
win (romax (1,284 22 (12 11))) ®)

We evaluate our new result and compare the results with the globally best result. The final result will be the
best result at the final iteration of the algorithm.

1.4.2 Numerical experiments

Synthetic networks The used synthetic networks are presented in Section 1.1.2.

Real networks For the numerical experiments we have chosen networks with different properties: directed (cit-
DBLP, email-univ, Gnutella) and undirected (PGP, USAir97, hamsterster), different size (from 332 nodes up to
36682), and of different density (from sparse graphs to 0.0085 density) (Table 9).

Table 9: Real networks and basic properties.

Graph Vi B @ o
Hamsterster 2426 16631 13.71 0.006 3.588
Gnutella 36682 88328 4.815 0.00000 8.113

Email-univ 1133 5451 9 0.0085 3.852
Cit-DBLP 12600 49700 7.000 0.00062 5.427
PGP 10680 24316  4.55 0.00000 7.486
USAir97 332 2126 12 0.038 2.738

1.4.3 Parameter settings

For numerical experiments the following parameter setting were used: nG = 30, the number of iteration is set to
10000. We use for k six different values, 10,20, 30,40, 50, 60. For the IC model the p takes two values: 0.01 and
0.03.

1.4.4 Comparison with other methods

For comparisons different type of algorithms were used: as a greedy approach Cost Effective Lazy Forward (CELF)
2 [54] was used, as the main idea exploiting the sub-modularity nature of the cascade function. Two heuristics
that chooses nodes in the seed set in descending order of their degree were also used for comparisons: High degree
(HighDeg) and Single discount (SDisc) [20].

As two other centrality based methods betweenness (Betw) [31] and PageRank[17] were selected. The first k
nodes were selected based on these two measures. Betweenness centrality reflects the measure how a node lies on
shortest paths, while PageRank measures the importance of nodes based on the incoming edges.

To explore the stochastic methods, two methods from this class of algorithms are used for comparisons, Influence
detection via martingales (IMM)? [77], which has two main phases, a sampling phase and the node selection phase.
As second method an evolutionary algorithm, a genetic algorithm (GA) [44] was used.

1.4.5 Results and discussion

In summary, in the case of the synthetic networks, for both p = 1% and p = 3% SIM-EO performed the best
compared with the other seven methods. For p = 1% from 40 cases the SIM-EO turned out to be the best in all
40 cases, only in one case (BA1000, k=10) other three methods performed in the same way. Remaining by the
synthetic networks, for p = 3% the proposed SIM-EO performed the best in all 40 cases, based on the Wilcoxon
sign-rank test in 4 cases were no difference between SIM-EO and other methods.

2https://github.com/tsume82/Influence-Maximization, last accessed 7/3/2022
3https://sourceforge.net/projects/im-imm/, last accessed 10/03/2022
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Regarding the real world networks for p = 1% from 36 different cases (six real world networks, six different
values for k) in 36 SIM-EO performed the best, in 7 cases other methods achieved same performance, as well. In the
case of p = 3% for three networks (Gnutella, email-univ, USAir97) for all 6 cases our method had the best results,
totally for 18 cases, from which in 11 cases other methods performed in the same way. By the Hamsterster and pgp
networks IMM had the best performance. In the case of the cit-DBLP network the GA algorithm outperformed
significantly all methods. The explanation of this phenomenon can be the following: based on [50] the algorithm
works well on larger denser graph, which properties are fulfilled in the case of the cit-DBLP network.

1.5 Critical node problem - non-cooperative game theoretic approach

In this case the optimization problem is to maximise the number of connected components of G[V — S|, where S
represents the set of the deleted nodes.

A non-cooperative game theoretical approach Our method consists in a game theoretical approach.
We consider a game in normal form I' = (N, S, U), where:

e N ={1,...,n} is the set of players,
e s; is the strategy of player i, S = S1 X ... X S, is the set of strategy profiles of the game
e u; : S — R is the payoff of player i, and U = (uq,...,u,) are the players’ utility functions

In our case, the set of players are nodes, the strategy consists in being or not a critical node and the payoff
function is the number of connected components in which the graph will be fragmented without the certain node.

Generative relations characterize a certain equilibrium type by using the non-dominance concept. A binary
relation 7 is defined on S, 7 = (S, 5,G C S x S). If we have s7q (i.e. (s,q) € G) then we say that s dominates ¢
with respect to relation 7. If for s*, fig such that ¢rs*, we call s* non-dominated with respect to relation 7. The
set containing all s* € S that are non-dominated with respect to relation 7 is called the non-dominated set of S
with respect to 7.

Relation 7 is called generative for an equilibrium type of a game (e.g. Nash, strong Nash, etc.) if the set of
non-dominated strategy profiles with respect to relation 7 equals that set of equilibria of the game.

An easy way to construct a generative relation is to use a quality indicator ¢ : S x S — N such that: stq <
t(s,q) < t(q,s)

A generative relation for the Nash equilibrium was introduced in [58]:

Consider two strategy profiles s and g in S. Operator 7: S x S — N defined as

t(s,q) = card{i € Nl|u;(s) < ui(qi,5-i),q # s}

characterizes the NEs of the game.
The relation between the two strategy profiles s and g is:

e cither s dominates ¢ (¢(s,q) < t(q,s))
e cither ¢ dominates s (t(q, s) < t(s, q))
e s and ¢ are indifferent (¢(g,s) = (s, q))

The used algorithm for the Nash equilibrium detection is the Nash Extremal Optimization.

Experimental results Experimental results illustrate the behaviour of EO and NEO by using the following
set of networks: yeast?, BA500, BA1000, ER250. For the numerical experiments, we used the EO and NEO,
with random initialization and with a greedy initialization. Numerical results are presented in Table 10. Results
indicate the potential of the proposed methods.

2 Critical node detection in hypergraphs

2.1 Introduction

The critical node detection problem (CNDP) [55] is a central topic in graph theory due to its large applicability
in various fields, such as immunization [42], network vulnerability [46, 57], economics [6], social network analysis
[16], etc. The problem arises from the fact that a node’s importance varies in a graph and consists in finding sets

4http://archive.ics.uci.edu/ml/datasets/yeast, last accessed 10.10.2020
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Table 10: Numerical results of the CNDP with four algorithms: EO, NEO, greedy initialization of EO based on
degree distribution, greedy initialization of NEO

Graph k EO NEO Greedy+EO Greedy+NEO

yeast 202 843 838 847 846
BA500 50 313 311 313 312
BA1000 75 590 588 590 589
ER250 50 68 65 68 65

@ P

Figure 3: A simple example of hypergraph with six nodes and three hyperedges. If x5 is deleted, the hypergraph
will have three components.

of nodes that, when deleted from the graph, maximize a given network measure, which is usually related to the
connectivity of the network.

In a general approach, given a graph G = (V| E), the critical node detection problem consists in finding a set
S of k nodes which deleted maximally degrades the graph according to a given measure o(G). Examples of such
measures include the minimization of pairwise connectivity, minimizing the size of the largest component, bound
the pairwise connectivity by a threshold, maximize the number of connected components, etc [52].

While there are many studies that deal with the CNDP for weighted or unweighted, directed or undirected
graphs, less attention has been given to the formulation and adaptation of the problem for hypergraphs. A
hypergraph generalizes the concept of graph by considering edges that connect more than two nodes. In this
setting there are many possible measures that can be considered in the formulation of the CNDP.

In this report we extend the CNDP for hypergraphs by considering the problem of removing k nodes in order
to maximize the number of remaining components. Our goal is to use a genetic algorithm adapted to solve this
problem. A macroeconomic inflation hypergraph is constructed and analysed in order to illustrate the applicability
of the approach.

2.2 Critical node detection in hypergraphs

A hypergraph [12] is a generalization of a graph, where edges can join not only two, but any number of nodes.
In recent years several application possibilities appeared, where hypergraphs can be used with success, like image
classification [86], artificial intelligence [29], biology [30].

Formally, a hypergraph is a H = (X,D) double, where X = {x1,x2,...,x,} is the set of nodes, D =
{D1,Ds,....,Dp,} is a set of the subsets of X, denoting the set of hyperedges. A simple example is depicted
in Figure 3. The hypergraph has six nodes, X = {x1, %9, 3,24, 25,26}, D = {D1, D2, D3}, D1 = {x1,22, 23},
Dg = {.1’2,.2?3}, D3 = {I3,CIL‘4,.Z‘5,.’176}

In the case of the hypergraphs two variants of node deletion exists: strong and weak deletion. Strong deletion
means that not only the node x is removed, but also all edges containing that node. In the case of the weak
deletion only the node x is removed. A simple example is illustrated in Figure 4.

The critical node detection problem for the hypergraphs can be formulated as follows: given a H = (X, D),
the problem consists in removing weakly k& nodes such that the number of remaining components to be maximal.
Formally, if S denotes the set of deleted nodes, and C(H[X \ S]) denotes the set of components of graph H without
the set of nodes S, the problem consists in:

max [C(H[X\ S]),
such that |S] < k,

where |A| denotes the cardinality of set A.
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[ X5

Figure 4: Strong detection of xo (left) and weak deletion of x5 (right) from the hypergraph presented in Fig. 3

Table 11: Hyp-GA Genetic operators

Mutation: flip-bit mutation
Crossover: two point crossover
Selection:  tournament selection (tournament size 3)

Example Considering the hypergraph presented in Figure 3, if £ = 1 x3 need to be deleted to maximize the
number of remaining components.

2.3 Hyp-GA

Evolutionary algorithms are powerful optimization tools to solve computationally hard problems. In the next we
will use a simple genetic algorithm to solve the critical node detection problem. For the hypergraph we use a clique
representation, which means that a hyperedge is transformed to ’traditional’ edge (e.g. if a hyperedge has 4 nodes,
there will be an edge between each node). Table 11 presents the elements of the genetic algorithm, while specific
settings are described in what follows.

Encoding An individual z is encoded as a bit string of size equal to the size of the network. Each node is
represented in x either as 0 or 1, the value 1 indicates that the corresponding node is included in the set of critical
nodes encoded by z. We denote this set by S,.

Fitness function To evaluate the fitness of an individual we remove all nodes in the critical set it encodes, i.e.
nodes with value 1 and count the number of connected components in the remaining graph. We have:

fx) = [H(GIV \ Sa))l. (7)

Constraint handling To maintain the size of S, less that the threshold k we remove excess nodes by using the
marginal contribution of a node to the fitness of the individual. The marginal contribution of a node i from the
critical set S, of x, denoted by w;(z) is:

ui(z) = f(z) = [H(GIV\{S \ {i}}])],

where f(z) is the fitness defined in eq. (7). u;(x) measures the difference between the fitness of « and the fitness
of x when removing node i from S,. Nodes with lowest marginal contributions are removed from S;, such that
only k nodes remain in the set before each individual evaluation.

2.4 Numerical experiments
For numerical experiments we tested the proposed method on synthetic data and on a new macroeconomic dataset.
Benchmarks In order to construct hypergraphs with known properties we started from benchmarks constructed

for the overlapping community detection problem. LFR benchamrks® are baseline test graphs for community de-
tection algorithms. The communities in the graphs show similarity to a hyperedge in a hypergraph, as communities

Shttps://www.santofortunato.net /resources, last accessed 1/9/2021
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Algorithm 4 Hyp-GA outline

Initialize population P of size ps;.. at random.

for i=1 to MaxGen do

P = Select pgis. individuals for variation;
Offsping= variation operators on P(’L);
Correct and Evaluate Offspring;

PO = offspring;
end for

Table 12: Critical countries found by the proposed approach.

2010-2012 2013-2015 2015-2017 2017-2019
Afghanistan Bahamas | Antigua and Barbuda Burundi
Bangladesh Guinea Aruba Ethiopia
Bhutan India Brazil Haiti
Ghana Jamaica Dominica Iran
India Japan France Jamaica

Iran Jordan Greece Lebanon
Jamaica Latvia Iraq Luxembourg
Moldova Luxembourg Israel Morocco
Morocco | St. Kitts and Nevis Japan Sri Lanka
Spain St. Lucia Luxembourg | United Kingdom

can contain several nodes that are more connected. We generate test graphs of 150 nodes with different charac-
teristics: the proportion of edges that a node has with nodes from the same community {0.1,...,0.6} - low values
indicate dense communities (nodes are more connected with nodes from the same community), the higher the
number the node has more edges in other communities than in the one he belongs; the number of overlapping com-
munities a node belongs to, 2 for our experiments; how many nodes belong in multiple communities, {13, 50,70}
nodes from the 150 nodes of the graph. The generated communities are the input hypergraphs of our algorithm.

Parameters For our experiments we use the following parameters for the genetic algorithm are: population size
{25, 40,100}, maximum number of generations 500, crossover {0, 0.5, 0.8} and mutation probability 0.5, probability
to mutate a bit {0,0.01,0.02,0.03}, and tournament size of 3. The values tested for k are 5 and 10.

Results We find that they are consistently converging to the same number of components across different pa-
rameter values, except when using a mutation rate of 0, indicating the known importance of this operator. When
more nodes overlap, we find less components for this value of k, as there are more links across communities in the
benchmarks. However, results show that the approach is robust, converging in various settings and may be further
extended to practical applications.

2.5 Inflation hypergraph

As a new application we constructed a hypergraph from the world inflation rate (consumer prices). Data about 123
countries is publicly available® and contains information about inflation rate from 1960 until 2019. We analyse only
the last ten years, 2010 — 2019, and we eliminate the countries with missing information, after this preprocessing
98 countries remain. The hypergraph is built in the following way: the countries are the nodes of the hypergrah,
a hyperedge exists between nodes if they have inflation values in the same year within an interval (one hyperedge
contains nodes/countries that have negative inflation for the studied year, the other hyperedges contain the nodes
with inflation in the intervals 0-5, 5-10, 10-15 and greater then 15. Because we do not want to obtain one
component we divided the 10 years in four intervals (2010-2012,2013-2015,2015-2017,2017-2019) thus obtaining
four hypergraphs. The main advantage of this construction is that in this hypergraph the whole dynamics of the
inflation of countries appear, because in a single hypergraph several values for each year can be presented. Using
the proposed approach we search for the ten most critical nodes in each hypergraph, we present the result in table
12.

A hyperedge in the graph means that countries have similar inflation rate in a certain year. Critical nodes can
appear if in a country or in several countries from the same hyperedge the inflation rate changes, thereby it can
give a glimpse in a collective set of unstable countries, the countries are investigated as a community.

A new problem, the critical node detection problem for hypergraphs is proposed and a genetic algorithm to
solve it. New benchmarks are constructed and as an application a macroeconomic dataset is transformed to a

Shttps://dice.ifo.de/en/node/358439, last accessed 20/09/2021
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hypergraph, and critical nodes are obtained, which can reveal new information about the dataset.
Experiments demonstrate the potential of the proposed method. As further work other variants of hypergraph
critical node detection problem will be studied.

2.6 Weighted node centrality based critical node detection

The Weighted Node Degree Centrality was proposed is an extension of traditional centrality measures to hyper-
graphs.

The simple degree centrality for nodes in a hypergraph can be defined as the number of nodes adjacent to the
primary node. This definition disregards the strength of the ties between nodes, so a weighted degree centrality is
proposed to mitigate this problem. The final formal definition of the weighted node degree centrality incorporates
weights to hyperedges and can be described in the following way:

N L
C(}}(i):z wg, if{vi,v;} C ey
j=1k=1

where, N is the number of nodes, L is the number of hyperedges, e is a specific hyperedge, wy is the weight of
the specific hyperedge and v; is a specific node. Multiple hyperedge weight can be described, all of them make use
of the frequency of the hyperedge’s appearance or it’s multiplicity (m;) and the cardinality of the hyperedge (c;).
The following weights are used in the next:

e Constant: w; =1
e Frequency based: w; = m;

e Newman’s definition of ties strength in collaboration networks: w; = m
J

Network theory: w; =1 — (1 — —L-)™

Cj*l

2.6.1 Results

Two real-world networks are tested, a house-committees and a senate-committees hypergraph were studied. Results
are obtained with a simple genetic algorithm. In Tables 13 and 14 a * represents the best run in each category;
the best run is chosen instead of an average in order to get a concrete set of nodes that can be tested with the
other weight types.

Table 13: Result comparisosns for the house committees network

Original weight type Constant Frequency Newman Network

Constant *292.91 293.24 8.32 8.31
Frequency based 290.28 *290.56 8.31 8.30
Newman approach 301.10 301.26 *8.27 8.25
Network approach 299.16 299.39 8.25 *8.24

Table 14: Result comparisosns for the senate committees network

Original weight type Contant Frequency Newman Network

Constant *246.14 252.94 18.43 18.18
Frequency based 245.20 *251.54 18.27 18.07
Newman approach 247.77 254.00 *18.15 17.97
Network approach 256.85 262.23 18.07 *17.94

3 Critical node detection in multilayer networks

3.1 Related work

In this section, we give the formal definitions of networks and multilayer networks, and the critical node detection
problem is presented in more detail.

Definition A graph is a tuple G = (V, E), where V is the set of nodes and F is the set of edges ECV x V.
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Based on the survey [52] critical node detection problem is classified into two main groups: k-vertex-CNDP,
where for a given k£ € N*| and for a given ¢ connectivity metric the main purpose is to delete a set of k£ nodes such
as the function f(o) to be optimized (minimized or maximized). The other main class is the 8-connectivity-CNDP,
where for a given connectivity metric o and for a given integer 8 the goal is to bound the function f(o) to 3,
such as the number of deleted nodes to be minimized. In the next section we will discuss in more detail the
k-vertex-CNDP, while an extension of this problem is the subject of this article and we give a formal definition:

Definition For a given graph G = (V, E) the k-vertex-CNDP problem consists in finding k& nodes, such that f(o)
to be minimized (or maximized), where o is a centrality measure, and S is the set of deleted nodes:

min f(o)

The most studied version of this problem is the Critical Node Problem (CNP), where the aim is to minimize
the pairwise connectivity, and it was proven to be NP-complete on general graphs [5].

Different solutions were proposed, in [82] a mixed integer programming formulation is described for several
variants of the CNDP. As stochastic approaches, we mention a Greedy Randomized Adaptive Search Procedure
[68], a Memetic Algorithm [88], and an evolutionary framework [4].

Several variants of this problem were studied, [81] proposes the bi-objective critical node detection problem,
for which a memetic approach was proposed in [11]. Another bi-objective variant, described in [56], studies the
problem of minimizing the pairwise connectivity and the cost of removing the nodes.

[83] introduces the distance-based critical node detection problem, an Integer Linear Programming method is
proposed to solve it in [3], and in [43] a decomposition technique is proposed. In [36] an imperfect information
variant of this problem is proposed and studied.

Another variant, introduced in [74, 73], and described in more detail in [4] (denoted by kMaxC) studies the
removal of k£ nodes so that the number of remaining components is maximal. In [4] a genetic algorithm is described
to solve the problem and two greedy algorithms are presented. In [33] an extremal optimization approach is
proposed to solve this problem. [35] extends the problem to hypergraphs, and it solves it with a simple genetic
algorithm. Another connectivity measure is the minimization of the largest connected component size (denoted by
kMinMaxC). This problem was also proved to be NP-complete on general graphs [74]. In [65] a greedy framework
is proposed to solve this problem. [73] proposed a polynomial time algorithm to solve the problem on trees and
series-parallel graphs. In [78] an Isolated Centrality measure is introduced, and the kMaxC problem is studied.
In [28] this problem is unified with the kMaxC problem and with minimization of the attack cost, obtaining a
three-objective problem, a heuristic approach is proposed and tested on an infrastructure network.

The measure o can also be a centrality measure. In [2] high centrality nodes from networks were removed. In
[64] basic centrality measures were modified to use them for power grid networks. Most articles use the centrality
measures to obtain topological network information and to incorporate them into the kMaxC or KMinMaxC
problem, for example, [46], [65].

For multilayer networks, we first give a formal definition.

Definition A multilayer network can be defined as a quadruplet MG = (Vyy, Epr, V, L) [49], where V is the set
of nodes, L = {La}g:1 is the set of layers defined by d aspects, Vjy C V' x Ly X --- X Lg is the set of node-layer
combinations, Ey; C Viy x V.

Remark If d =0, M reduces to a single layer network, if d = 1, M reduces to a multiplex network.
Remark A graph G = (V, E) can be considered as a single layer network.

The given definition is the most general formulation of the multilayer network, multiplex networks [75] is a
special case of multilayer networks. Other types of multilayer networks are for example: interconnected networks
[25], multi-relational networks [18], and multivariate networks [67].

The literature is not rich in critical node detection in the case of multilayer networks, most of which consider
only centrality measures extended to deal with multilayer networks as well. [8] presents a method to identify
essential proteins in a protein-protein multiplex network based on multiplex eigenvector centrality.

In [71] the authors present an Integer Linear Programming approach to detect the k& most vulnerable node in
an interdependent network. As a case study, they studied Maricopa Country, where the first layer is the power
network, and the second layer is the communication network. In [22] a mathematical framework is described to
calculate different centrality measures and ranks nodes based on these measures. In this study, interconnected
multilayer networks were analyzed.

[84] proposes a tensor decomposition-based technique to identify key nodes in a multilayer network, a yeast
landscape, an inflammatory and a lung cancer multilayer network is analyzed. In [10] a new measure is proposed
to detect the most influential nodes, and some real-world multiplex networks and semi-synthetic datasets are used
for numerical experiments.
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3.2 Problem formulation

The problem to find critical nodes in a multilayer network can be traced back to the ’traditional’ problem if the
multilayer network is transformed into a simple graph. Naturally in this way, some information will be lost from
the network. In the CNDP for a multilayer network, we need to emphasize the importance of layers, therefore one
objective is to minimize the number of connections between layers, and the other is to optimize another objective
(e.g. maximize the number of components).

Definition Formally, the bi-objective formulation can be described in the following way, for a given multilayer
network MG and a given k and a connectivity metric o: f; : minimize the number of connections between layers
in graph MG; f3 : optimizing (minimizing/maximizing) the function f(o);

For the o connectivity metric we will study two connectivity metrics:

e the number of components - maximizing the number of connected components: deleting k£ nodes such as the
number of connected components in the multilayer graph M G|V, \ S] to be maximized, where S is the set
of the deleted k nodes, and H(MG[Vys \ S]) denotes the set of components of the graph MG without the set
of nodes S, the kMaxzC problem consists in:

max [H(MGVa \ S]),

such that |S| < k, where |A| denotes the cardinality of set A.

e the size of the largest component - minimizing the size of the largest component: deleting k nodes such as
the largest component size h in the multilayer graph M G[V)s \ S] to be minimized, where S is the set of the
deleted k£ nodes:

min {max{|h|,h € H(MG[Va \ S])|}}
SCVum

The first variant (where the number of connected components needs to be maximized) will be denoted by P1
in the rest of the paper, while the second variant, where the size of the largest component needs to be minimized
is denoted by P2.

Because the problem is a bi-objective optimization problem a straightforward solution is to obtain the Pareto
front.

Generally, in a problem with M objectives and p decision variables the Pareto dominance and the solution of
a multi-objective optimization problem can be described as follows.

Definition A solution x € R' Pareto dominates (when the problem is to minimize) y € R' if and only if

filz) < fi(y),

forie{l,...M},and 3j € {1,...M}:
fi(z) < f;(y)

Definition A solution z € R' is said to be Pareto optimal, if and only if there is no other solution that Pareto
dominates it.

Example Let us consider a simple example from Figure 5. If k = 1 a solution would be to obtain node 1 (on
the first layer). In this case, the number of connected components is 4, and 3 edges between different layers are
deleted. Deleting node 4 (on the first layer) the number of connected components would be 4, but no edge between
layers would be deleted.

3.3 Numerical experiments

Benchmarks For the numerical experiments, two kinds of datasets are used. Firstly, we have generated multi-
layer networks, where the critical nodes are known, test the algorithm. Secondly, real-world networks were studied
to obtain the critical nodes.

Synthetic benchmarks To test the algorithms scale-free networks [9] were adopted to multilayer networks.
Such networks contain hubs, nodes with several connections, which can be considered critical nodes (based on
certain measures). Based on the Barabasi-Albert graph generator” using the preferential attachment algorithm we
can generate multilayer scale-free networks (the source code is made publicly available on a gitlab repository®). To

"https://networkx.org/documentation/stable/\_modules/networkx/generators/random\_graphs.html\#barabasi\_albert\
_graph, last accessed 09/08/2022
8https://gitlab.com/kisnandor2/multilayercndp/-/blob/main/MultilayerScaleFreeNetworkGenerator.ipynb
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Figure 5: Two multilayer (3 layer) networks. The right one shows how the network would look like if we removed
the critical node (Layer 1, node 1) from the left network

Figure 6: Two small real-world multilayer networks

be sure that we know in advance the critical nodes, we modified the base algorithm in a way that some nodes are
preferred over others when doing the preferential selection. The network generator algorithm takes the following
parameters as input: number of layers, minimum number of nodes on each layer, maximum number of nodes on
each layer, number of critical nodes in total, maximum number of critical nodes on each layer, and a switch that
decides if the critical nodes should be spread as much as possible between the layers or if they should appear
condensed as much as possible on a single layer.

Real-world benchmarks For numerical experiments, two small networks from biology (see Figure 6) and two
larger networks which represent movie scripts under the form of temporal multilayer networks extracted from
aligning scripts and subtitles [63]were used. Table 15 presents basic properties of the networks. For the two larger
networks, Table 16 presents detailed information about the number of nodes and edges on each layer.

Table 15: Basic properties and source of real-world multilayer networks

Name Nodes | Edges | Layers Ref
Metabolite 9 10 3 [41]
Disease 18 29 2 [41],[40]
Avengers 339 4110 3 63
Star Wars 220 1954 3 63
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Table 16: Number of nodes and edges for The Avengers 2012 and the Star Wars IV real-world multilayer networks

Description Avengers | Star Wars
Character layer nodes 39 65
Keyword layer nodes 232 118
Location layer nodes 68 37
Character Character edges | 728 1000
Keyword Keyword edges 1000 126
Location Location edges 192 70
Character Location edges 272 189
Character Keyword edges 1000 211
Keyword Location edges 918 358

Table 17: Top 1% of the obtained nodes (name of the node and the occurrence proportion) over the total 160 runs
(10 runs for each parameter configuration) for the Star Wars network

StarWars
P1 P2
Node name Prop. | Node name Prop.
Blocationkade Runner | 0.71 Blocationkade Runner | 0.74
Cockpit 0.56 Luke 0.54
Luke 0.41 Cockpit 0.42

3.3.1 Method

To solve the proposed bi-objective problem a popular and effective Pareto-based multi-objective optimization
algorithm is used, the NSGA-II [24]. NSGA-II uses a crowding distance-based diversity-preserving mechanism
and an elitist selection approach. Based on different studies comparing several multi-objective algorithms [45] the
NSGA-II was chosen due to its good performance results, but every Pareto-based multi-objective approach can be
used.

3.3.2 Performance evaluation

For performance evaluation two measures are used, the first one is the hypervolume indicator (HI) [89], [90], which
measures the volume of the region of the dominated points in the objective space and a reference point.

The second measure is the overall Pareto spread (OS) [61] which measures how widely the observed Pareto
solution set spreads over the objective space when the design objective functions are considered.

3.3.3 Results and discussion

In the case of the two small real-world multilayer networks, we searched for one single critical node, since the net-
works are very small. In the case of these networks the overall spread of the results, in any parameter combination,
was 0, meaning that all the results converged into a single point. The hypervolume value was also the same for any
combination. In the case of the first network from Figure 6 our algorithm always resulted in finding node 1 from
Layer 1 as the critical node. In the case of the second network from Figure 6 for P; the obtained critical node is
either node 4 or node 9 from Layer 2, while in the case of P the algorithm always obtained node 5 from Layer 1. In
the analysis of the movie datasets two test cases were proposed: searching for k = 1% of critical nodes out of total

Table 18: Top 1% of the obtained nodes (name of the node and the occurrence proportion) over the total 160 runs
(10 runs for each parameter configuration) for Avengers network

Avengers
P1 P2
Node name Prop. | Node name Prop.
Tony 0.76 Tony 0.73
Nick Fury 0.63 Nick Fury 0.60
Banner’s Lab 0.61 Banner’s Lab 0.58
Captain America | 0.5 Captain America | 0.44
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Table 19: Overall Pareto spread (OS) and hypervolume index (HI) for the two bi-objective problems (P, and P),
and for different k values (k = 1% and k = 5%) for the Star Wars network

P1 P2
kE=1% k=5% k=1% k=5%
# | OS HI 0OS HI oS HI oS HI
1 0.0284 | 1796 | 0.0298 | 4123 | 0.0024 | 2097 | 0.0028 | 4574
2 0.0236 | 1781 | 0.0245 | 4134 | 0.0026 | 2101 | 0.0046 | 4530
3 0.0142 | 1792 | 0.0146 | 4231 | 0.0026 | 2097 | 0.0026 | 4615
4 0.0177 | 1764 | 0.0187 | 4225 | 0.0017 | 2097 | 0.0024 | 4727
5 0.0165 | 1305 | 0.1058 | 2440 | 0.0049 | 1609 | 0.0088 | 2376
6 0.0426 | 1563 | 0.0459 | 1900 | 0.0021 | 1315 | 0.0104 | 2879
7 0.0217 | 1528 | 0.0193 | 4016 | 0.0021 | 2013 | 0.0022 | 3457
8 0.0210 | 1660 | 0.0331 | 3642 | 0.0034 | 2073 | 0.0079 | 4307
9 0.0177 | 1764 | 0.0146 | 4222 | 0.0014 | 2101 | 0.0044 | 4484
10 | 0.0479 | 1764 | 0.0164 | 4225 | 0.0014 | 2097 | 0.0038 | 4591
11 | 0.0213 | 1764 | 0.0142 | 4177 | 0.0011 | 2097 | 0.0024 | 4660
12 | 0.0142 | 1764 | 0.0104 | 4228 | 0.0011 | 2101 | 0.0024 | 4660
13 | 0.0433 | 1470 | 0.0621 | 3824 | 0.0020 | 1883 | 0.0163 | 2964
14 | 0.0296 | 1351 | 0.0503 | 2990 | 0.0023 | 1669 | 0.0173 | 4215
15 | 0.0420 | 1764 | 0.0128 | 4100 | 0.0022 | 1818 | 0.0042 | 4485
16 | 0.0296 | 1792 | 0.0245 | 4200 | 0.0024 | 2060 | 0.0034 | 4532
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Figure 7: Pareto front example for Avengers network, k = 1% (left), Star Wars network, k& = 5% (right) for the
P, problem

nodes and for k& = 5%. This means that in the Star Wars IV dataset 3 and 12 nodes were searched for as critical
nodes, while for the Avengers dataset 4 and 17 critical nodes. Table 19 presents the results for the 16 parameter
configuration for the two bi-objective problems (P; and P,), and for different k values (k = 1% and k = 5%) for
the Avengers and the Star Wars networks respectively. The overall Pareto spread and the hypervolume indicators
were reported over 10 independent runs. For the hypervolume indicator, the reference point was set to the outlier
coordinates of the Pareto front. As expected in the parameter setting section of the synthetic networks, the results
slightly differ for each configuration. Figure 7 presents the obtained Pareto fronts in a single run for the Avengers
and Star Wars network, where the population size is 20 and the generation number is set to 100. Table 17 presents
the obtained 1% of nodes in a total of 160 experiments based on the Pareto fronts for both P1 and P2 problems.
In [63] the top 5 nodes, sorted by relevance, are shown for different centrality metrics. Compared to their results
it is worth mentioning that characters like 'Luke’ from Star Wars and 'Nick Fury’, ’Captain America’ and *Tony’
from the Avengers are top nodes in our results. We also have to mention that in both datasets the chance of
selecting a node from the Keyword layer as critical is also very low.
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