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I Implementation

The main contributions of the project are presented in what follows.

I.1 Critical node detection problem

I.1.1 Introduction

The study complex of networks gained a huge interest since the introduction of random scale free networks
[4]. Since then, several computational problems have arisen in the attempt to understand better the
complex networks, such as the community detection [15], influence maximization [10], link prediction
[24], etc. A major class of problems concerning complex networks is the node deletion problem [23]
and an important subclass of it is the critical node detection. Nodes in the network may have different
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Algorithm 1 Standard EO

Initialize s at random;
sbest := s; //sbest preserves the best solution found so far
while a termination condition is not met do
find imin component in s with the smallest fitness value
randomly reassign simin

in s;
if f(s) > f(sbest) then
sbest := s

end if
end while

importance according to different network measures. The identification of nodes with highest importance
is a challenging computational task depending on the type of network and measure considered.

In general, the critical node detection problem (CDNP) consists in finding a set of k nodes in a
given graph G = (V,E), which deleted maximally degrades the graph according to a given measure σ.
The CDNP gained popularity because of its large applicability, for example in network immunization
[19], network risk management [3], social network analysis [9], etc. There are several studies that focus
on the measure σ using different network centrality measures, such as betweenness centrality, closeness
centrality, page rank [20, 25].

I.1.2 Related work

In the general formulation of the critical node detection problem we seek to find nodes which are more
important than others with respect to a predefined measure. Several graph properties were studied as
measures, e.g. the pairwise connectivity which needs to be minimized by deleting k nodes (which is one
of the most popular), or minimizing the largest component size by deleting k nodes. In [2] three versions
of the CNDP are studied: minimizing the largest components size, minimizing the pairwise connectivity
and maximizing the number of connected components.

In this paper we focus on the problem introduced in [32, 31], which is also described in [2]. The
problem consists in removing k nodes such that the number of remaining components to be maximal
(we denote this problem kMaxComp). Formally, if S denotes the set of deleted nodes, and H(G[V \ S])
denotes the set of components of graph G without the set of nodes S, the kMaxComp problem consists
in:

max
S⊂V

|H(G[V \ S])|,

such that |S| ≤ k,

where |A| denotes the cardinality of set A.
As the CDNP was proved to be NP-hard for several connectivity measures [32] different solving

methods has to be proposed. However, kMaxComp did not get very much attention. In [32] a Mixed
Integer linear programming approach is proposed, and we find a a general integer programming framework
in [34]. For a special class of graphs (trees and series-parallel graphs) a dynamic programming approach
is designed [31]. In [2] a genetic algorithm is described to solve the problem and two greedy algorithms
are presented.

I.1.3 Noisy Extremal Optimization

Extremal optimization (EO) [7, 8] is a simple and powerful combinatorial optimization algorithm which
was successfully adapted for different practical problems, e.g. graph partitioning [6], load balancing
problem [12]. A variant of EO called NoisyEO [26] was used successfully for the community detection
problem.

In the standard variant of the EO two individuals are used during the search: s and sbest; sbest
preserves the best solution found so far by s based on an overall fitness f(). EO individuals are represented
as composed of several components that can be evaluated separately. The standard EO maximizes each
component of a potential solution by randomly replacing the one with the worst fitness. The outline of
the standard EO is presented in Algorithm 1.
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Algorithm 2 CN-EO algorithm

Parameters:

� Probability of shift - pshift;

� Number of generations between switching networks - G;

� Total number of generations - NrGen;

Randomly initialize (s, sbest);
repeat
if sbest does not change in G generations and there is no noise then
Induce noise with probability pshift;

∗ ;
Reinitialize sbest with the current s value

end if
if There has been noise for G generations then

Return to the original network
end if
Perform search using the current network (CN-EO(s, sbest) iteration);

until Maximum number of generations;
Return sbest with highest fitness achieved on a non-noisy network.

∗ Modify network by randomly deleting edges with probability pshift

Algorithm 3 CN-EO(s, sbest) iteration

For current configuration s evaluate fi(s), i ∈ {1, . . . , k}.
Find the node with the worst fitness and replace it randmly with another one;
if (f(s) > f(sbest)) then
set sbest := s.

end if

In [26] NoisyEO is presented as a variant of EO that proposes the use of a network shifting mechanism
to induce diversity in the search. We employ the same mechanism to escape local optima for the CDNP
problem. The network shift consists in randomly deleting edges in the network with a probability pshift
whenever the search stagnates. The search takes place for a number of generations G on the shifted
network, moving the solution away from a local optimum. We call this approach Critical Nodes - EO
(CN-EO). The outline of CN-EO is presented in Alg. 2. A step of the CN-EO is outlined in Alg. 3.

Encoding Individual s is represented as a vector of integers of size k representing the critical nodes.
Values are from the range 1 and the number of nodes in the graph.

Fitness function Within CN-EO there are two fitness functions used: one to evaluate individual s
and a different one for evaluating each component of s. The overall fitness value of s = (s1, . . . , sk) is
computed as the number of components of the graph, after removing the k nodes:

f(s) = |H(G[V \ {s1, . . . , sk}])| (1)

The fitness value of a node i in s is computed as its marginal contribution to f(s):

fi(s) = f(s)− f(s \ i), (2)

where s \ i denotes the set of nodes in s without node i.

Network shift The network shift is used to induce diversity in the search by modifying the search
space instead of the EO individuals. After a number of generations G the EO search stagnates (there in
no change in sbest) the network is modified by removing edges with a probability pshift. To preserve some
information, the search of s continues, but sbest is randomly reinitialized in order to be easily replaced
by the new values discovered by s. The search on the modified network takes place for G generations,
after which it is resumed on the original network.
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I.1.4 Numerical experiments

Parameter settings CN-EO has only three specific parameters: MaxGen is set to 5000, G is set to
10 and pshift to 0.01. The effect of varying these parameters is expected to be similar to that found in
[26] and is not a subject of this study.

Benchmarks A set of synthetic benchmarks [1] for the CNDP problem were proposed in [33]. The
benchmark set contains three different type of graphs: Barabási-Albert (BA), Erdős-Rényi (ER) and
Forest-fire (FF) graphs. BA graphs are scale free networks, ER graphs are random networks, FF graphs
simulate how fire spreads through a forest.

Table 1 describes basic network measures of the used benchmarks: number of nodes (|V |), number
of edges (|E|), average degree (⟨d⟩), density of the graph (ρ), and average path length (lG). Table 2

Table 1: Synthetic benchmark test graphs and basic properties.

Graph |V | |E| ⟨d⟩ ρ lG
BA500 500 499 1.996 0.004 5.663
BA1000 1000 999 1.998 0.002 6.045
BA2500 2500 2499 1.999 0.001 6.901
BA5000 5000 4999 2.000 0.000 8.380
ER235 235 350 2.979 0.013 5.338
ER466 466 700 3.004 0.006 5.973
ER941 941 1400 2.976 0.003 6.558
ER2344 2344 3500 2.986 0.001 7.516
FF250 250 514 4.112 0.017 4.816
FF500 500 828 3.312 0.007 6.026
FF1000 1000 1817 3.634 0.004 6.173
FF2000 2000 3413 3.413 0.002 7.587

describes the set of real networks used for numerical experiments, with the same measures as in the case
of the synthetic networks. Real networks are from different research areas, e.g biological networks (Ecoli,
HumanDis).

Table 2: Real graphs and basic properties.

Graph |V | |E| ⟨d⟩ ρ lG Ref.
Bovine 121 190 3.140 0.026 2.861 [29]
Circuit 252 399 3.167 0.012 5.806 [27]
EColi 328 456 2.780 0.008 4.834 [35]
USAir97 332 2126 12.807 0.038 2.738 [30]
HumanDis 516 1188 4.605 0.008 6.509 [18]
EUFlights 1191 31610 53.081 0.044 2.622 [28]

Comparison with other methods For comparisons we use three algorithms described in [2]: a
greedy algorithm (G1) based on node deletion from the candidate critical node set, another greedy
algorithm (G2), based on the node addition to the candidate critical node set and a genetic algorithm
from an evolutionary algorithm framework using greedy rules (GA). The proposed genetic algorithm
uses problem specific variation operators and it is combined with a local search mechanism.

Table 3 presents obtained results for synthetic and real world datasets. Mean value, standard de-
viation minimum and maximum value are reported over ten independent runs. We also indicate the
best known results obtained in [2] and the corresponding method. It can be observed that CN-EO finds
the maximum number of connected components when compared to the best known results from the
literature. On average CN-EO is better than the best known results for seven datasets.

In Fig. 1 the evolution of the number of connected components in 5000 generations is presented for
the BA500 network to illustrate the difference in evolution when using the network shifting mechanism.

Figure 2 depicts the smallest test network, the bovine network, which represents protein interactions,
and the obtained critical nodes by CN-EO. It can be seen that CN-EO identifies the nodes that, if
removed, generated the maximum number of connected components in the network. We find that in this
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case they are also the nodes with the highest degree, but this is not always the case for all networks.
We notice that the problem has multiple solutions that lead to the same maximal number of connected
components for k = 3.

Table 3: CN-EO results. Best known results indicate the best value reported by other methods as well
as the method reporting it.

CN-EO Best known result
Graph k Mean Std.dev. Min Max (from literature)
BA500 50 314,8 1,75 313 318 313 (GA, G1, G2)
BA1000 75 594,5 5,46 585 604 590 (GA, G1, G2)
BA2500 100 1091,3 37,74 1023 1146 1129 (GA, G1, G2)
ER235 50 66,7 1,83 65 71 68 (GA)
ER466 80 108,9 3,45 102 114 110 (GA)
ER941 140 194,4 7,73 184 207 206 (GA)
FF250 50 93 1,15 92 95 92 (GA, G1, G2)
FF500 110 201,3 36,02 99 217 215 (GA)
FF1000 150 322,8 13,50 298 344 340 (GA)
Bovine 3 77,6 0,70 77 79 77 (GA, G1, G2)
Circuit 25 31,4 2,95 28 36 31 (GA)
EUFlights 119 60,5 76,02 11 206 211 (GA, G2)
Ecoli 15 171,8 2,10 169 175 169 (GA, G1)
USair97 33 40,6 44,84 3 106 104 (GA, G2)
HumanDis 53 152,7 3,89 148 158 148 (GA, G2)

A stock market network application There is a grown interest in constructing and and analyzing
economic networks. Nodes can represent banks, directors, investigators, depending on the studied prob-
lem [13]. One of the first applications is the stock market analysis from a network perspective [11]. In
[17] the Chinese stock market is analysed as a directed network with an influential model. We analyse
the financial stock market network described in [22] from the critical nodes perspective. The network
is obtained from the analysis of temporal correlations among the time-series of 62 stocks in the New
York Exchange Market from the period 2012-2014. We use an unweighted version of the graph where we
deleted all edges with weight smaller than 1.2 (edges mean the distance calculated based on the Pearson
coefficient). The obtained a network with 62 nodes and 618 edges.

We obtained by NoisyEO the first 3, 4, 5, 6, 7 and 8 most critical nodes. The results are analysed also
from a network measure perspective: degree of the nodes, betweenness and closeness centralities were
obtained. We indicate the rank of the nodes ordered decreasing. The novelty of searching for critical
nodes in a stock market example consists in finding important nodes, other ones as based on the above
mentioned traditional measures. As seen in Table 4 based on the critical nodes we can set up another
order of importance of the certain stock.

Table 4: Critical nodes and network centrality measures in the New York Exchange Market

Node
no.

Stock
Name

Critical
node (k)

Degree
(rank)

Closeness
Centrality (rank)

Betweenness
centrality (rank)

52 S k=3 61 (1) 1 (1) 301.62 (1)
51 SO k=3 48 (3-4) 0.82 (3-4) 164.151 (2)
25 ETR k=3 48 (3-4) 0.82 (3-4) 140.60 (3)
6 AVP k=4 51 (2) 0.85 (2) 127.76 (4)
54 UIS k=5 44 (5-6) 0.78 (5-6) 68.25 (6)
59 WMT k=6 44 (5-6) 0.78 (5-6) 82.50 (5)
5 ARC k=7 41 (7) 0.75 (7) 52.61 (7)
1 AEP k=8 38 (9) 0.72 (9) 52 (8)
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Figure 1: Comparison of evolution the number of connected components obtained by CN-EO and a
standard EO for the BA1000 graph in a single run

Figure 2: Bovine network (obtained critical nodes are marked with red, k = 3)

I.2 Critical node detection in hypergraphs

I.2.1 Introduction

The critical node detection problem (CNDP) [23] is a central topic in graph theory due to its large
applicability in various fields, such as immunization [19], network vulnerability [20, 25], economics [3],
social network analysis [9], etc. The problem arises from the fact that a node’s importance varies in a
graph and consists in finding sets of nodes that, when deleted from the graph, maximize a given network
measure, which is usually related to the connectivity of the network.

In a general approach, given a graph G = (V,E), the critical node detection problem consists in
finding a set S of k nodes which deleted maximally degrades the graph according to a given measure
σ(G). Examples of such measures include the minimization of pairwise connectivity, minimizing the
size of the largest component, bound the pairwise connectivity by a threshold, maximize the number of
connected components, etc [21].

While there are many studies that deal with the CNDP for weighted or unweighted, directed or
undirected graphs, less attention has been given to the formulation and adaptation of the problem for
hypergraphs. A hypergraph generalizes the concept of graph by considering edges that connect more than
two nodes. In this setting there are many possible measures that can be considered in the formulation
of the CNDP.

In this report we extend the CNDP for hypergraphs by considering the problem of removing k nodes
in order to maximize the number of remaining components. Our goal is to use a genetic algorithm
adapted to solve this problem. A macroeconomic inflation hypergraph is constructed and analysed in
order to illustrate the applicability of the approach.

I.2.2 Critical node detection in hypergraphs

A hypergraph [5] is a generalization of a graph, where edges can join not only two, but any number of
nodes. In recent years several application possibilities appeared, where hypergraphs can be used with
success, like image classification [36], artificial intelligence [14], biology [16].

Formally, a hypergraph is a H = (X,D) double, where X = {x1, x2, ..., xn} is the set of nodes,
D = {D1, D2, ..., Dm} is a set of the subsets of X, denoting the set of hyperedges. A simple example
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Figure 3: A simple example of hypergraph with six nodes and three hyperedges. If x3 is deleted, the
hypergraph will have three components.
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Figure 4: Strong detection of x2 (left) and weak deletion of x2 (right) from the hypergraph presented in
Fig. 3

is depicted in Figure 3. The hypergraph has six nodes, X = {x1, x2, x3, x4, x5, x6}, D = {D1, D2, D3},
D1 = {x1, x2, x3}, D2 = {x2, x3}, D3 = {x3, x4, x5, x6}

In the case of the hypergraphs two variants of node deletion exists: strong and weak deletion. Strong
deletion means that not only the node x is removed, but also all edges containing that node. In the case
of the weak deletion only the node x is removed. A simple example is illustrated in Figure 4.

The critical node detection problem for the hypergraphs can be formulated as follows: given a H =
(X,D), the problem consists in removing weakly k nodes such that the number of remaining components
to be maximal. Formally, if S denotes the set of deleted nodes, and C(H[X \ S]) denotes the set of
components of graph H without the set of nodes S, the problem consists in:

max
S⊂X

|C(H[X \ S])|,

such that |S| ≤ k,

where |A| denotes the cardinality of set A.

Example Considering the hypergraph presented in Figure 3, if k = 1 x3 need to be deleted to maximize
the number of remaining components.

I.2.3 Hyp-GA

Evolutionary algorithms are powerful optimization tools to solve computationally hard problems. In
the next we will use a simple genetic algorithm to solve the critical node detection problem. For the
hypergraph we use a clique representation, which means that a hyperedge is transformed to ’traditional’
edge (e.g. if a hyperedge has 4 nodes, there will be an edge between each node). Table 5 presents the
elements of the genetic algorithm, while specific settings are described in what follows.
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Table 5: Hyp-GA Genetic operators

Mutation: flip-bit mutation
Crossover: two point crossover
Selection: tournament selection (tourna-

ment size 3)

Algorithm 4 Hyp-GA outline

Initialize population P of size psize at random.
for i=1 to MaxGen do
P (i) = Select psize individuals for variation;
Offsping= variation operators on P (i);
Correct and Evaluate Offspring;
P (i) = offspring;

end for

Encoding An individual x is encoded as a bit string of size equal to the size of the network. Each
node is represented in x either as 0 or 1, the value 1 indicates that the corresponding node is included
in the set of critical nodes encoded by x. We denote this set by Sx.

Fitness function To evaluate the fitness of an individual we remove all nodes in the critical set it
encodes, i.e. nodes with value 1 and count the number of connected components in the remaining graph.
We have:

f(x) = |H(G[V \ Sx])|. (3)

Constraint handling To maintain the size of Sx less that the threshold k we remove excess nodes by
using the marginal contribution of a node to the fitness of the individual. The marginal contribution of
a node i from the critical set Sx of x, denoted by ui(x) is:

ui(x) = f(x)− |H(G[V \ {Sx \ {i}}])|,

where f(x) is the fitness defined in eq. (3). ui(x) measures the difference between the fitness of x and
the fitness of x when removing node i from Sx. Nodes with lowest marginal contributions are removed
from Sx, such that only k nodes remain in the set before each individual evaluation.

I.2.4 Numerical experiments

For numerical experiments we tested the proposed method on synthetic data and on a new macroeconomic
dataset.

Synthetic networks

Benchmarks In order to construct hypergraphs with known properties we started from benchmarks
constructed for the overlapping community detection problem. LFR benchamrks1 are baseline test graphs
for community detection algorithms. The communities in the graphs show similarity to a hyperedge
in a hypergraph, as communities can contain several nodes that are more connected. We generate
test graphs of 150 nodes with different characteristics: the proportion of edges that a node has with
nodes from the same community {0.1, . . . , 0.6} - low values indicate dense communities (nodes are more
connected with nodes from the same community), the higher the number the node has more edges in
other communities than in the one he belongs; the number of overlapping communities a node belongs
to, 2 for our experiments; how many nodes belong in multiple communities, {13, 50, 70} nodes from the
150 nodes of the graph. The generated communities are the input hypergraphs of our algorithm.

1https://www.santofortunato.net/resources, last accessed 1/9/2021
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Table 6: Critical countries found by the proposed approach.

2010-2012 2013-2015 2015-2017 2017-2019
Afghanistan Bahamas Antigua and Barbuda Burundi
Bangladesh Guinea Aruba Ethiopia

Bhutan India Brazil Haiti
Ghana Jamaica Dominica Iran
India Japan France Jamaica
Iran Jordan Greece Lebanon

Jamaica Latvia Iraq Luxembourg
Moldova Luxembourg Israel Morocco
Morocco St. Kitts and Nevis Japan Sri Lanka

Spain St. Lucia Luxembourg United Kingdom

Parameters For our experiments we use the following parameters for the genetic algorithm are: pop-
ulation size {25, 40, 100}, maximum number of generations 500, crossover {0, 0.5, 0.8} and mutation
probability 0.5, probability to mutate a bit {0, 0.01, 0.02, 0.03}, and tournament size of 3. The values
tested for k are 5 and 10.

Results Results are illustrated as boxplots of maximum number of components reported by the al-
gorithm for each parameter setting in figure 5. We find that they are consistently converging to the
same number of components across different parameter values, except when using a mutation rate of 0,
indicating the known importance of this operator. When more nodes overlap, we find less components
for this value of k, as there are more links across communities in the benchmarks. However, results show
that the approach is robust, converging in various settings and may be further extended to practical
applications.

Inflation hypergraph As a new application we constructed a hypergraph from the world inflation
rate (consumer prices). Data about 123 countries is publicly available2 and contains information about
inflation rate from 1960 until 2019. We analyse only the last ten years, 2010−2019, and we eliminate the
countries with missing information, after this preprocessing 98 countries remain. The hypergraph is built
in the following way: the countries are the nodes of the hypergrah, a hyperedge exists between nodes if
they have inflation values in the same year within an interval (one hyperedge contains nodes/countries
that have negative inflation for the studied year, the other hyperedges contain the nodes with inflation
in the intervals 0-5, 5-10, 10-15 and greater then 15. Because we do not want to obtain one component
we divided the 10 years in four intervals (2010-2012,2013-2015,2015-2017,2017-2019) thus obtaining four
hypergraphs. The main advantage of this construction is that in this hypergraph the whole dynamics
of the inflation of countries appear, because in a single hypergraph several values for each year can be
presented. Using the proposed approach we search for the ten most critical nodes in each hypergraph,
we present the result in table 6.

A hyperedge in the graph means that countries have similar inflation rate in a certain year. Critical
nodes can appear if in a country or in several countries from the same hyperedge the inflation rate changes,
thereby it can give a glimpse in a collective set of unstable countries, the countries are investigated as a
community.

A new problem, the critical node detection problem for hypergraphs is proposed and a genetic algo-
rithm to solve it. New benchmarks are constructed and as an application a macroeconomic dataset is
transformed to a hypergraph, and critical nodes are obtained, which can reveal new information about
the dataset.

Experiments demonstrate the potential of the proposed method. As further work other variants of
hypergraph critical node detection problem will be studied.

I.3 Critical node detection in multilayer networks

We introduce formally the multilayer and multiplex networks.

Definition A single layer network (a graph) is a tuple G = (V,E), where V is the set of nodes and E
is the set of edges E ⊆ V × V .

2https://dice.ifo.de/en/node/358439, last accessed 20/09/2021
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Figure 5: Maximumm number of connected components reported for different hypergraph settings and
different parameters.
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(a) A multilayer network (b) A multiplex network

Figure 6: Examples of multilayer and multiplex networks. The multi layer network has a more general
structure.

Definition A multilayer network can be defined as a quadruplet M = (VM , EM , V, L) [?], where V is
the set of nodes, L = {La}da=1 is the set of layers defined by d aspects (if d = 0 M reduces to a single layer
network, if d = 1 M reduces to a multiplex network), VM ⊆ V × L1 × · · · × Ld is the set of node-layer
combinations, EM ⊆ VM × VM .

Figure 6 presents a simple example of a multilayer and multiplex network with two layers.

I.3.1 Problem formulation

We introduce two variants of the CND for multilayered networks:
In the first variant the problem consists in removing k nodes such that the number of remaining

components to be maximal. Formally, if S denotes the set of deleted nodes, and H(M [V \ S]) denotes
the set of components of multi layered graph M without the set of nodes S, the problem consists in:

max
S⊂V

|H(M [V \ S])|,

such that |S| ≤ k,

where |A| denotes the cardinality of set A.
The second variant of the problem consists in removing k nodes such that the size of the largest

components to be minimized. Formally, if S denotes the set of deleted nodes, and H(M [V \ S]) denotes
the set of components of multi layered graph M without the set of nodes S, and Mmax represents the
largest component, the problem consists in:

min
S⊂V

|Mmax|,

such that |S| ≤ k,

where |A| denotes the cardinality of set A.
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