
Research Report

GT-NDNetw: Game Theoretical Approaches for the Critical Node

Detection Problem in Social and Economic Networks

PN-III-P1-1.1-TE-2019-1633
56 / 2020

Phase 1

Objective 1. Development of new algorithms for the CND problem based on game theory

A 1.1. Documentation of existing algorithms in the literature; (I.1)

A 1.2. Documentation of existing connectivity metrics σ; (I.1, I.2, I.3, I.4)

A 1.3. Documentation of viral networks, financial networks; (I.3)

A 1.4. Development of new algorithms based on non-cooperative game equilibria and on cooperative games;(I.3,
I.4)

A 1.5. Comparison with existing state-of-the-art methods on benchmark networks; (I.4)

A 1.6. Application on viral and economic networks, and analysis of the obtained critical nodes; (I.3)

Deliverables:
� research report;
� articles submitted for publication: Eliézer Béczi, Noémi Gaskó, A memetic algorithm for the bi-objective critical
node detection problem, submitted to Applied Intelligence

� web page: www.cs.ubbcluj.ro/˜gaskonomi/GT-NDNetw

I Implementation

The main contributions of the project are presented in what follows.

I.1 Critical node detection problem

In recent years, complex networks received a lot of attention due to their applicability in various domains. Several
optimization problems were studied within complex networks like community detection [9], maximal influence node
detection [11], link prediction [17] etc. All the aforementioned problems reveal major insights in the studied networks.

Identifying critical nodes (critical node detection problem - CNDP) in a complex network is also a crucial task,
the base problem consisting in minimizing pairwise connectivity by removing a subset of K nodes. In [3] it was
proven that it is an NP-hard problem.

The general formulation of the problem is the following [14]: given a G = (V,E) graph and a connectivity
metric σ, find the set of nodes S ⊆ V such that G[V \S] satisfies the metric σ. This metric is usually defined as an
objective function which needs to be optimized (for example, maximizing the number of components, minimizing the
component size, etc.).

CNDP has a large field of applicability, for example, in social network analysis [8], in epidemic control [21],
network immunization [12], and biological networks [18].

Several algorithms were designed for the CNDP, with most exact methods based on the integer linear programming
formulation of the problem [7]. In [1] a dynamic programming approach is proposed for a special class of graphs.
As approximation algorithms we can mention for example, a simulated annealing algorithm [22]. A thorough survey
about existing methods for the CNDP can be found in [14].

The CNDP has several variants that explore the connectivity metric λ. Other variants with constraints were intro-
duced, such as the cardinality constrained critical node detection (CC-CNDP) [4], component-cardinality-constrained

1

Figure 1: Example of a simple graph (left figure), if we delete nodes 6 and 7 the graph will be fragmented in two
components (right figure) (source of the image [2]).

Algorithm 1 iGreedy

Require: G, k
1: S ← Vertex Cover(G)
2: while |S| > k do
3: B ← argmini∈S f(S \ {i})
4: S ← S \ {Select(B)}
5: end while
6: return S

critical node problem (3C-CNDP) [13]. Also bi-objective variants of the CNDP exist, one of them is proposed in
[16], in this variant the cost of removing the node counts. Another bi-objective variant is proposed in [23], which is
in detail described in Section I.4.

I.2 σ - Pairwise connectivity

If H represents the set of maximal connected components, we can introduce:

f(S) =
∑
h∈H

|h| · (∥h| − 1)

2
, (1)

as the pairwise connectivity [22, 2]. The problem consists in minimizing the function 1:

min
S⊆V

f(S). (2)

Example In the case of Figure 1, if we need to identify k = 2 critical nodes, then S = {6, 7} gives the optimal
solution. A G [V \ S] graph will be fragmented in two connected components, |H| = 2. The function 1 will be
calculated as follows:

f(S) =
5 · (5− 1)

2
+

5 · (5− 1)

2
= 20.

I.2.1 Algorithms

Next, we present three algorithms to solve the CNP problem. The first method is a simple greedy heuristic, the
second is a genetic algorithm, and the third algorithm is a memetic approach, using the greedy algorithm in the
initialization step of the genetic algorithm.

Greedy algorithm A simple greedy algorithm is described in Algorithm 1.

Genetic algorithm For the genetic algorithm, we modify the fitness function in order to get feedback from the
existing solutions.

Fitness function The fitness function is:

g(S, S∗) = f(S) + γ · |S ∩ S∗|, (3)

where S∗ represents the best found solution, γ is a variable which has the role to maintain the diversity in the
population. γ is calculated as follows:

γ =
α · f(S∗)

⟨|S ∩ S∗|⟩S∈P
, (4)

2

Algorithm 2 Genetic Algorithm

Require: G, k,N, πmin, πmax,∆π, α, tmax

1: t← 0
2: Init(N,P, S∗, γ, π)
3: while t < ttmax

do
4: P ′ ← Crossover(k,N, P)
5: P ′ ←Mutation(k,N, P ′, π)
6: P ← Selection(N,P, P ′)
7: S∗, γ, π = Update(N,P, S∗, π, πmin, πmax,∆π, α)
8: t← t+ 1
9: end while

10: return P

α is a parameter describing the importance of the variables. Calculation of S∗, γ and π are outlined in Algorithm
3.

Representation For the genetic algorithm we used integer representation.
The outline of the genetic algorithm is presented in Algorithm 2. The main steps are outline din Algorithm 4 -

the initialization, 6 - the mutation, Algorithm 5 - the crossover, and Algorithm 7 -the selection.

Algorithm 3 Update S∗, γ and π variables

Require: N,P, S∗, π, πmin, πmax,∆π, α
1: avg ← 0
2: for i← 1, N do
3: S ← P [i]
4: avg ← avg + |S ∩ S∗|
5: end for
6: avg ← avg

N

7: γ ← α · f(S∗)

avg
8: S ← P [0]
9: if f(S) < f(S∗) then

10: S∗ ← S
11: π ← πmin

12: else
13: π ← min(π +∆π, πmax)
14: end if
15: return S∗, γ, π

Algorithm 4 Initialization

Require: G, k
1: S ← V
2: while |S| > k do
3: elem← Select(S)
4: S ← S \ {elem}
5: end while
6: return S

Memetic algorithm The memetic algorithm (MA) uses a smart initialization as the first step of the genetic
algorithm, as described in Algorithm 8.

3

Algorithm 5 Recombination Operator

Require: k,N, P
1: P ′ ← ∅
2: for i← 1, N do
3: S1 ← Select(P)
4: S2 ← Select(P)
5: S′ ← S1 ∪ S2

6: if |S′| = k then
7: P ′ ← P ′ ∪ {S′}
8: else
9: S′ ← Random Sample(S′, k) ▷ Take k random elements from S′

10: P ′ ← P ′ ∪ {S′}
11: end if
12: end for
13: return P ′

I.2.2 Numerical experiments

Parameter setting for the iGA: N = 20 is the size of the population, πmin = 50, πmax = 90 és ∆π = 2.5, α = 2,
tmax = 100 the maximum iteration number.

As benchmarks we used synthetic graphs described in Table 3. As shown in Table 1 in almost all instances the
memetic algorithm outperforms the other two algorithms.

I.3 σ - Number of connected components

For this, the optimization problem is to maximise the number of connected components of G[V − S], where S
represents the set of the deleted nodes.

A non-cooperative game theoretical approach Our method consists in a game theoretical approach.
We consider a game in normal form Γ = (N,S, U), where:

� N = {1, ..., n} is the set of players,

� si is the strategy of player i, S = S1 × ...× Sn is the set of strategy profiles of the game

� ui : S → R is the payoff of player i, and U = (u1, . . . , un) are the players’ utility functions

In our case, the set of players are nodes, the strategy consists in being or not a critical node and the payoff
function is the number of connected components in which the graph will be fragmented without the certain node.

Generative relations characterize a certain equilibrium type by using the non-dominance concept. A binary
relation τ is defined on S, τ = (S, S,G ⊂ S × S). If we have sτq (i.e. (s, q) ∈ G) then we say that s dominates q
with respect to relation τ . If for s∗, ∄q such that qτs∗, we call s∗ non-dominated with respect to relation τ . The set
containing all s∗ ∈ S that are non-dominated with respect to relation τ is called the non-dominated set of S with
respect to τ .

Relation τ is called generative for an equilibrium type of a game (e.g. Nash, strong Nash, etc.) if the set of
non-dominated strategy profiles with respect to relation τ equals that set of equilibria of the game.

Table 1: Results for the CNDP problem for test files.

Greedy GA MA
Graph µ σ µ σ µ σ
BA500 195.90 0.88 4, 527.50 682.97 196.20 1.23
ER500 2, 830.60 446.61 55, 113.00 1, 481.57 2,278.40 138.52
FF250 219.50 9.83 7, 972.00 740.66 215.40 5.80
WS250 10, 610.50 3, 797.63 16, 021.10 172.24 8,039.90 838.95

4

Algorithm 6 Mutation Operator

Require: k,N, P, π
1: P ′ ← ∅
2: for i← 1, N do
3: r ← Rand Int(1, 100)
4: if r ≤ π then
5: S′ ← P [i]
6: ng ← Rand Int(0, k) ▷ Number of genes to mutate
7: for j ← 1, ng do
8: elem← Select(S′)
9: S′ ← S′ \ {elem}

10: end for
11: MIS← V \ S′

12: while |S′| < k do
13: elem← Select(MIS)
14: S′ ← S′ ∪ {elem}
15: end while
16: P ′ ← P ′ ∪ {S′}
17: else
18: S ← P [i]
19: P ′ ← P ′ ∪ {S}
20: end if
21: end for
22: return P ′

Algorithm 7 Selection Operator

Require: N,P, P ′

1: P ← P ∪ P ′

2: Sort(P) ▷ Sort individuals by fitness function in ASC order
3: return P [:N] ▷ Take best N solutions

An easy way to construct a generative relation is to use a quality indicator t : S × S → N such that: sτq ⇔
t(s, q) < t(q, s)

A generative relation for the Nash equilibrium was introduced in [19]:
Consider two strategy profiles s and q in S. Operator τ : S × S → N defined as

t(s, q) = card{i ∈ N |ui(s) < ui(qi, s−i), qi ̸= si}

characterizes the NEs of the game.
The relation between the two strategy profiles s and q is:

� either s dominates q (t(s, q) < t(q, s))

� either q dominates s (t(q, s) < t(s, q))

� s and q are indifferent (t(q, s) = t(s, q))

Extremal optimization Extremal optimization (EO) [5] is a powerful optimization tool for combinatorial
optimization problems for which a solution s can be expressed as a set of components si, i = 1, . . . , n with individual
fitnesses fi(s) assigned to each one of them. The standard EO maximizes each component of a potential solution
by randomly reassigning the one having the worst fitness. An individual sbest is used to preserve the best solution
found so far based on an overall fitness f(). An outline of the standard EO is presented in Algorithm 9.

The used algorithm for the Nash equilibrium detection is the Nash Extremal Optimization [20], the main steps
are outlined in Algorithm 10.

5

Algorithm 8 Smart Initialization

Require: G, k,N
1: P ← ∅
2: for i← 1, N · 10

100 do
3: P ← P ∪ {Greedy(G, k)}
4: end for
5: while |P | < N do
6: P ← P ∪ {Rand Sol(k)}
7: end while
8: return P

Algorithm 9 Standard EO

1: Initialize s random;
2: sbest := s; //sbest preserves the best solution found so far
3: while a termination condition is not met do
4: find imin component with the smallest fitness value
5: randomly reassign simin

in s;
6: if f(s) > f(sbest) then
7: sbest := s
8: end if
9: end while

Experimental results Experimental results illustrate the behaviour of EO and NEO by using the following set
of networks: yeast1, BA500, BA1000, ER250. For the numerical experiments, we used the EO and NEO, with
random initialization and with a greedy initialization. Numerical results are presented in Table 2. Results indicate
the potential of the proposed methods.

Case study - a financial stock market network To test the algorithms we used a financial stock market
network [15], which contains the network obtained from the analysis of temporal correlations among the time-series
of 62 stocks in the New York Exchange Market from the period 2012-2014. We use an unweighted version of the
graph, we deleted all edges, where the weight was under the value 1.2.

As results we obtained the most ten critical nodes the following stocks: AEP - American Electric Power, ARC
- ARC Document Solutions, AVP - Avcorp Industries Inc., ETR - Entergy , MRK - Merck & Co., PG - Procter &
Gamble, SO - Southern Company, S, UIS - Unisys, WMT - Walmart. Figure 2 presents the network and the critical
nodes.

I.4 Bi-objective critical node detection problem

Let G = (V,E) be an undirected graph, where V is the set of nodes, and E is the set of edges.
The bi-objective critical node detection problem (BOCNDP) was proposed in [23] and consists in finding k nodes,

that if we delete from graph G, we would like to optimize these two objectives:

1http://archive.ics.uci.edu/ml/datasets/yeast, last accessed 10.10.2020

Algorithm 10 Nash Extremal Optimization

1: Randomly intialize s = (s1, s2, . . . , sn), sbest = s;
2: while termination criteria is not fulfilled do
3: For the ’current’ configuration s evaluate ui for each player i;
4: find j satisfying uj ≤ ui for all i, i ̸= j, i.e., j has the ’worst payoff’;
5: change sj randomly;
6: if s dominates in Nash sense sbest then
7: sbest = s
8: end if
9: end while

6

Table 2: Numerical results of the CNDP with four algorithms: EO, NEO, greedy initialization of EO based on degree
distribution, greedy initialization of NEO

Graph k EO NEO Greedy+EO Greedy+NEO
yeast 202 843 838 847 846
BA500 50 313 311 313 312
BA1000 75 590 588 590 589
ER250 50 68 65 68 65

Figure 2: Stocks network, edges with weight ≥ 1.2 are kept, nodes colored in red are the most influential.

1. maximize the number of connected components

2. minimize the variance of the cardinality of the connected components

Formally, the objectives are the following:
max |H|, (5)

min var(H), (6)

such that
∑
i∈S

wi ≤W, (7)

where wi are the weights associated to the vertices of the graph and W > 0 is a constraint, H denotes G [V \ S]
the set of the connected components and var(H) denotes the variance of the cardinality of the connected components
and can be calculated with the following formula:

1

|H|
∑
h∈H

(
|h| − n∗

|H|

)2

, (8)

where n∗ =
∑

h∈H |h| is the number of nodes in G [V \ S]. The BOCNDP is distinct from the CNDP [23].

Example Let us consider a simple example, the graph presented in Figure 3. If we need to identify k = 2 critical
nodes, then S = {2, 3} is the optimal solution. The G [V \ S] will have 5 components, |H| = 5 and

var(H) =
1

5
·

[(
1− 13

5

)2

+ 4 ·
(
3− 13

5

)2
]
=

16

25
= 0.64.

Because the BOCNDP is a relatively new problem formulation, the literature is not too reach in the proposed
algorithms. In [23] six existing multi-objective algorithms are used to resolve the BOCNDP. In [16] a different variant
of the BOCNDP, called Bi-CNDP is introduced and studied with decomposition-based multi-objective evolutionary
algorithms.

7

Figure 3: A small graph with 15 nodes. If we delete the second and the third nodes (left), the graph will have 5
connected components (right)

I.4.1 Evolutionary computation method

We present three strategies, which can be used in the initialization phase of any multi-objective algorithm. The first
one is based on a depth search algorithm, outlined in Algorithm 11. A Depth First Search (DFS) algorithm is started

with a random initial point, and every xth element will be added to the chromosome, where x = |V |
k .

The second initialization method is based on the degree distribution of the nodes. The first x nodes with the
highest degree are set in the chromosome, and the rest of the k − x nodes are selected randomly to preserve the
stochastic nature of the initialization (Algorithm 12).

The third method is based on a random walk. We start the walk in a random node, t is the length of the walk
and pr is the probability to restart the walk. In each step it is decided to continue the walk or to restart. If we failed
to walk throw k different nodes the algorithm will restart with an other initial point. In the walk we keep counting
how many times a node appeared, the more times, the higher probability to be a gene in the chromosome. The main
steps are presented in Algorithm 13.

These initialization strategies can be used in any kind of multi-objective evolutionary algorithm.

Algorithm 11 Depth-first search solution generator

Require: G, k, x
1: start← Select(V)
2: S ← Dfs(G, start)
3: return S [::x] ▷ Take every xth element

Algorithm 12 Degree solution generator

Require: G, k, x
1: V ′ ← Sorted(V) ▷ Sort nodes according to their degree in DESC order
2: S ← V ′ [:x] ▷ Take first x nodes with the highest degree
3: while |S| < k do
4: node← Select(V ′)
5: if node /∈ S then
6: S ← S ∪ {node}
7: end if
8: end while
9: Shuffle(S)

10: return S

I.4.2 Numerical experiments

Benchmarks We use the graph set proposed in [22]. The benchmark set contains four different type of graphs:
Barabási-Albert (BA), Erdős-Rényi (ER), Forest-fire (FF), Watts–Strogatz (WS) graphs. Figure 4 illustrates how
the above presented benchmarks visually look.

Table 3 presents some basic properties of the benchmarks used for experiments: number of nodes (|V |), number
of edges (|E|), the number of critical nodes (k), average degree (⟨d⟩), the diameter of the graph (D), density of the
graph (ρ), modularity (Q) and average path length (lG).

8

Algorithm 13 Random walk solution generator (RWR)

Require: G, k, t, pr
1: visited← ∅
2: while True do
3: core← Select(V)
4: current← core
5: for i← 1, t+ 1 do
6: if current ∈ visited then
7: visited [current]← visited [current] + 1
8: else
9: visited [current]← 1

10: end if
11: restart← Rand Int(1, 100)
12: if restart ≤ pr then
13: current← core
14: else
15: neighbors← Neighbors(G, current) ▷ Neighbors of the current node
16: current← Select(neighbors)
17: end if
18: end for
19: if |visited| ≥ k then
20: break
21: else
22: visited← ∅
23: end if
24: end while
25: Sort(visited) ▷ Sort nodes in visited according to visits paid in DESC order
26: return visited [: k] ▷ Take the first k most visited nodes

9

(a) A Barabási–Albert (BA) graph (1000 nodes) (b) An Erdős–Rényi (ER) graph (466 nodes)

(c) A Forest-fire (FF) graph (500 nodes) (d) A Watts–Strogatz (WS) graph (250 nodes)

Figure 4: An illustration of the four types of the synthetic benchmark set

10

Table 3: Benchmark test graphs and basic properties.

Graph |V | |E| k ⟨d⟩ D ρ Q lG
BA500 500 499 50 1.996 13 0.004 0.886 5.663
BA1000 1000 999 75 1.998 18 0.002 0.910 6.045
BA2500 2500 2499 100 1.999 17 0.001 0.946 6.901
BA5000 5000 4999 150 2.000 24 0.000 0.963 8.380
ER250 235 350 50 2.979 14 0.013 0.603 5.338
ER500 466 700 80 3.004 14 0.006 0.631 5.973
ER1000 941 1400 140 2.976 16 0.003 0.649 6.558
ER2500 2344 3500 200 2.986 16 0.001 0.663 7.516
FF250 250 514 50 4.112 14 0.017 0.638 4.816
FF500 500 828 110 3.312 15 0.007 0.798 6.026
FF1000 1000 1817 150 3.634 20 0.004 0.793 6.173
FF2000 2000 3413 200 3.413 19 0.002 0.880 7.587
WS250 250 1246 70 9.968 6 0.040 0.697 3.327
WS500 500 1496 125 5.984 10 0.012 0.789 5.304
WS1000 1000 4996 200 9.992 7 0.010 0.803 4.444
WS2000 1500 4498 265 5.997 15 0.004 0.872 7.554

Table 4: Parameter settings for NSGA-II

Parameter Value
Pop size 50

No evaluation 10000
Prob. of crossover 1
Prob. of mutation 0.3

Algorithm For the numerical experiments we used the NSGA-II [6] algorithm within the Platypus2 framework.

Parameter settings For the numerical experiments parameters of the NSGA-II algorithm are presented in Table
4. The weights of the nodes are set to 1 and W equals to the number of nodes.

Performance evaluation For the performance evaluation we use the hypervolume indicator [24], [25], a popular
measure for the multi-objective optimization algorithms. The hypervolume indicator measures the volume of the
region of the dominated points in the objective space bounded by a reference point.

I.4.3 Results and discussion

We conducted ten independent runs for each initialization strategy (depth first search, degree based, random walk)
and we made comparisons also with random initialization.

Figure 5 presents the obtained Pareto front within a single run.
Table 5 presents the mean values and the standard deviation of the hypervolume indicators. For the reference

point we set the nadir point of all unified Pareto fronts. We also conducted a Wilcoxon sign-rank nonparametric test
for the hypervolume indicator reported by each method. The Wilcoxon sign rank assesses if there is a significant
difference between two sample means. A (*) is used to indicate statistical significance of differences, all initialization
strategies which are not statistically different from the best one are marked.

Based on the results, we cannot draw a general conclusion which initialization strategy is better, actually the
structure of the graph determines which initialization worth to use (but based on the numerical results, all of them
give better results as the random initialization). In the case of Barabási-Albert graphs, which contain hubs, the
degree based initialization get the best result. Erdős-Rényi graphs are random graphs, in this case most times the
depth first search algorithm seems to be the best one. Forest-fire graphs are also random graphs, replicating how
a fire spreads in a forest. In this case, almost all three proposed initialization types gave the same result. The
Watts–Strogatz graphs have a dense structure, the best results were provided by the random walk based algorithm.

2https://github.com/quaquel/Platypus, last accessed 15/10/2020

11

Figure 5: Pareto front obtained in a single run for the 16 benchmark problems

Table 5: Average value ± standard deviation of the hypervolume indicator. A (*) indicates the best results which
are not based on a Wilcoxon sign-rank test

Graph Random DFS Degree RWR

BA500 15.65± 4.37 13.03± 5.37 28.05± 2.62∗ 20.72± 4.37
BA1000 36.54± 21.58 58.38± 24.17 154.27± 10.54∗ 68.21± 26.51
BA2500 6138.01± 1701.47 2924.91± 2828.77 18607.82± 364.64∗ 8643.83± 1993.09
BA5000 1078479.10± 319614.94 449069.24± 396267.77 3409301.92± 47950.42∗ 1706543.15± 182869.56

ER250 738.68± 217.41 2387.05± 342.45∗ 1162.31± 252.49 1204.39± 319.17
ER500 1607.75± 920.84 8045.09± 1848.71∗ 2762.01± 1572.09 2644.67± 919.06
ER1000 1133.40± 949.75 9407.93± 4141.55∗ 6385.57± 3487.82∗ 5176.12± 1499.51
ER2000 39323.23± 24560.07 65449.57± 34152.98∗ 56123.63± 12683.44∗ 72259.64± 26198.93∗

FF250 38.01± 6.84 36.34± 12.26∗ 41.88± 5.39∗ 45.61± 7.52∗

FF500 24.51± 8.19 51.42± 9.68∗ 37.72± 4.93 32.98± 6.86
FF1000 1402.85± 599.70 1718.09± 647.33 3274.96± 387.73∗ 3194.72± 409.27∗

FF2000 30560.10± 20460.26 16206.67± 13027.87 136548.86± 12378.66∗ 107945.88± 12371.82

WS250 8132.90± 268.63 9577.11± 1390.61 8495.50± 636.66 16193.42± 3306.69∗

WS500 48526.56± 14388.26 35879.19± 8263.24 110772.29± 31047.79 203301.59± 30420.58∗

WS1000 159361.50± 503.68 159202.10± 0.32 162811.19± 11412.20 337726.99± 90573.11∗

WS2000 484347.05± 140137.66 708776.63± 223377.92 1923479.18± 351573.85 5058526.43± 1741808.94∗

12

Table 6: Results of the NSGAII for BOCNDP using Nash and Berge generative relations.

|H| var(H) |H| var(H)
Graph Algorithm µ σ µ σ Algorithm µ σ µ σ
BA500

N-NSGAII

111.40 14.49 313.28 130.22

B-NSGAII

121.80 15.01 209.53 81.78
ER500 39.10 1.91 2, 742.85 192.65 41.00 1.89 2, 623.55 170.18
BA1000 195.40 19.45 199.53 56.67 217.60 18.46 131.34 33.66
ER1000 60.60 2.37 8, 330.21 418.18 59.80 2.39 8, 427.53 418.45
FF250 38.60 4.25 395.91 57.94 38.90 2.77 377.91 60.25
WS250 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
FF1000 90.90 4.58 4, 706.83 475.98 90.60 4.53 4, 405.25 253.48
WS1000 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

I.4.4 Game theory-based approach

We replaced the Pareto domination concept with the presented Nash domination and also with the Berge domination
[10]. The main idea behind this is to obtain a single solution to the problem. Table 6 presents the obtained results.
The used algorithm is the NSGA-II.

References

[1] B. Addis, M. Di Summa, and A. Grosso. Identifying critical nodes in undirected graphs: Complexity results and
polynomial algorithms for the case of bounded treewidth. Discrete Applied Mathematics, 161(16-17):2349–2360,
2013.

[2] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia. A general evolutionary framework for different
classes of critical node problems. Engineering Applications of Artificial Intelligence, 55:128–145, 2016.

[3] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. Detecting critical nodes in sparse
graphs. Computers & Operations Research, 36(7):2193–2200, 2009.

[4] A. Arulselvan, C. W. Commander, O. Shylo, and P. M. Pardalos. Cardinality-constrained critical node detection
problem. In Performance models and risk management in communications systems, pages 79–91. Springer, 2011.

[5] S. Boettcher and A. G. Percus. Optimization with Extremal Dynamics. Physical Review Letters, 86:5211–5214,
2001.

[6] K. D. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm :
NSGA-ii. IEEE Transactions on Evolutionary Computation, 6:182–197, 2002.

[7] M. Di Summa, A. Grosso, and M. Locatelli. Branch and cut algorithms for detecting critical nodes in undirected
graphs. Computational Optimization and Applications, 53(3):649–680, 2012.

[8] N. Fan and P. M. Pardalos. Robust optimization of graph partitioning and critical node detection in analyz-
ing networks. In International Conference on Combinatorial Optimization and Applications, pages 170–183.
Springer, 2010.

[9] S. Fortunato. Community detection in graphs. Physics Reports, 486:75 – 174, 2010.

[10] N. Gaskó, D. Dumitrescu, and R. I. Lung. Evolutionary detection of Berge and Nash equilibria. In Nature
Inspired Cooperative Strategies for Optimization (NICSO 2011), volume 387 of Studies in Computational Intel-
ligence, pages 149–158. Springer Berlin / Heidelberg, 2012.

[11] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 137–146. ACM, 2003.

[12] C. J. Kuhlman, V. A. Kumar, M. V. Marathe, S. Ravi, and D. J. Rosenkrantz. Finding critical nodes for
inhibiting diffusion of complex contagions in social networks. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 111–127. Springer, 2010.

13

[13] M. Lalou, M. A. Tahraoui, and H. Kheddouci. Component-cardinality-constrained critical node problem in
graphs. Discrete Applied Mathematics, 210:150–163, 2016.

[14] M. Lalou, M. A. Tahraoui, and H. Kheddouci. The critical node detection problem in networks: A survey.
Computer Science Review, 28:92–117, 2018.

[15] V. Latora, V. Nicosia, and G. Russo. Complex networks: principles, methods and applications. Cambridge
University Press, 2017.

[16] J. Li, P. M. Pardalos, B. Xin, and J. Chen. The bi-objective critical node detection problem with minimum
pairwise connectivity and cost: Theory and algorithms. Soft Computing, 23(23):12729–12744, 2019.

[17] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the American
society for information science and technology, 58(7):1019–1031, 2007.

[18] X. Liu, Z. Hong, J. Liu, Y. Lin, A. Rodŕıguez-Patón, Q. Zou, and X. Zeng. Computational methods for
identifying the critical nodes in biological networks. Briefings in bioinformatics, 21(2):486–497, 2020.

[19] R. I. Lung and D. Dumitrescu. Computing nash equilibria by means of evolutionary computation. Int. J. of
Computers, Communications & Control, 3(suppl. issue):364–368, 2008.

[20] R. I. Lung, T. D. Mihoc, and D. Dumitrescu. Nash Extremal Optimization and Large Cournot Games. In Nature
Inspired Cooperative Strategies for Optimization, {NICSO} 2011, Cluj-Napoca, Romania, October 20-22, 2011,
pages 195–203, 2011.

[21] Z. Tao, F. Zhongqian, and W. Binghong. Epidemic dynamics on complex networks. Progress in Natural Science,
16(5):452–457, 2006.

[22] M. Ventresca. Global search algorithms using a combinatorial unranking-based problem representation for the
critical node detection problem. Computers & Operations Research, 39(11):2763–2775, 2012.

[23] M. Ventresca, K. R. Harrison, and B. M. Ombuki-Berman. The bi-objective critical node detection problem.
European Journal of Operational Research, 265(3):895–908, 2018.

[24] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms—a comparative case study.
In International conference on parallel problem solving from nature, pages 292–301. Springer, 1998.

[25] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength
pareto approach. IEEE transactions on Evolutionary Computation, 3(4):257–271, 1999.

14

