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INTRODUCTION

Movie stars have agents; athletes have agents, important executives have agents. All these people delegate tasks and responsibilities to their specialized helpers in order to take full advantage of their expertise. But what about ordinary people? Ordinary people can employ agents too, namely intelligent software agents, and many people use them, mostly unnoticed. Intelligent agents are a piece of software that acts on behalf of a user, exhibiting some human‑like properties. These agents can help users for instance to filter, sort or navigate through a huge amount of diverse information, or can be employed to manage complex tasks such as air traffic control. Intelligent agents are a relatively new paradigm, considered by some people the successor of object-oriented programming that could spark a revolution in the fields of computer science and artificial intelligence.
The first chapter of this paper intends to introduce intelligent software agents, which are related to the field of artificial intelligence, discussing particularly multiagent systems. Multiagent systems are very promising, since they resemble a human like organization characterized by intelligence, communication, cooperation and parallel computing. The creation of single agents and agent societies is mostly achieved by using specialized development environments, called agent development environments. Three agent development environments are subject to this paper, two different environments being presented throughout chapter two. The Java Agent Development Framework, for short Jade, presented in chapter three, is perhaps today’s most popular agent development environment. Therefore, Jade features will be described in detail, along with several examples that illustrate how multiagent systems can be modeled using object oriented principles. Chapter four is devoted to present the concept of agent-centered search, which is not yet a common term in AI, although some concepts that fit its definition are scattered throughout the literature on AI and robotics. Popular agent-centered search algorithms, namely the asynchronous dynamic programming algorithm and the learning real time A* algorithm, will be presented. Additionally some improved LRTA* based algorithms, which enhance computing performance are analyzed, pointing out their advantages and disadvantages. Three separate algorithms are considered, one of them being our approach towards LRTA* optimization. Our approach tries to overcome the sometimes rigid action selection performed by most LRTA* like algorithms, by introducing randomness in the process of selecting the next to execute action. Chapter five presents an application for solving path-finding problems, using all the algorithms mentioned in chapter four. All the considered LRTA* based algorithms are tested on different scenarios in order to compare them and to determine the most suitable parameters for path-finding problems. 

Summarizing, this paper offers an overview of intelligent software agents, describes agent development environments, focusing primarily on Jade, and presents an application aimed to compare LRTA* based algorithms on path-finding problems.
Chapter I

1. Software Agents

This Chapter has the aim to introduce the subject of software agents, to point out the properties that make agents intelligent and to provide some examples of agent based applications. Furthermore, this chapter shows the link between the field of artificial intelligence and software agents. Special attention is given to agent communication and to the BDI agent architecture, highlighting their importance in our work.
1.1. What are software Agents?

There is no universal definition of an agent, definitions varying from author to author. Despite the lack of a Consensus, some definitions from notable researchers in the field of “Software Agents” will be presented. 
„An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors.”
[Russell,1995]
According to this definition, agents can come in many forms and shapes, human beings are agents as well as robots can be. In computer science, and more specific in the field of Artificial Intelligence, we talk about Software Agents. Software agents are a piece of software “living” in operating systems, databases, in networks, just to name a few, and their main objective is to perform tasks for a certain entity such as a user or another program. 
1.2. Agent Environments
When modeling agents, the environment these agents are placed in, plays a big role.  Agents have to be developed in such manner to match the specific properties of the environment. The environment can be:
· Accessible or inaccessible

An environment is considered accessible if the agent operating in this environment can obtain accurate and correct data from it. When the environment is a chess table it may be considered an accessible one, otherwise when the environment is the world wide web it may be an inaccessible environment.

· Deterministic or non-deterministic

If executing a certain action upon the environment which results in a guaranteed effect, the environment may be considered deterministic. In other words, in a deterministic environment the actions of an agent will always have the desired and predicted effect. The real world is probably the best example of a non-deterministic environment, whereas board games like chess and backgammon are deterministic ones.
· Static or Dynamic

An environment is static if it does not change while the agent is still reasoning about the next action. 

· Sequential or One-shot:
In a sequential environment the agent has to consider the future impact of the current action. A good example may be again the chess game where at every point the agent has to look ahead several moves in order to mention a strong position. In One-shot environments the choice of an action depends only on that certain action itself. 

· Single agent vs. Multiagent

Some problems like solving a crossword puzzle do not necessarily require multiple agents. Other problems like simulating a football game clearly demand multiple agents “living” in the same environment. Usually when multiple agents share the same environment, a particular agent can either cooperate with other agents to reach his goal, or be in competition with other agents.
1.3. Intelligent Agents
"Intelligent agents are software entities that carry out some set of operations on behalf of a user or another program with some degree of independence or autonomy, and in so doing, employ some knowledge or representation of the user's goals or desires." (The IBM Agent)
From the examples presented above it is clear that not all agents are intelligent. It is hard to imagine that a thermostat possesses some sort of intelligence. Then the question arises: „What makes an agent intelligent?” According to M. Wooldridge [Wooldridge1999] an intelligent agent is one that is capable of flexible autonomous actions.
1.3.1. Autonomous Agents
Autonomous Agents are agents that are situated in a certain environment, interacting with the environment and possible changing it in pursuit of their own agenda. An important characteristic of autonomous agents is the fact that they follow their goal and interact with the environment without any direct human or other intervention. Agents can only be affected by message passing and not by the direct change of their current state.
1.3.2. Flexibility
M. Wooldridge [Wooldridge1997] states that agent flexibility is given by three factors:

· reactivity

· pro - activeness
· social ability
An agent interacts with the environment it is placed in, by perceiving and acting upon it. This property of an agent is called “reactivity”. The second important property that makes an agent flexible is “pro-activity”. Pro-activity is achieved when an agent is able to start actions at his own initiative that will eventually lead to goal accomplishment. The third property that gives flexibility to an agent is its social ability. This means that agents have the capability of interacting with other agents, possible human agents, via some sort of communication language in order to satisfy their design objectives.

1.3.3. Examples of Agents

Agents are used in many different domains, the thermostat is perhaps one of the most simple and overused example. A thermostat senses its environment, in this case some room, and if the temperature drops below some designated value the heating is automatically turned on. Otherwise, if the temperature reaches the desired level the heating is turned off. Of course, any control system that works similar to the thermostat, such as water heaters or even toasters, may be considered rudimentary agents, because they monitor their environment and modify it according to some rules.

Today, agents are used in many different domains, but mostly in web applications. Stephen Haag [Haag2006] suggests that there are four types of agents: shopping bots, personal agents, monitoring-and-surveillance agents, agents in data mining. We will discuss each separately. Probably the most popular use of agents are “Buyer Agents”, also known as customer service agent. Users usually employ a buyer agent in order to search the web for products and services they want to buy. Based on user preferences, such as price or quality, and taking in account commodities the user bought in the past, buyer agents search the network and provide useful suggestions to the user. Personal agents are agents that fulfill tasks on behalf of the user. These rather useful agents may complete tasks such as sorting and verifying a user’s mail, searching the internet for information the user might be interested in, filtering news or scheduling meetings. Basically, these agents perform observations of user behavior, and are tracking user interests over time. With the knowledge they acquire, they are able to manage and process data almost in the same way the user would have done it.

1.4. Artificial Intelligence and Agents

Artificial intelligence (AI) is a branch of computer science devoted to the making of intelligent machines, especially intelligent computer programs. Among the traits that researchers hope machines will exhibit are: reasoning, knowledge, learning, communication and perception. Similar to software agents, artificial intelligence is hard to define, however some definitions will be presented.

“The science of making machines do things that would require intelligence if done by men”

Marvin Minsky

“The study of how to make computers do things at which, at the moment, people are better'' 
[Rich1991]

“The exciting new effort to make computers think ... machines with minds, in the full and literal sense''
[Haugeland1985]
All of the presented definitions have one element in common; they express artificial intelligence in terms of human intelligence. The last two definition slightly differ, the first one based on cognitive processes (thinking, reasoning) while the third one has a behavior like approach.

Having discussed both intelligent software agents and artificial intelligence, we may conclude that applications using software Agents include problem domains that require human-like intelligence operating autonomously. This human-like intelligence is simulated by employing several artificial intelligence techniques. These techniques include: logical inferencing and deduction, domain knowledge, pattern recognition or learning. However, artificial intelligence should not be overused in agent software, an agent system basically having to choose the right action to perform in a certain domain. Oren Etzioni once stated:

“We made our agents dumber and dumber and dumber…until finally they made money.”
1.5. Agent Types
In [Russell1995] only four basic types of agents are considered: simple reflex agents, agents that keep track of the world, goal-based agents, and utility-based agents. We will discuss them in detail.
1.5.1. Purely reactive agents

Reactive agents are a category of agents who are not deliberately following a particular goal, but rather acting to external stimulus. These agents are placed in fully accessible environments and are acting upon a condition-action rule. A condition‑action rule has the form:
if condition is true then do action
The figure below shows how a simple reflex agent works.
Like the thermostat in our previous example, purely reactive agents perceive an input signal through their sensors, process the signal and then try to find a rule whose condition matches the processed signal. Once a rule is found, the action dictated by that rule will be executed. Figure 1.1 shows a purely reactive agent.
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Figure 1.1 A simple reflex agent
1.5.2. Agent that keep track of the world

An agent that keeps track of the world is, basically, a simple reflex agent with an internal state. An internal state is necessary to distinguish between states of the environment that generate the same perception but require different actions from the agent.
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When updating the internal state an agent has to consider two factors. First, the agent has to have some information on how the outside world evolves regardless of his actions. Secondly, the agent has to have some information on how he affects the environment. Updating an internal state means combining these two types of information, as the broken line shows on figure 1.2.
Figure 1.2. Agent that keeps track of the world
Before an agent takes action, a rule has to be found that matches both the internal state and the response received from the environment. After the rule has been found, the action associated to that rule is executed.
1.5.3. Goal based agents

[image: image4.emf]Goal based agents act similar to agents that keep track of the world, but follow a certain goal in a pro-active manner. It is not always enough to know about the current state of the environment. To achieve desirable situations, some information about the goal has to be available. Information about the goal can be combined with information regarding the outcome of possible situations in order to choose the best possible action to undertake. 
Figure 1.3. A goal based agent

1.5.4. Utility‑based agents


Goal based agents do not always obtain the optimal solution of a certain problem, assuming that the goal can be reached in many different ways. Goal based agent distinguish only between desirable and undesirable situations. Utility-based agents have an internal utility function that measures the degree of performance after undertaking an action. The utility function is a mapping from a state to a real number, number that indicates the degree of satisfaction. Even before action is undertaken the agent uses the utility function to select the most appropriate action possible.
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Figure 1.4. A utility‑based agent
1.6. The Beliefs-Desires-Intentions (BDI) Architecture

An abstract model of an agent, like the ones presented in the previous section, is composed of two elements:
· The agent architecture which delivers the incoming response from the environment to the program, depicting the component arrangement of the agent and dealing with program internals such as data structures

· The agent design, provided by the AI by means of finding “a function that implements the agent mapping from percepts to actions” [Russell1995]
In [Serban2006] four major agent architectures are considered: logic based architectures, reactive architectures, BDI architectures and layered architectures. We will discuss the beliefs, desires, intentions architecture, which is perhaps one of todays most successful.
The BDI (beliefs, desires, intentions) architecture was introduced by Rao and Georgeff [Rao1995] allowing the creation of relational agents having a goal oriented behavior. A BDI model may be described through four sets:
· Set of Beliefs
This set contains information regarding the world, more precise information about the environment, the agent itself and other agents. The term “beliefs” is used instead of the term “knowledge” highlighting that not all beliefs may be true.

· Set of Desires

This set contains the list of goals an agent tries to achieve.
· Intentions

This set contains the set of goals, selected from the set of desires, goals that an agent is currently committed to achieve.
· Set of Plans

A plan can be seen as a sequence of actions, that when executed, can lead to the accomplishment of one or more intentions. Plans may sometimes overlap, for instance a plan to shut all the windows in the house overlaps the plan to shut just the window in the kitchen.
The abstract architecture proposed by Rao and Georgeff [Rao1995] contains the three main sets, beliefs, desires and intentions, as well as a queue of input events. A proposed BDI cycle [Rao1995] will be presented:

BDI_interpreter


Initialize_state();

repeat


options := option_generator(event_queue);

selected-options := deliberate(options);

update-intentions := selected_options();

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

end

Throughout the interpreter cycle, all the external and internal events are recorded in the event queue. At the start of a new cycle, all the possible options are determined by evaluating the elements of the event-queue. Next from the set of available options, some are adopted, thus forming the set of intentions. If at this point of execution some intentions can execute an atomic action, they execute it. At the end of each loop, the agent drops all the achieved desires and intentions and removes all the unrealizable ones. [Cheong2003] offers an every day life example of a BDI agent:

“For example, an agent believes that it has $5. The agent is thirsty and desires to quench its thirst. It finds a drink priced at $3 and uses a plan to purchase the drink (i.e. it intends to quench its thirst) at $3 and drinks it. The agent updates its belief so that it believes it now has $2. However, the agent is still thirsty, but it will not execute the plan to purchase a drink for $3 dollars again as it believes that it has $2.”
1.7. Multiagent Systems


Distributed artificial intelligence is a subfield of artificial intelligence, a combination of several domains such as artificial intelligence, computer science, sociology or psychology, dedicated to the development of distributed solutions for complex problems regarded as requiring intelligence. Distributed artificial intelligence itself is split into two subdomains [Sycara1998]: distributed problem solving and multiagent systems. The main topics considered in DPS are information management issues such as task decomposition and solution synthesis [Stone2000]. For example, a problem can be split into several subproblems that might not be totally independent, computed and finally put together to offer a solution to the original problem.
Multiagent Systems are systems that contain multiple intelligent agents who are sharing the same environment, usually able to communicate, cooperate, compete or negotiate in order to achieve their goals. Multiagent systems are used to solve problems which cannot be solved with a single agent due to problem complexity or to the limitations of a single agent. The characteristics of multiagent systems can be defined as follows:

· Each agent has incomplete information or capabilities for solving the problem and, thus, has a limited viewpoint.
· There is no global control system, meaning that each agent is an autonomous entity, under nobodies control acting only on behalf of his own.
· Data are decentralized, every agent has its own information about the environment
· Computation is asynchronous.
Typically, in multi-agent systems, every agent pursues his own goal, regardless of other agents’ goals. Nevertheless, situations exist where a global goal can be identified for the system. When developers design multiagent systems, they face two key problems. The first problem, known as agent problem or micro problem, is how to develop autonomous agents in order to reach a goal. The second problem, known as society problem or macro problem, is how to design a system where agents interact in a useful and coherent way. Some of the advantages of MAS are described below:

· greater computational efficiency through concurrency;
· improved reliability via redundancy;
· extensibility of the system with new agents and the possibility of changing agent capabilities;
· improved maintainability due to modularity;
· reuse of agents in different systems;
Multiagent system can be used in a wide variety of domains including:  transportation, computer games, logistics, manufacturing, scheduling, control, collaboration, simulation or modeling social structures.
1.7.1. Communication in Multiagent Systems

In order to coordinate and communicate with each other agents will basically have to exchange data. Agent communication language allows agents to form a real society, without exposing their internal workings, and thus tackling problems no individual agent could. There are two main approaches when it comes to agent communication, the first one based on agent communication languages, and the second one based on blackboard systems. We will discuss both.
As people use natural languages to express themselves, agents use agent communication languages (ACL’s) to exchange information, intentions, and goals. ACL’s usually are message based, where agents send messages to each other for knowledge exchange, coordination or negotiation. Communication in multiagent systems can be synchronized, where after sending a message an agents waits for the response, or asynchronous. In many cases, communicating agents develop a client-server relationship due to multiple message exchanges. Most ACL’s  have as common ground some well defined message fields such as sender, receiver, content, performative, or ontology, just to name a few. 

(tell


:sender Agent1


:receiver Agent2


:language: ASCII


:ontology: auction


:content: new_amount=1000


)

1.7.1.1. Performatives

A performative is usually attached to the content of the message, which determines what kind of interaction is used. Performatives signify that the content is an assertion, a query, a command or another speech act. Performatives also describe how the sender would like any reply to be delivered. In the example above the performative, “tell” is used to inform the receiver that the content is an assertion and that no answer is requested.
1.7.1.2. Ontology

„A specification of a representational vocabulary for a shared domain of discourse — definitions of classes, relations, functions, and other objects — is called an ontology„
[Gruber1993]

In other words, in multiagent systems, ontology is a specification of a conceptualization, a description on what concepts and relationships exist for an agent community. In our example above the message content is put in the context of an auction, concept which is defined for both sender and receiver.
In the landscape of agent communication languages, KQML and FIPA ACL are the languages that most significantly influenced agent communication.
1.7.1.3. Knowledge Query and Manipulation Language (KQML)

KQML (Knowledge Query and Manipulation Language) is an agent communication language, conceived in the early 90’s by Knowledge Sharing Effort (KSE) [Neches1991], a consortium led mostly by AI researchers. As the name suggests, KQML was initially not designed as an agent communication language but rather as collection of speech-act-like message types, expressed as ASCII strings, with a LISP-like syntax, that are transported over TCP/IP connections, and aimed at knowledge and information exchange between software systems that are viewed as Virtual Knowledge Bases [Labrou1999]. Nowadays KQML is a high- level message oriented communication language and protocol among software agents. KQML consists of three separate layers, the content layer, the message layer and the communication layer. The content layer holds the actual content of the message, where the content can be expressed in any representation language, such as ASCII or binary code. The communication layer encodes a set of low‑level communication parameters such as identity of sender and receiver. The messaging layer is the core of KQML, defining among others, the transport protocol (TCP/IP, UDP, SMTP, IIOP and others), the content language, the used ontology and attaches the performative, given by the sender to the content. These three layers show how KQML is able to analyze, route and deliver messages regardless of their content. 
Some of KQML’s features include independence from the transport mechanism, independence of content language as well as independence of the ontology assumed by the content.
1.7.1.4. FIPA Agent Communication Language (ACL)

FIPA, short for Intelligent Physical Agents, is a nonprofit, standardization organization with the goal of promoting the industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent based applications.


(inform


:sender agent1


:receiver hpl-auction-server


:content (price (bid good02) 150)


:in-reply-to round-4

:reply-with bid04


:language sl


:ontology hpl-auction


)


The FIPA ACL is in many ways similar to KQML but there are some differences, we would like to point out. The FIPA ACL performatives differ from he ones used in KQML, in our example for instance the KQML “tell” performative has as equivalent the “inform” performative in FIPA ACL. Another difference between performatives is the fact that KQML performatives such as, insert, uninsert, delete-one, delete-all or undelete allow direct manipulation of another agents virtual knowledge base, whereas knowledge manipulation of other agents is not allowed in the FIPA ACL. Like KQML, the FIPA ACL does not make any commitment to a certain content representation language, although the FIPA ACL comes with its own content language called SL, which is based on modal logic. 

1.7.1.5. Blackboard Systems

Blackboard Systems are, in contrast to message driven communication languages, a centralized approach of agent communication. A helpful and widely used metaphor describing blackboard systems will be presented:
“Imagine a group of human specialists seated next to a large blackboard. The specialists are working cooperatively to solve a problem, using the blackboard as the workplace for developing the solution. Problem solving begins when the problem and initial data are written onto the blackboard. The specialists watch the blackboard, looking for an opportunity to apply their expertise to the developing solution. When a specialist finds sufficient information to make a contribution, she records the contribution on the blackboard, hopefully enabling other specialists to apply their expertise. This process of adding contributions to the blackboard continues until the problem has been solved.”
This metaphor emphasis some properties of blackboard systems:
· independence of expertise

In computer science a specialist is a software specialist module, more generally a knowledge source (KS), which is a specialized unit in solving a particular aspect of a problem. Each KS is independent from other KS’s; no KS requires another to make its contribution. This approach allows other KS’s to be added to the blackboard system, existing KS’s to be removed or replaced. The ability to add, remove or replace several specialized software modules creates flexibility in designing and maintaining such applications.
· Diversity in problem-solving techniques
Every expert in the group may have a different way of solving a certain aspect of a problem, some experts may use a traditional linear algorithm others may use artificial intelligence techniques. However, because the internal workings of every KS are hidden, these systems can coexist within a blackboard framework.
· Flexible representation of blackboard information

Information that resides on the blackboard may come in many different representations. Information can be represented through numbers, sentences, formulas and even drawings. There is no restriction on what information can be placed on blackboard systems. Flexibility in blackboard systems is not just given by the variety of possible data representations but also by what kind of data is posted on the blackboard. These include: partial solutions, solutions, alternatives and control data. 
· Common interaction language
The flexible representation of data in blackboard systems certainly demands a common understanding of information. This means that all KS’s should be able to access and process the data on the blackboard in order to interact. In practice, blackboard systems often contain beside a common representation used by all KS’s, a specialized representation which only a few experts understand.
· Event-based activation
KS’s do not interact directly but rather when a particular event occurs, such as a change of information on the blackboard that may allow a specialist to add his contribution. Events may occur internally, such as adding, modifying or removing information from the blackboard, or externally. Usually experts do not scan the whole blackboard in order to detect changes regarding information but rather inform the system on which kind of events they are interested in. The system on the other side, records particular events and notifies the interested experts of its occurrence. This event-based approach is especially useful when dealing with a big amount of information on the blackboard and where looking up all the information for changes would be inefficient. 
· Need for control
A blackboard system consists of three major components. Beside the specialized modules and the blackboard, there exists a control unit, which acts as a moderator between software modules with the aim of organizing and scheduling the actions of the specialized modules. At each stage of problem solving the control unit has to select from the pending KS’s, the most appropriate to contribute. The control unit will consider the overall benefit that a potential KS’ may bring to the system, as well as the implication on the further development of the solution. When a KS is triggered, it may also be able to provide useful data to the control component such as: the degree of quality of his contribution, the cost of his contribution or the expected result of the contribution. With this kind of estimates available, the control unit has some valuable criteria on behalf of which the most appropriate KS’ can be selected. 
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Figure 1.5. Blackboard System organization
· Incremental solution generation
As KS’s keep bringing their contribution towards problem solving, they may refine existing solutions, contradict existing partial solutions or suggest new directions in problem solving.
1.8. Agent based Software Engineering

In general, Object-oriented (OO) systems, expert systems, and distributed computing techniques do not offer solutions to the kind of problems for which multi-agent systems are used, for a range of reasons [Wooldridge1997].

A new paradigm had to be created in order to address all multi-agent related development challenges. Yoav Shoham proposed a ‘new programming paradigm, based on a societal view of computation’ [Shoham1990]. Shoham proposed that an AOP (agent oriented programming) system should include:

· a logical system for specifying the mental state and behaviors of agents;

· an interpreted programming language for programming agents using simple versions of the logical system;

· an ‘agentification’ process, for generating executable agents from specifications;
Some key features [Wooldridge1994] of this new paradigm, called agent oriented programming (AOP) include:
· agents are autonomous, concurrently executing computer processes;

· agents are cognitive systems, programmed in terms of beliefs, goals, and so on;

· agents are reasoning systems, specified in terms of logic;

· agents communicate via speech acts — typed message passing;
From the above AOP properties some differences between AOP and OOP emerge. In OOP the computational system is made up of components (objects), each component solving a task and interacting with other components, handling communication in its very own way. On the other hand, in an AOP framework each entity (agent) has a fixed mental state consisting of components like: beliefs, capabilities, decisions. Furthermore agent communication differs from OOP inter component communication due to the fact that agent communication is based on speech acts expressed through performatives in contrast to object communication where ad-hoc messages are frequently exchanged. Another difference is given by the fact that objects are controlled from the outside whereas agents have a proactive behavior and cannot be directly controlled from the outside; in other words agents can say “no” [Tveit2001]. OOP is regarded as the successor of structural programming, modeling mainly static entities as objects, like buildings, cars or animals whereas OOA is considered to be an extension of OO systems where mental states are modeled. 
1.8.1. High level methodologies

Methodologies provide an iterative blueprint for modeling and development of agent based systems. Methodologies try to fill the gap between academic research and agents being used in industrial applications; industry often being reluctant to use new and immature technologies. Two methodology models will be presented:
· The Gaia methodology

The Gaia methodology introduced by Wooldridge, Jennings and Kinny [Wooldridge2000] is used for agent analysis and design. This methodology deals with both the micro problem of a single agent’s structure and the macro problem of organization of an agent society. This methodology was proposed due to the lack of methodologies properly capturing the pro-active nature of agents. Using Gaia, software designers can systematically develop an implementation‑ready design based on system requirements [Tveit2001]. In the analysis phase of Gaia, first, the roles in the system have to be identified and second interactions between roles have to be found. A role is composed of four elements: responsibilities, permissions, activities and protocols. Responsibilities have two parts: liveness properties which require agents to contribute with something useful to the system and safety properties which prevent agents from endangering the system. Permissions indicate which information an agent can access, activities describing task that an agent can manage without contacting other agents. Protocols represent specific interaction patterns similar to the protocols used in agent communication languages for negotiation. The design phase consists of several steps, the first being the assignment of roles to agent types and fixing the number of agent instantiations for each type. The second step is to create a service model, which has the task of fulfilling a role in one or more agents. The last step in Gaia design is to create an acquaintance model in order to represent communication between agents.
Gaia is of less value in open and unpredictable domains, such as internet applications; on the other hand it has been proven as a good approach for developing closed domain agent-systems [Tveit2001].

· The Multiagent Systems Engineering Methodology (MaSE)
The multiagent systems engineering methodology, is similar to the Gaia methodology, in supporting the same application domain, additionally providing support for code generation via the MaSE tool. This methodology is structured into seven sections. The first section deals with capturing system goals from the specification requirement and with ordering them into a hierarchy. In the second section use cases are designed based on the initial system specifications. These use cases describe the logical interaction between roles and the system or just between roles. Sequence diagrams are used to describe the minimal amount of messages passed between roles. The third section defines some roles, typically each role solving a system role determined at the first section; similar roles may be grouped together. Beside the roles, tasks are created, each task describing how to solve goals related to a role. The fourth stage attributes the created roles to agent classes, represented in class diagrams. The fifth phase creates state diagrams that define the states of a communication langue. Phase five can be regarded as a communication protocol between agents. In the sixth section the internal functionalities of an agent are defined. An internal functionality relies on five types of agent architectures: knowledge based, BDI, planning, reactive and user defined. In the last stage the actual agent instances are created, based on the agent classes and the result encapsulated in a deployment diagram. The multiagent engineering methodology further aims to achieve automatic code generation from the deployment diagram.
1.8.2. Design methods
Several design methods have been proposed, either inspired from the object oriented software engineering field, or from methodologies. In [Tveit2001] four design methods are discussed: UML, design patterns, components and graphs. We will discuss two of them.
· Unified modeling language (UML)

The unified modeling language was originally created to standardize the design of object classes using graphical representations. There have been several proposals on how to make use of UML as a design tool for multiagent systems. Two different trends emerged, the first with the intent of modifying the current UML standard to be able to represent all agent related aspects and the second one to use the current UML standard applying a higher abstractization level. Bergenti and Poggi [Bergenti2000] propose a high-level abstractization of the UML language using just four diagrams. The first used diagram is the ontology diagram which describes, using a standard UML class diagram, the world as relations between entities. The second diagram is the architecture diagram, which models the configuration of a multiagent system using a UML deployment diagram. The third diagram, the protocol diagram is used to describe the agent interaction language using an object collaboration diagram. The last used diagram is a class diagram that is used to model the functionalities of agent roles. The second approach was to introduce an extension to the UML to capture all the aspects of agents. This was achieved with the creation of AUML, the agent based unified modeling language.
· Components

Erol, Lang and Levy [Erol2000] propose a three tier architecture, where reusable components are to assemble agents. The first tier interactions is made up out of agent roles, the second tier local information and storage deals with storing agent related information such as state, plan and constraints and the third tier handles domain specific content information.
CHAPTER II
2. Agent development environments
This chapter presents two different agent development environments, with the intention of highlighting the most important features they have to offer as well as discussing the particularities of each one. 
According to [1] over 100 agent toolkits and developments environments have been released so far. Developers of agent systems rely heavily on these toolkits because it is unrealistic for them to develop a new infrastructure with each new application. Agent development environments provide a whole infrastructure, ranging from simple features such as message transport to more demanding ones such as agent monitoring tools, that allows developers to focus on domain based challenges. Some of the most influential development environments from both academia and industry will be discussed.
2.1. Jack Intelligent Agents

Jack Intelligent Agents, for short Jack, is an agent development environment that enables developers to create simple rational behaved agents acting in a multiagent system. Jack is built on top of java, as an extension of object oriented programming with agent related features such as, agents, capabilities, plans, events, knowledge bases, thus providing a powerful toolkit for easing development of agent applications.
A definition of a Jack agent is given in [2]: Jack agents are defined as “autonomous software components that have goals to achieve” under “both pro-active ... and reactive ... stimuli”. Jack introduces new syntactic and semantic features, and brings a whole set of classes and interfaces that allow manipulation of agent related components. Jack is not committed to a certain agent communication language, high level communication languages such as KQML or FIPA’s agent communication language (ACL) can be used. Jack supports a large variety of agent architectures, however the most popular being the BDI architecture. In a BDI architecture once an agent starts his activity he is pursuing his overall goals (desires) and adopts optimal plans (intentions) according to the knowledge an agent possesses about the world (beliefs). According to [Howden2001] to an application programmer Jack currently consists of three main extensions to java. The first extension gives the Jack intelligent Agents language additional syntax. This can be divided into:
· a small number of keywords for the identification of the main components of an agent (such as agent, plan and event);

· a set of statements for the declaration of attributes and other characteristics of the components (for instance, the information contained in beliefs or carried by events); Java ensures that all attributes are strongly typed.
· a set of statements for the definition of static relationships (for instance, which plans can be adopted to react to a certain event);

· a set of statements for the manipulation of an agent's state (for instance, additions of new goals or sub-goals to be achieved, changes of beliefs, interaction with other agents);
The Jack compiler is considered the second extension to the java language. Jack Agents can operate on any platform supporting java because the Jack agent language is fully compiled into regular java. Additionally the compiled code can be loaded and called from other java code. Finally, the third extension, a set of classes (called the kernel) provides the required run-time support to the generated code. This includes: 
· automatic management of concurrency among tasks being pursued in parallel (Intentions in the BDI terminology);
· default behavior of the agent in reaction to events, failure of actions and tasks, and so on;

· native lightweight communications infrastructure for multi-agent applications, when performance is an issue;
The Jack kernel supports multiple agents across one process as well as multiple agents across many processes. This enables similar agents, or agents which share most of their code to run in a single process, consequently saving valuable resources. When developers try to extend or change agent architecture they usually have to override the default kernel methods written in java or provide new classes for run-time support. Furthermore overriding certain run-time methods enable developers to change existing communication infrastructure. In a Jack environment every agent has:

· a set of beliefs that represent the knowledge about the outside world;
· a set of events at whose occurrence the agent responds;
· a set of goals that the agent will try to achieve;
· a set of plans that describe how some events should be handled in case of their occurrence;
Events
When an event occurs, the agent is motivated to take action. Events are triggered due to internal stimuli, external stimuli or motivations. When internal stimuli occur, then an agent sends an event to itself, usually as a result of executing reasoning methods in plans. External stimuli include messages received from other agents as well as percepts that an agent receives from its environment. Events can also occur in form of motivations, where a motivation is a goal an agent is committed to achieve. In this case, agents can post new events internally with the intent to be handled by other plans. We can distinguish between two types of events: normal events and BDI events. A normal event represents transient information that the agent reacts to, whereas BDI events are goal driven, in other words agents commit to the desired outcome, but do not choose the method to achieve it. 

Plans

A plan can be seen as a recipe towards goal accomplishment. A plan typically contains several steps, and by executing them, the agent tries to achieve its goals and handle its designated events. Each plan handles a single event, but multiple plans may handle the same event. In certain situations agents will have to choose from multiple plans in order to achieve their goal or to react to an event. In this case an agent can execute the plan’s relevant() method to determine whether that plan is relevant in the given situation. After eliminating all the irrelevant plans an agent can execute the context() method of a plan to test whether that plan is applicable or not.


BeliefSet

The BeliefSet represents the agent’s beliefs (knowledge) about the environment. The beliefs are represented using a tuple-based relational model. Each tuple can be true, false or unknown. There are two approaches when it comes to BeliefSets. The first one is the “ClosedWorld Relations” approach where tuples believed to be true are stored and those assumed to be false not stored. In the “Open World Relations” approach, both true and false tuples and stored, anything not stored being considered “unknown”. A possible flow of events is described in [3]:

Upon instantiation an agent will wait to receive a goal to follow, or will react to events he is expected to respond to. According to his beliefs, the agent will check if such event has already been handled. If this is the case, no action will be taken. If no such event has been handled, the agent will adopt an appropriate plan as an intention as response to the event. The chosen plan is executed and, if successfully, the goal will be considered achieved or the event will be considered handled. If the execution of the plan is not successful then an alternative plan is considered in order to accomplish the goal or handle the event. If all relevant plans are exhausted the agent fails to address the event or the goal. A plan is a collection of steps that an agent is attempting to execute in order to handle a goal or event. A plan may involve posting new events to the agent itself or demanding services from other agents. In this way, agent collaboration is achieved. Although Jack allows agent collaboration it does not offer any support for this. Jack Teams extends Jack into a team oriented programming environment.
2.2. The Open Agent Architecture (OAA)

The Open Agent Architecture developed by SRI International, is a framework for constructing multiagent systems in which agents cooperate to achieve their design goals. The OAA is designed to work in open systems, where agents can be written in a number of different programming languages such as Java, Prolog or Perl. OAA is based on agents in a community of agents working together to achieve goals [4]. The OAA agent library provides the necessary infrastructure for creation of a multiagent system. The agent library provides procedures that are available in several programming languages such as Java, Visual Basic, Lisp, Prolog, C, C++ and Delphi. The Open agent architecture can be defined as follows: 

“independent processes which communicate and cooperate with each other across a distributed network... [agents can] actively contribute to a computation as opposed to being only passive participants.”[4]
According to this definition the OAA agent exhibits properties like social ability, agents cooperating with each other to reach a given goal and pro-activeness because agents can actively contribute to a computation. Other agent characteristics like autonomy and reactivity are not mentioned in the definition but these are required by OAA agents.

2.2.1 OOA Agents
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A special agent provided by OAA is the agent Facilitator agent, which is responsible for finding matching requests, from users and agents, regarding the capabilities of other agents. 
Figure 2.1 OOA Agent organization
Agents do not have to possess any prior information about other agent’s location, identity or services in order to employ the Facilitator to search for certain capabilities. When an agent starts up, it automatically connects to a Facilitator agent sending a list of offered services. Agents can request a service from other agents by contacting a Facilitator and not through direct agent to agent communication. Once a Facilitator receives a request from an agent it selects, using the list of subscribed agents and their offered services, the most appropriate agent, also known as solving agent and delegates the task. The Facilitator agent can choose to decompose the task and employ several agents, each of them solving a part of the problem. Once the Facilitator receives the results, it sends them back to the requesting agent. The Facilitator agent is also able to send a task to several agents for parallel computation. Once each invoked agent comes up with the result, the facilitator sends them back to the agent who required the service, where the most suitable solution can be selected.
All the other agents besides the Facilitator agent are called client agents and can be categorized as follows: application agents, meta-agents, and user interface agents [Martin1999]. Application agents are usually specialized in providing a certain service, either domain independent technologies such as speech recognition or email, or domain specific such as a reservation agent. Meta agents are designed to assist the Facilitator agent when coordinating the activity of other agents. The Facilitator agent possesses only domain independent strategies while meta agents rely on domain specific coordination strategies. User interface agent plays a very interesting role in OOA systems. In some OOA systems the user interface agent consists of several “micro agents”, each of them monitoring a different input type. Input types include: point and click, handwriting, pen gestures and speech. In the spirit of OAA these agents collaborate in order to determine the best interpretation of the provided input. In an OOA environment several Facilitator agents, organized hierarchically can be deployed, each Facilitator agent having its own service agents. Usually the system attempts to achieve goals locally, but if it cannot do so, it will propagate queries further up the structure [Cohen1994].
2.2.2 The Interagent communication language (ICL)

The Interagent communication language is the communication, coordination and interface language of all the agents in an OOA environment. OOA agents use the ICL to execute actions, to perform queries, to manipulate or exchange data with other agents. All agents in an OOA environment use the ICL, regardless in which programming language they are written and regardless on which platform they run. The most important element that can be expressed through the Interagent communication language is the event. An event can be considered as being a goal to satisfy but also serves as message exchange between agents. A short example will be provided. Assuming that an agent wants to delegate a task, the oaa_Solve procedure, an OOA library procedure, may be called from the agent code. The result of this call is the generation of an event having the form

ev_post_solve(Goal, Params), 

where ev_post_solves is the type of the event, Goal the event content, and Params a list of provided parameters. For agent communication the ICL includes two layers, a conversational layer and a content layer. The conversational layer consists of a combination of event types and parameter value. This gives the ICL a greater expressiveness then communication languages that use performative acts such as KQML. In OOA a request to solve a problem can be expressed though an event of type ev_post_solve in combination with the solution_limit(N) parameter, indicating that at most n solutions have to found. The combination of events and parameters offers a flexible manner in which agents can communicate, in contrast to speech act based communication languages where for the same request as described above just a fixed number of solutions can be obtained due to the lack of appropriate performatives. The content layer consists of the specific goals, triggers, and data elements that may be embedded within various events [Martin1999]. Support for construction, parsing and manipulation of content expression is provided by the OOA libraries. Although content can be represented in other languages than the ICL, it is recommended to use the ICL language mainly because to allow the Facilitator to access the content. If the content is accessible, task delegation as well as task decomposition, if required, can be done in a proper manner by the Facilitator. 
2.2.3 Triggers


Similar to their usage in relational databases triggers describe a certain action that will be executed at a certain point in time. Usually triggers execute a certain action as a response to external stimuli or whenever a specified condition is true. In [Martin1999] four types of triggers are considered:
· Communication triggers that allow the execution of a certain action whenever messages are sent or received. For instance, an agent may decide to request a new service when a certain message arrives.
· Data triggers that allow the monitoring of a data repository (see 2.2.4). For instance, if a value contained in a data solvable matches a predefined value, a message is displayed on the console.

· Task triggers contain conditions that are checked every time an incoming event has been processed; in other words, they check if an internal solvable becomes valid. A task trigger example may be: “Notify me if a person viewed my web profile”. 
· Time triggers that allow the firing of a certain action at a given point in time. 
2.2.4. Solvables

Every agent in an OOA environment has to publish to a certain Facilitator a list of services he offers. These capabilities agents possess are expressed in the ICL and usually referred to as solvables. There are two main types of solvables, data solvables, which are conceptually the same as relations in a relational database or procedure solvables. A procedure solvable usually does a certain action like when a reservation agent checks whether new flights in a certain price range are available, whereas data solvables provide access to a collection of data. A solvable has the following format: 
solvable(Goal, Parameters, Permissions).
The Goal, encoded in the ICL, describes the actual service the agent offers. The parameter list can include options, perhaps the most important one being the type option specifying whether it is a procedure solvable or a data solvable. The Permission of a solvable indicates two things, first whether other agents can access the service provided by a solvable and second whether other agents can modify inforamtion associated to data solvables. By default, all agents can call a solvable, invoking a certain service and modify the collection of facts associated to a data solvable. An example of a data solvable is presented below

solvable(last_message(email, -MessageId),


[type(data), single_value(true)],


[write (true)])
OOA allows the creation and manipulation of data repositories using data solvables. To create a data solvable it has to be declared, just as the example above shows. A database consists of one or more data solvables, each agent possibly having its own database. Agents can query elements of a created database with the oaa_Solve procedure. Furthermore, an agent can use library procedures to add, remove or replace data solvables of his database an even of another agent database, if it is allowed. Together with the use of triggers, this functionality enables the development of blackboard systems. However, to build an authentic blackboard systems access to a global database has to be granted for every involved agent.
CHAPTER III
3. Java Agent Development Framework (Jade)
In this chapter the Java Agent Development Framework (Jade) will be presented. Insights will be given on the Jade architecture, on the basic and the advanced features the framework offers, discussing among others the impact that FIPA (The Foundation for Intelligent Physical Agents) specifications have on Jade. Special attention and in detail explanation receive Jade features that will be in focus in Chapter IV.
Jade stands for Java Agent Development framework and is a today widely used agent oriented middleware. Jade was originally developed by the Research & Development department of Telecom Italia s.p.a and is today governed by an international board. Written entirely in java, Jade allows developers to benefit from the performance and the features the underlying java language has to offer. The Jade programming language is in full compliance with FIPA specifications making it therefore highly interoperable with other platforms that respect the FIPA specifications.
3.1. The Foundation for Intelligent, Physical Agents (FIPA)


FIPA was founded in 1996 as an international non-profit organization with the aim of developing and promoting agent software related standards. These standards would eventually lead to a greater interoperability between agents and agent based software applications. The membership of FIPA consists of both academic and industrial organizations and through an iterative process over several years, the FIPA consortium developed a core set of specifications that went through three review cycles: FIPA’97, FIPA’98 and FIPA2000 [Bellifemine2007]. During the evolution of FIPA, several agent related ideas have been proposed but just some of them reached standard status. We will discuss briefly the most important parts of the FIPA specification.
· Agent Communication

Agent communication is a central part of the FIPA specifications, having developed with FIPA ACL, discussed in section 1.7.1.4, one of today’s most popular agent communication languages. FIPA ACL is based on speech act theory, coming with a set of 22 performatives and allowing developers to express message content in any particular language. Nevertheless, FIPA ACL provides specifications for several representation languages including FIPA-SL, which is the only standard specification, FIPA-KIF and FIPA-RDF. FIPA ACL comes with a set of agent interaction protocols, each describing a sequence of message exchanges. These protocols are mainly used to coordinate agents or to describe the workflow of inter agent negotiation.

· Agent Management
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A second fundamental aspect addressed by FIPA is agent management. Agent management deals with the creation, registration, location, communication, migration and operation of agents. The FIPA agent management reference model is presented below.
Figure 3.1. The FIPA agent management reference model

The reference model components will be discussed throughout this chapter referring particularly to the JADE development environment.
· Abstract Architecture
The abstract architecture was created by adopting a unified specification which contains the most central parts of all FIPA specifications. ACL message structure, message transport, agent directory services and service directory services are considered mandatory in the abstract architecture. The benefits of the abstract architecture are explained in [Bellifmine2007]: “The overall goal of the approach is to permit the creation of systems that seamlessly integrate within their specific computing environment while interoperating with agent systems residing in separate environments.”

3.2. Jade Architecture

A jade platform is composed of one ore more agent containers which can be distributed across a network. Containers are entities in which agents live providing the necessary infrastructure for hosting and executing agents. A particular container is the main container, which is always the first container to be launched. All the containers launched after the main container have to register with the first one launched. By default, the main container is named “Main Container”, while other container are simply named “Container-1”, “Container-2”, “Container-3” and so on.

A unique Agent Identifier (AID) identifies every Jade agent. Every AID is composed of a set of information in compliance with FIPA standards. The two main elements of this set are the agent name and its address. An agent name is built by concatenating the user defined agent name with the name of the platform the agent is running on. Agent names are of the form:
<local-name>@<platform-name>
Agent names are globally unique and within platforms agents can be identified only through their local names. The address of an agent is inherited from the platform the agent lives on, each platform having an address which can receive FIPA compliant messages via the Message Transport Protocol (MTP).
3.2.1. The Agent Platform (AP)


The agent platform offers a physical infrastructure where agents are placed in. An agent platform contains hosts, operating systems, agent management components as well as agents. Agents within a platform do not have to coexist on the same host, but still having access to the same infrastructural services. The implantation of an agent platform is left to the developer, FIPA not providing any specifications.
3.2.2. Agent Management System (AMS)

The task of the agent management system is to manage all the agent platforms operations. There are several kinds of agent platform operations ranging from agent creation, migration or deletion to providing agent descriptions. Within an agent platform only one AMS can exist, even if the platform is spread across multiple hosts. Upon creation, an agent has to register with the AMS in order to obtain an AID. Once an agent terminates it has to deregister from the AMS, the agents AID being available for other agents.
3.3. Message Transport Service (MTP)


According to FIPA specifications a message transport service is one of the most important services an agent platform has to offer. The MTP handles all inter-platform message exchanges. Jade implements the FIPA specification that defines the MTP in order to achieve a high degree of interoperability with other non-Jade platforms. The default transport protocol for the Jade MTP is the HTTP protocol, other transport protocols such as IIOP or JMS being available on the public domain [Bellifemine2007]. When agents, regardless of the container they live in, exchange messages within the same platform a special protocol, the IMTP (Internal Message Transport Protocol) is used to deliver messages. There are currently two implementations of the IMTP, one based on java RMI, which is also the default implementation, and another operating through TCP sockets. Because IMTP does not deal with inter-platform communication and is used only within a platform it does not have to respect FIPA specifications.
3.4. Jade Tools

Jade offers a variety of useful tools for launching, operating and monitoring agents. The need for such tools is given by the fact that multiagent systems are usually complex, distributed across several hosts, with agents appearing, migrating and disappearing. In this situation powerful tools, as we will see, ease the maintenance and debugging process significantly.
3.4.1. The platform management console

The RMA (Remote Monitoring Agent) platform management console is probably the most important tool, Jade offers. This tool allows developers, through an intuitive visual interface, to monitor and administrate a distributed jade platform. The platform management console can be launched either invoking the jade.tools.rma.rma class or launching it directly from the command line using the –gui option. The tool allows the manipulation of three basic jade entities: agents, agent containers and agent platforms. Additionally it includes a “Tools” menu from which other tools can be launched.
· Manipulating agents

Several options are available for agent manipulation. These include: creating new agents, loading existing agents, suspending or removing an agent, freezing an agent, cloning an agent or migrating an agent to a different container. Furthermore, it is possible to send ad-hoc messages to agents.
· Manipulating containers

Basic container operations include: saving, loading and killing a selected container. When containers are saved or loaded all the resident agents are also saved or loaded. Containers support installation and uninstallation of custom message transport protocols (MTP’s).
· Manipulating agent platforms

The RMA can be used to control a set of platforms, giving developers options for adding and removing remote platforms as well as to access information obtained regarding the platform name and the services the platform offers.

3.4.2. The Dummy Agent

The Dummy Agent is a tool used for sending stimuli, in form of ACL messages, to agents in order to test their behaviors. This simple tool is able to both send and receive messages, messages that can be loaded or saved, from or into files. The Dummy Agent is used mainly in the development process, by sending specific messages to agents and evaluating the agent’s reaction by analyzing the received response.
3.4.3. The Sniffer Agent

In contrast to the Dummy Agent where only a single agent could be monitored at a time, the Sniffer agent offers the possibility of monitoring whole conversations between agents. From the Sniffer Agent GUI agents can be selected for sniffing, meaning that every message directed or coming from selected agents will be tracked. The Sniffer Agent GUI also contains a canvas which graphically represents the tracked messages. Each arrow indicates a message while each color indicates a distinct conversation.
3.4.4. The Introspector Agent

This agent is used to monitor and debug the behavior of a single agent, the monitoring going as far as the agent’s lifecycle. The Introspector agent queues all the sent and received messages of a tracked agent and monitors the queue of scheduled behaviors (see 3.5.2). Additionally the tool offers information on which behaviors are executed and which ones are passed to the sleeping queue. Summarizing, this tool offers introspection of an agent’s execution.
3.4.5. The Log Manager Agent

The Log Manager Agent is a tool that allows run-time change of logging levels for each Jade component, remote components included. Every class in the Jade environment may have its own instance of the Logger class, thus enabling the Log Manager Agent to keep a list of all logged components. For every component in the Log Manager Agents list, values for logging level and logging handlers may be modified at run time. This functionality is particularly usefully when debugging application is required without restarting the agent platform.

3.5. Basic Features

3.5.1. Creation and Termination of Agents


We will show how agents are created and destroyed providing perhaps the most simple agent example. The Hello World Agent presented below does nothing more then writing a message to the standard output.

import jade.core.Agent;


public class HelloWorldAgent extends Agent {


protected void setup() 


{

// Printout a welcome message


System.out.println("Hello World!");


}


}
Creating an agent is nothing more then writing a standard java class extending the jade.core.Agent class and implementing the setup() method. The setup() method is expected to contain all the initializations, thus avoiding the usage of a constructor which may cause problems. Agent termination occurs when the doDelete() method is invoked. Similar to agent creation where the setup() method is called in order to create an agent, the takeDown() method is invoked just before agent termination. However there is a difference between these two methods, setup() has to be implemented mandatory while takeDown(), intended to contain clean-up operations such as disposing a GUI or closing a database connection, has not necessarily to be implemented.
3.5.2. Agent behaviors


Tasks and jobs an agent has to carry out are done in Jade through behaviors. Behaviors are implemented as java classes that extend the jade.core.behaviours.Behaviour class. A behavior class must implement two abstract methods, the action() and the done() method. The action() method has to contain the actual task the agent wants to execute. The done() method indicates whether the behavior is completed or not, where an active behavior is considered a behavior that did not complete. Assigning a certain behavior to an agent is done by calling the addBehaviour() method with the behavior to add as parameter in the agent class. Several behaviors can be assigned to an agent, which can be executed concurrently. Each time when an agents attempts to execute a behavior, it picks one from a pool of active behaviors. When a behavior is considered inactive, it is removed from the pool of active behaviors. The execution of the action() methods from several agents may interleave because some action() methods may be executed several times until the done() method returns false. Between two executions of the action() method of a behavior actions from other behaviors may be scheduled.
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The agent execution model offers a clear picture on how behavior scheduling works.

Figure 3.2. The agent execution model

There are three basic types of behavior available in Jade: one-shot behaviors, cyclic behaviors and generic behaviors. All three types will be discussed.
· One shot behaviors
One shot behaviors are the simplest type of behaviors, because of their design to complete in one execution. This implies that the action() method is called just once, the behavior terminating after the method returns. This behavior is implemented by the jade.core.behaviours.OneShotBehaviour class which extends the jade.core.behaviours.Behaviour class, having its done() method already implemented by always returning true.

public class MyOneShotBehaviour extends OneShotBehaviour {


public void action() {


// perform operation A


}


}
· Cyclic behaviors

In contrast to one shot behaviors cyclic behaviors are designed to never complete. This type of behavior implemented in the jade.core.behaviours.CyclicBehaviour class executing its action() method each time it is called. The done() method is already implemented returning always false.

public class MyCyclicBehaviour extends CyclicBehaviour {


public void action() {


// perform operation A


}


}
In our example operation A is performed every time the action() method is called. Since the done() method never returns the boolean value true, a cyclic behavior will never be removed from the collection of behaviors the agent is executing. To stop this infinite cycle the removeBehaviour() method of the Agent class has to be called. This has as effect the removal of the desired behavior from the pool of current executing behaviors.
· Generic behaviors

Generic behaviors differ from the previous presented behaviors, because of their unimplemented done() methods. To create a generic behavior the jade.core.behaviours.Behaviour class has to be extended. Unlike the OneShotBehaviour and the CyclicBehaviour classes, which define the done() method, in a generic behavior class its the developers task to implement that method. This enables the execution of the action() method until a task-related condition is satisfied in the done() method. Usually generic behaviors are designed to execute each time a different operation in the action() method until termination occurs.
3.5.3. Agent Communication

Agent communication is perhaps the most fundamental feature of Jade. As presented in section (1.7.1.4) Jade comes with its own fully FIPA compliant agent communication language. Jade agents communicate by an asynchronous message exchange, every agent having an internal queue where incoming messages from other agents are stored. Each time a new message arrives, it is stored at the end of the queue and the agent notified of its arrival. However it’s the programmer’s choice at what point in time messages are picked up from the queue. Processed messages will be removed from the queue automatically.

A list of most important FIPA ACL message elements will be presented:
· the sender of the message

· The list of receivers; A message can be sent to several receivers.
· The performative associated to the messages indicating what the sender tries to intend with the message.

· The content of the message which represents the actual information an agent sends to another.

· The used ontology, in other words what meaning is associated to the message content. Communicating agents have to assign the same meaning to the content of a passed message in order to communicate properly.

· The representation in which the message content is encoded. For correct communication both agents, sender and receiver have to be able to encode and process a message.
· Additional fields in a message structure include conversation-id, reply-with, in-reply-to and reply-by, and are used to control several concurrent conversations and to specify timeouts for receiving a reply.

Some simple examples on how Jade agents communicate will be presented.

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);


msg.addReceiver(new AID("Peter", AID.ISLOCALNAME));
msg.setLanguage("English");


msg.setOntology("Weather-forecast-ontology");


msg.setContent("Today it’s raining");


send(msg);

In the example above a message is composed and then sent to another agent. The first line creates an ACLMessage object, specifying as parameter the message performative. Next the most basic fields of a message, receiver, message content, message representation language and ontology are set, where the receiving agent is identified by its AID. The send() method of the Agent class is invoked, passing the previously composed message as parameter.


public void action() {


ACLMessage msg = myAgent.receive();


if (msg != null) {


// Process the received message


}


else {


block();


}


}
The code above presents a widely used and strongly recommended pattern for receiving messages. A more simple approach would be to write


ACLMessage msg = receive();


//process the received message msg

In this case, the above code is executed once allowing just one message to be received. To solve this problem, the code may be put into a loop that constantly checks whether a new message arrived or not, and processing messages in case they arrive. This would solve the problem but the loop would be very inefficient and CPU expensive. A correct and efficient approach is to code message receiving within a behavior like in the first example. The message receiving is done in the action() method making use of the block() method, which when called marks the current behavior as “blocked” so that the agent does not schedule it for further execution. The behavior will unblock when a new message arrives in the agents message queue. As result the behavior is scheduled and executed again allowing the incoming message to be processed.
3.5.4. The Yellow Pages Service

The Yellow Service Pages allows agents to publish a brief description of the services they offer. Services can be posted (offered) well as looked up (searched for) by agents interested in them. In compliance with the FIPA Agent Management specification Jade provided the DF (Directory Facilitator) which offers the Yellow Pages service. The DF is itself an agent so publishing and searching for services has to be done through message exchange. Interacting with the DF imposes the use of a proper content representation as well as a proper ontology.

When publishing a service, certain information has to be provided. This information includes: the agents own AID, the list of services published, a description of each service and optionally a list of content representation languages and ontology’s required to access the service. A service description includes information about the type of the service, the service name, and a list of key-value pairs that define service-specific properties [Bellifemine2007].


DFAgentDescription dfd = new DFAgentDescription();


dfd.setName(getAID());


ServiceDescription sd = new ServiceDescription();


sd.setType("Path-Finding");


sd.setName(getLocalName());


dfd.addServices(sd);


try{



DFService.register(this, dfd);


}


catch (FIPAException fe){


fe.printStackTrace();


}
In the example above two classes are used, the DFAgentDescription class and the ServiceDescription class, the first for encapsulating agent data and the second for encapsulating service related information. After preparing the necessary data the service is registered with the DF Agent using the static register() method call of the DFService class. The takeDown() method of the Agent class usually contains, if implemented, the deregistration of all published services. In this particular case, the published service description does not contain any information on content representation and ontology.

When searching for published services an agent has to define a template description of the desired service. This template is sent to the DF Agent, in form of an ACL message and after searching the service catalogue, the DF Agent will return a list o matches. According to FIPA a description matches the template when all values provided in the template are present in the service description. A short example is presented below.


DFAgentDescription template = new DFAgentDescription();


ServiceDescription sd = new ServiceDescription();


sd.setType("Path-Finding");


template.addServices(sd);

try{


DFAgentDescription[] result = FService.search(this,template);

}

catch (FIPAException fe) 


{


fe.printStackTrace();


}

In this example all the published services of type “Path-Finding” are looked up and stored in the “result“ array. 

3.6. Advanced Features


Jade offers a set of advanced features allowing Jade to be used on additional platforms such as application servers and mobile devices. Furthermore advanced features offer support for handling content expressions, agent mobility, interaction protocol, security, persistency and others. We will briefly discuss some of the most important features.
3.6.1. Agent Mobility

Agent mobility in Jade is implemented in the platforms Agent Mobility service, Jade supporting “hard mobility”, i.e. mobility of status and code. Status mobility is achieved when the execution of an agent is stopped on a local container, the agent moves to a different container (most likely on a different host) and continues its execution from the exact point where it was stopped. Code mobility occurs when the code of the moving agent is not present on the remote container; in this case the code is automatically retrieved on demand. Because agent mobility relies on java serialization an agent has to be serializable to be considered movable. Agent mobility can be either self-initiated, case in which the doMove() method in the Agent class is called or forced when the AMS initializes the move due to a request from another agent. Additionally agents can be cloned, Jade providing a specialized method, the doClone() method of the Agent class.
3.6.2. Security
Security elements in Jade are distributed as an add-on that has as task the prevention of possible treats. Examples of threats include:
· An agent tries to kill another agent by requesting this from the AMS

· A malicious agent can request the AMS to shut down the platform

· A malicious agent can track a message and sniff sensible message content information

All the above mentioned treats are eliminated providing support for authorization and authentication, which are based on JAAS and end-to-end message integrity and confidentiality. All security related API’s are available in the SecurityHelper class, which can be retrieved by calling the getHelper() method from the Agent class.

3.6.3. The Leap-ad on
The Leap-ad on allows Jade to run on lightweight mobile devices such as PDA’s or mobile phones using the MIDP or the Personal Java profile. Due to the fact that the standard Jade distribution is too big for resource-limited mobile devices, the Leap-ad on was created. The Leap-ad on replaces some parts of Jade, having a different internal representation, but keeping the agent API thus enabling interoperability with the standard Jade distribution. 
CHAPTER IV

4. Real-Time Learning
This chapter will discuss, the topic of Real‑Time learning, focusing on agent-centered search algorithms by highlighting their main properties and advantages. The asynchronous dynamic programming and the learning real-time A* search algorithms will be presented, as well as algorithm extensions that can enhance computational performance. Most important we will present our own approach towards LRTA* optimization. 
4.1. Agent‑centered search algorithms
Agent-centered search algorithms, also called real-time search algorithms are mainly used in pathfinding problems. A pathfinding problem may be described as follows: given a known or unknown environment, most commonly represented by a map, the task is to reach a point (final position) starting from an initial point (outgoing position). Clearly, path-finding problems are of great use in some domains. For instance given a map of a large city, path-finding algorithms can determine the fastest way from the central railway station (point A) to the local conference center (point B). A robot trying to find his way out of a maze is a similar problem where path-finding algorithms are employed. 

The solution of pathfinding problems can be divided into two phases: the planning phase in which the path is planned, and the execution phase in which the plan is executed. In traditional search algorithms, first the whole path is planned and afterwards executed. In agent-centered search algorithms starting from the outgoing position a partial plan is computed and executed, thus obtaining a new start position. The cycle is repeated starting from the new start position. Usually in traditional methods, the planning phase is much longer then the execution phase, particularly in very large environments, that in some situation is not fully known or changing. In agent‑centered search algorithms the planning phase is much shorter, but the execution phase longer then in traditional algorithms. Nevertheless, the total computation time is significantly shorter then in classic algorithms. Figure 4.1 shows the difference between the two search paradigms:
Figure 4.1. Traditional Search vs. Agent-centered search
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As shown in the above figure in agent‑centered search planning and execution are interleaving, restricting planning around the current state of the agent. The environment agents “live” in usually represented as a map, will be modeled in this chapter as a graph. This abstractization is particularly useful when discussing agent‑centered search algorithms, all of them relying on this representation. In our case, a graph contains the following elements:

· a set of nodes, each node representing a state;
· A set of edges, each edge linking two nodes; a number assigned to each edge indicates the cost, in our problem the distance between two nodes. We assume that the distance is a positive, non-zero number.

· a unique start node and a final node;
Furthermore, we assume that the graph is undirected and connected. Having defined the model of the environment, a problem statement, that all presented search algorithms address, will be provided: given two distinct nodes of the graph, the shortest (optimal) distance between the two points has to be computed. All the above presented examples remain valid problem domains, for instance streets can be represented by edges and intersections represented by nodes. The length of a certain street can be coded as the distance between the two intersections. A maze can be modeled in a similar manner. In the presented algorithms one or more agents travel throughout the graph, determining distances from node to node, starting from the initial node and ending at the final node. Usually agents cannot compute the exact distance between nodes in just one journey from start node to end node (trial). In most cases, several trials are needed to determine the exact distance, an agent teleporting back to the initial node and starting a new trial once the final node is reached. 

Agent‑centered search can be also used in field of game playing, the chess game being one of most popular application domains. In this case, the states (nodes) correspond to board positions, the current node representing the current position on the chessboard. Algorithms addressing the chess game traditionally perform a mini-max algorithm with a certain look-ahead depth. Because of the fact that the chess game consists of a huge amount of states, only a limited local search is performed around the current state in order to meet time constraints. Performing agent-centered search allows game-playing programs to choose a move in a reasonable amount of time, while focusing on the part of the state space that is the most relevant to the next move decision [Koenig2001]. Another approach is to use a standard mini-max algorithm in order to select the best possible move from the local search space, while using agent‑centered search to explore other possibilities which are not in the range of the local search space but which can bring a greater long-term benefit. 


There are two basic domain types in which agent-centered can be applied: deterministic domains and non-deterministic domains.

· Deterministic domains are characterized by the fact that the outcome of certain actions can be predicted certainly. Examples of deterministic domain problems include the sliding tile puzzle or the blocks worlds problem. In deterministic domains, there is no information limitation regarding the search space.

· In nondeterministic domains, information limitation occurs which can only be overcome by exploring the whole search space, which is sometimes nearly impossible. So in order to address nondeterministic domains algorithms have to interleave planning and execution. Without interleaving planning and execution, a conditional plan has to be created and executed, no matter which contingencies arise during its execution. More, algorithms that interleave planning and execution gather information after each plan‑execution phase, thus reducing domain uncertainty and therefore planning time.

4.2. The asynchronous dynamic programming algorithm (ADP)

The asynchronous dynamic programming algorithm is used to determine the shortest path between each node of the graph and the final node. The distance from each node to the final node is stored in a vector, h*, h*(j) denoting the distance between node j to the final node. Once the vector h* is computed the path from a selected node to the final node can be retrieved as follows:

· For every neighbor node j of the current node i the sum

f*(j) = k(i,j) + h*(j)

is computed, where k(i,j) represents the direct distance between node i and j and h*(j) the distance from node j to the final node. In other words, the f vector stores all the distances from the current node to the final node.

· After computing the f vector, the next to visit node (j0) is determined by choosing the node for which f(j) is minimal.

f*(j0) = minj f*(j)

· The whole procedure is repeated starting from nod the newly selected node (j0) until the final node is achieved.

The optimal path between the selected node and the final node is given by all the visited nodes from the above procedure. However in order to determine the minimal distance between the two nodes, first the h* vector has to be computed. Before describing the computation of h* we will introduce a new vector, noted with h. This vector contains for every node i of the graph, an estimation of the distance to the final node. This function, also known as a heuristic function, is said to be admissible if for each node of the graph the estimated distance to the final node does not overestimate the real distance. Once the vector is initialized properly, no overestimation of the real distance can occur when running the ADP algorithm, making the vector initialization particularly important. In the simplest manner, we will set all the values of h to 0, making it impossible to overestimate the real distance between two points. The scenario on which the ADP algorithm is based is described as follows:

· an agent (process) exists for each node of the graph; 

· every process computes the h(j) function, the estimation from the local node to the final node;
· Every node can access the heuristic value of the neighboring node. This can be implemented either using a shared messages structure or through message exchange.

The procedure, which actually describes the computation of the h vector, is presented below:

· For every neighbor node j of node i the sum

f(j) = k(i,j) + h(j)

is computed, where k(i,j) is the direct distance from node i to node j and h(j) the estimated distance between node j and the final node.

· After having computed the f vector the estimate of the current node is updated with the minimal value from f.

h(i) = minj f(j)

The asynchronous dynamic programming algorithm computes the h* vector by repeatedly computing all local values for h. Once the optimal paths from each node to the final node have been found, the following relation holds

h(i) = h*(i) for every node i

thus obtaining the h* vector. It is said that the algorithm converges if after repeated local computations the estimate distance between the each node and the final node indicates the real distance. The ADP algorithm cannot be used when dealing with big graphs where memory consumption could reach a high level.

4.3. The Learning real-time A* (LRTA*) Algorithm

The LRTA* algorithm is based on the ADP algorithm but instead of using an agent, and consequently a process, for each node a reasonable number of agents is used. The program that an agent executes can b split into three steps:

· Computation

For every neighbor j of the current node i, the following sum is computed:

f(j) = k(i,j) + h(j)

The values of the vector f are computed adding the direct distance between nodes i and j, stored in k(i,j) to the estimated distance from node j to the final node, stored in h(j).

· Update

After computing the vector f for each neighbor j of i, the estimate distance from node i to the final node is update with the minimal value of vector f.

h(i) = minj f(j)

· Action selection

After computing a new estimate of the distance from node i to the final node, the agent has to move to another node. In the standard LRTA* algorithm the node at which f(j) is smallest is selected.

The LRTA* algorithm is called an online algorithm or real-time algorithm because of the fact that the next node is always chosen in constant time. The estimated values of h are not allowed to overestimate the real distance to the final node. This property of every node is described below:

h(i) <= h*(i)

The LRTA* algorithm will never overestimate the real distance between a point and a destination node if the initial values of h are initialized properly. There are several ways to initialize the h function in order to be admissible, perhaps the simplest one is to set all its values to 0. Other approaches are to use Manhattan distances if working with a known environment or when dealing with geographical coordinates to initialize the vector with the straight-line distance between the initial node and the target node.

4.4. Improvements of LRTA*

We will point out throughout this section some of the most significant improvements of the learning real-time A* algorithm.

4.4.1. Deeper Look-ahead Search

The standard LRTA* algorithm considers in the computation phase only the direct neighboring nodes, in order to obtain the f vector. The area formed by nodes, taken into consideration by a search algorithm is called local search space. As suggested the standard LRTA* algorithm defines the local search space as the set of direct neighbors of the current visited node, thus having a look-ahead factor of 1. A search space of factor 2 would include all nodes in the range of 2 arcs from the current node. Several algorithms have been proposed that widen the local search space using a deeper look-ahead. These algorithms usually converge faster towards finding the optimal path then the standard LRTA* algorithm, but have a longer planning phase. The main advantage of the deeper look‑ahead search is the fact that it solves the problem of a local depression, because agents tend to move back and forth in local minima. However, there are several disadvantages of using a deeper look-ahead search. The first one is considered a time‑consuming first move because more nodes are taken into consideration. Furthermore, deeper look‑ahead achieves a better overall execution time but takes a longer planning phase because of the extra amount of nodes considered leading to unsatisfied hard real-time constraints where only a certain amount of time is available for each planning episode [Koenig2004].

4.4.2. Using inadmissible heuristics
The standard LRTA* algorithm as described above uses an admissible heuristic function in order to o obtain algorithm convergence and the optimal solution. For very large domains, this leads to many trials and a large memory consumption storing the necessary heuristics. Shimbo and Ishida [Shimbo2003] suggested using inadmissible heuristics abandoning thus the optimal solution and settling for a suboptimal but satisfying solution. Inadmissible heuristic functions are usually upper bounded by

(1+ έ)*h*(s)

,where h*(s) represents the real distance, achieving thus a έ optimality. Shimbo and Ishida used Manhattan distances scaled with (1+ έ) to initialize the initial heuristic function and as [Bulitko2006] concludes, scaling an initial (admissible) heuristic by (1+έ) tends to reduce the underestimation error of the heuristic thereby speeding up convergence.

4.4.3. Backtracking

Shue and Zamani [Shue1993] introduced a new LRTA* like algorithm with a backtracking mechanism, called SLA* in order to speed up overall convergence. Updating more than one state value in each planning stage can result in more efficient learning. When an update of the h function occurs at the current state, the backtracking mechanism propagates information back to the previous states, thus updating not just a single value. Backpropagation of information can be done either with “physically” moving the agent to a previous state and reconsider the next action, or just update values of previously visited states in memory. The SLA* algorithm is characterized by a time consuming first trial because most of the learning is done in the first run. To address this problem some algorithms use a parameter that indicates how much information the agent has to gather in a trial before being allowed to backtrack information. This parameter, called learning quota reduces significantly execution cost, thus combining the properties of the standard LRTA* algorithm and the SLA* algorithm.

4.5. Considered Algorithms


Several algorithms that extend the standard LRTA* algorithm with some of the above improvements will be presented. 

4.5.1 Prioritized Learning Real-Time A*  (P-LRTA*)

[Rayner2007] proposes a LRTA* based algorithm which uses a priority queue in order to update several states at each execution phase. The algorithm, known as P-LRTA* relies on a prioritized learning process and greedy action selection. The main loop of the algorithm is presented below: 


while s ≠ sg do


STATEUPDATE(s)


repeat


p = queue.pop()


if p ≠ sg then


STATEUPDATE(p)


end if


until N states are updated or queue = ∅ 


s ⇐neighbor s’ with lowest f(s, s’) = c(s, s’) + h(s’)


end while

The loop updates the current state s through the STATEUPDATE procedure, and stores in vector p the first N nodes from the queue, where N is a user-defined parameter. At the beginning of the planning phase, the agent updates the current state s by considering just its immediate neighbors, such that each node neighboring node s, contained by the vector p is updated, except for the final node.


STATEUPDATE(s)


find neighbor s’ with the lowest f(s, s’) = c(s, s’)+h(s’)


Δ ⇐ f(s, s’) − h(s)


if Δ > 0 then


h(s) ⇐ f(s, s_)


for all neighbors n of s do



ADDTOQUEUE(n,Δ)


end for


end if
The STATEUPDTAE procedure receives as parameter a node s, and first searches for the neighbor with the lowest sum f(s,s’) = c(s,s’) + h(s’), where c(s,s’) is the distance between the current node s and the neighboring node s’ and h(s’) the estimated distance from the neighboring node to the final node. The Δ value represents the magnitude by which the current state is changed. The newly obtained estimated distance is compared to the previous one, and if an update of the heuristic function occurs, all the neighboring nodes are enqueued. The enqueing of the neighboring nodes is done in the ADDTOQUEUE procedure.


ADDTOQUEUE(s,Δs) 

if s ≠ queue then


if queueFull() then


find state r ∈ queue with smallest Δr

if Δr < Δs then


queueRemove(r)


queueInsert(s,Δs)


end if


else


queueInsert(s,Δs)


end if


end if

In case the queue is full, the element with the smallest degree of state change is looked up and replaced with the node passed as parameter if the Δr is greater then Δs. Otherwise the provided parameters are enqueued, avoiding duplicate elements. The goal is to obtain a queue of maximum size N containing the biggest magnitude of state changes. The user defined queue size N was introduced in order to limit memory usage as well as computational time. 

4.5.2. The SLA* Algorithm

The SLA* algorithm uses a backtracking mechanism, as described in section 4.4.3. to inform previously visited nodes of the heuristic value change at the current node. A standard version of the SLA* algorithm as well as an improved version will be presented. The standard SLA* algorithm is presented below: 


1: s ( initial start state s0

2: solutionpath ( ∅ 


3: while s ≠ Sg do


4: 
h’(s) ( mins’ succ(s)(c(s, s’) + h(s’))


5: 
if h’(s) > h(s) then


6: 
update h(s) ( h’(s)


7: 
s ( top state of solutionpath


8: 
pop the top most state off solutionpath


9: 
else

10: 
push s onto top of solutionpath


11:
s ( argmins’succ(s) (c(s, s0) + h(s’))


12: end if

13: end while


The algorithm behaves identically like the LRTA* algorithm in case no value update takes place, i.e. when the lines 10 and 11 are executed. Otherwise, if an update occurs instead of moving to the next node, the algorithm backtracks to the previous state. The solutionpath does not contain like the standard algorithm the traveled path, containing instead the best path found in the trial because of the backtracking mechanism. The backtracking mechanism has two effects on algorithm execution. First, it enables newly discovered information to be sent back to the previous state and second it allows the agent to reconsider his choice in the previous state. The main benefit of the SLA* algorithm is the shorter overall travel cost compared to the LRTA* algorithm. The main disadvantage of the algorithm is the poor first trial performance. This particularly problematic since a good first-trial performance is a crucial property of any real-time algorithm [Sigmundarson 2006].


According to [Sigmundarson2006], after testing several versions of the SLR* algorithm, the one with the best overall performance was the PBT-LRTA* algorithm. PBT stands for partial back propagating, and as the name suggests it is not a full backtracking procedure. In contrast to the standard SLR* algorithm, here newly gathered information is propagated higher up the graph hierarchy but without moving the agent to the previous state.


1: s ( initial start state s0

2: solutionpath ( ∅; 


3: while s ≠ Sg do


4:
h’(s) ( mins’succ(s)(c(s, s0) + h(s0))


5:
if h’(s) > h(s) then


6: 
update h(s) ( h’(s)


7:
for all states sb in LIFO order from the solutionpath do


8:
h’(sb)   mins’succ(sb)(c(sb, s’) + h(s’))


9:
if h(sb) >= h’(sb) then


10:
 break for all loop

11:
end if

12:
h(sb) ( h’(sb)


13: 
end for

14: 
end if

15: push s onto top of solutionpath


16: s ( argmins’succ(s)(c(s, s’) + h(s’))


17: end while

The PBT-LRTA* algorithm updates the heuristic function of the previous states until as a state is found where no update is needed.

4.6. Our Approach

Several improvements of the LRTA* algorithm were presented throughout the chapter, with the goal of speeding up the overall process, but, as we have seen, every optimization comes at a certain cost. Either solution optimality is sacrificed, preferring an inexact but fast converging solution, or obtaining a fast algorithm while having a very long first trial. We will introduce an approach that tries to achieve a trade-off between improved algorithm convergence and between maintaining the on‑line property of the LRTA* algorithm. In our LRTA* version several agents will be employed to solve a given path-finding problem simultaneously. Each agent will execute a LRTA* algorithm and throughout execution agents communicate in order to share discovered information. In fact three types of agents will be used, each type executing a different version of the LRTA* algorithm. All the three approaches will be presented:

· The first type of algorithm used is the standard LRTA* algorithm, with a look‑ahead depth of 1 and with a greedy action selection.

· The second type of algorithm uses a unique action selection procedure, choosing the next node randomly. This has as effect the alternative exploration of the solution space, exploration that may discover information that can be used by other agents in the current trial or in further trials. 

· The third type of algorithm combines the first two approaches. These agents will alternate their action selection methods, choosing either the first presented approach or the second one.

The motivation behind this action selection is quite simple. While the first type of agents will follow only the most promising path towards the final node, the second type of agents rather than attempting to maximize the initial benefits by following the optimal route will try to explore new paths that may bring long-term benefits. Considering only the first two agent algorithms the following situation might occur: in a large environment, there is the possibility that those agents which use the standard LRTA* algorithm will explore only a few suboptimal paths while agents using a random node selection may use entire different paths. Therefore, the third type of algorithm is used in order to find the “middle way”, i.e. to combine the results of the first two agent types. Assuming that multiple agent types are used in a path-finding problem, a ratio between agents which use different action selection types can be set up. Naturally, this ratio has to be in favor of agents using the standard LRTA* algorithm, while only a few agents performing exploratory search.


So far, the introduced algorithms conserve the on-line property of the LRTA* algorithm, trying to achieve an efficient search of the problem space. However, this approach alone does not speed up algorithm convergence significantly, demanding some of the algorithm extension presented in section 4.4 to be adopted. The backtracking mechanism was chosen in order to keep optimality and preserve as much as possible the on-line property of the LRTA* algorithm. Summarizing, we propose a LRTA* based algorithm with different action selection methods in combination with a backtracking mechanism.
Chapter 5
5. An application for Path-Finding using improvements of the LRTA* algorithm

In this chapter, we will present an application, unnamed, for solving path-finding problems. The application will be presented systematically, detailing design and implementation issues and providing a detailed description of the offered tools.

5.1.  Description and Analysis

The application we introduce compares several improvements of the LRTA* algorithm on a variety of test cases. Test cases can be loaded from files, each test case specifying the nodes and edges of a graph, the application supporting two file formats. The first supported file format is a custom one having the following structure:

· the first line of the file contains the number of nodes of the graph;
· All the other lines contain a triplet, the first two values indicating two linked nodes and the last term, mandatory a number indicating the cost (distance) assigned to the arc between the nodes.

Input data correctness is an important factor since the application does not verify whether the given graph has some isolated nodes, duplicate data entries or whether the file contains wrong information. The application only checks if the data format is respected, and if not, an error message displayed. The second supported file format is the EUC_2D format, most commonly found in the TSPLIB problem collection. TSPLIB is a library that contains a set of traveling salesmen problems on which algorithms addressing TSP can be tested. Every line in the EUC_2D format contains a triplet where the first value represents the number of the node and the last two values represent the coordinates of that node. Coordinates are represented by two real numbers, precisely placing the node in a two dimensional environment. In contrast to the custom format where nodes and distances between nodes are given, without fixing the position of each node, in the EUC_2D format just a list of nodes is provided together with their position. Similar to the custom format the application verifies just if the data is provided in the correct format without actually examining the data. Once data from a EUC_2D file is loaded, the application generates an undirected, connected graph based on the provided data. More precisely, the application randomly creates arcs between nodes, computing the cost of the arc as the geometrical distance (d) between the two points using the below presented formula. 

[image: image10.png]d=\(x, —x) +(y, — y)*



In both cases, the application will store a list of nodes and a list of arc costs. The TSPLIB provides a large variety of test cases, specified in the EUC_2D format, ranging from small graphs (<50 nodes) to big graphs that may contain up to several thousand nodes. Furthermore, each time a EUC_2D file is loaded a new graph is obtained due to random edge selection, an available option allowing to store a generated graph for further use. In section 5.3. several generated graphs from TSPLIB files will be presented.


Solving a path-finding problem means first selecting an initial node (start node) and a final node (destination node) and then executing the algorithm. Our application provides a list from where the start node, as well as the final node can be selected. After providing the input data and the necessary nodes, sufficient information is available in order to compute the minimal distance between the two points. However, several available options can be used in order to configure the application.

· Number of Agents

This option allows the user to specify the number of agents working on a path-finding problem. Users can use only one agent or can choose to use several agents, thus creating a multiagent approach of the problem.

· Agent communication style

Agent communication is playing a crucial role when opting for more than one agent. Several agents are efficient just when they possess the ability to communicate and consequently to exchange information. Two main agent communication styles are available, FIPA’s ACL based on message exchanges and a blackboard approach.

· Algorithms

Users can choose between several LRTA* based algorithms in order to solve a problem. All provided algorithms could work either on the message-based communication or on a centralized “blackboard”. The implemented algorithms are the ones discussed in the previous chapter namely: a standard LRTA* algorithm, a SLR* algorithm, a P-LRTA* algorithm and our own approach.

Furthermore, the application offers some useful tools that allow data visualization, algorithm monitoring as well as result comparison. Data visualization is particularly useful when dealing with medium to large sized graphs where the input file does not give the user any clue on how the graphs looks like. The application comes with its own visualization tool, drawing any graph that contains geometrical coordinates. Algorithm monitoring is achieved through displaying information on how agents behave and on how the algorithm executes. All the necessary information is displayed in a dedicated section in the main application window, creating thus a highly useful debugging tool. Users may also want to analyze how different algorithms behave in the same scenario. For this, the application offers a comparative results section where results from different algorithms, running on the same test cases may be compared. Finally, the application offers a help tool, which contains detailed information on how to use all the presented features.


The presented application enables users to test, monitor and analyze LRTA* based algorithms and to compare obtained results. Throughout this chapter, we will present a more detailed application description as well as comparative algorithm results on some test cases.

5.2.  Application implementation and design
The entire application is coded in regular java, using alongside several features that the Jade framework offers. The application embraces the MVC design pattern, separating the model from the graphical user interface. These two components are linked through the Controller class, which controls the data flow between these major components. All the user interface related classes including the Controller class are grouped in the GUI package, whereas all the other classes are grouped in the Model package.


The GUI package contains several classes, each of them having a clear purpose. The main frame is built in the StartWindow class, whereas all the options are implemented separately in different classes, linked to the StartWindow class. This approach allows the application to be extended by other options, which simply have to be integrated in the StartWindow class. A special class in the GUI package is the Draw class, which is responsible for graphically representing the current loaded graph. When launched, the application first displays the main window, where the user can set up a desired problem scenario. After completing this step, one or more agents are instantiated by the Controller class in order to solve the previously prepared problem. To achieve this workflow, Jade has to be started from an existing java application. Usually the Jade runtime is launched from the command line, by providing some parameters, which cause the creation of the agent platform, of containers and agents. Furthermore when starting Jade from the command line, Jade prohibits the external call of an agent’s method to preserve agent autonomy. In order to launch agents from external applications, Jade offers a feature called in-process interface, which creates the necessary runtime for agent hosting.


Runtime rt = Runtime.instance();



Profile p = new ProfileImpl();



p.setParameter(Profile.MAIN_HOST, "192.168.0.2");



p.setParameter(Profile.MAIN_PORT, "7778");



p.setParameter(Profile.MAIN, "true");



ContainerController cc = rt.createMainContainer(p);



AgentController ac=null;
In our case, the Controller class creates a Runtime class followed by the creation of the Main container in which agents can be launched. An external agent launch example is presented below.


ac = cc.createNewAgent(name,"Model.BasicAgent", args);


ac.start();
In this case, a new agent is created by instantiating the Model.BasicAgent class, thus creating an agent having name as local name. The last parameter args is an object array that contains parameters that the external application can pass to the agent. Having created an agent does not automatically imply that the agent starts execution, to do so the agents start() method has to be called. The in-process interface allows developers furthermore to pass data from an external system to an agent using an internal queue. In contrast to parameter passing, this feature, called object-to-agent communication, cannot just transmit strings and numbers but also pass object references to an agent. This feature is used in our application to pass a reference of a Blackboard object to agents that use a blackboard style communication.

The perhaps most important class is the BasicAgent class, where most of the presented algorithms are implemented. The BasicAgent class does not have any constructor, all initializations taking place in the setup() method, thus respecting Jade recommendations. Upon instantiation, each agent receives a parameter from the Controller class, which indicates which available improvements to bring to the algorithm. Instead of defining a new class for each algorithm improvement, improvements are grouped together in the BasicAgent class allowing to combine them in order to enhance overall performance. For instance an agent can choose to execute a different action selection step then the standard LRTA* algorithm and additionally using a backpropagation mechanism. The setup() method also instantiates the class which provides the communication type, either the BlackBoardCommunication class or the MessageCommunication class. Both classes implement the ComunicationModel interface, thus separating agent communication from the algorithms. The separation between communication and algorithms improves application flexibility, modularity and maintainability. In addition, any communication mechanism that implements the ComunicationModel interface can be easily integrated in the BasicAgent class. When a blackboard approach is desired, the controller creates a Blackboard object where all the obtained data is centralized. After creation, the reference of the “Blackboard” is passed to every agent using the object-to-agent communication mechanism Jade provides. All the methods contained in the Blackboard class that allow data manipulation are protected from data distortion by allowing just one thread at a time to call the method. This is achieved using the java synchronization, like presented below.


public synchronized void setElement(int FromNode, int value)


{



h.setElementAt(value, FromNode);



}

The above snippet from the Blackboard class updates the heuristic value of a given node with a value provided as second parameter.

On the other hand, when opting for a message communication, besides the instantiation of the MessageCommunication class, a Blackboard object is created in order to store all the node values. In contrast to the centralized approach, in this case each agent owns its own blackboard, exchanging information with other agents only through message passing. In a blackboard communication style, agents do not have to know about each other’s existence, not communicating directly, just retrieving and updating values from a shard memory segment. In contrast, in a message oriented communication style agents have to know if other agents work on the same problem in order to exchange information. The Yellow Pages Service offers an agent the possibility to register his services and to look up agents that provide wanted services. After creating the MessageCommunication class, the agent registers his service like below code shows.

public void RegisterService()

{


  DFAgentDescription dfd = new DFAgentDescription();


  dfd.setName(getAID());


  ServiceDescription sd = new ServiceDescription();


  sd.setType("-Path-Finding");


  sd.setName(getLocalName());


  dfd.addServices(sd);


  try {



  DFService.register(this, dfd);


  }


  catch (FIPAException fe) {


  fe.printStackTrace();


  }

}
Agent service registration mandatory specifies the provided service type and the name of the providing agent. In our application, agents will naturally offer only a single service, that of solving a path-finding problem. The next step is to find all other agents which provide the same service.

public Vector<AID> SearchForAgents()

{


DFAgentDescription template = new DFAgentDescription();


ServiceDescription sd = new ServiceDescription();


sd.setType("-Path-Finding");


Template.addServices(sd);


Vector<AID> dfa = new Vector<AID>();


try {


DFAgentDescription[] result = DFService.search(this,template);


for (int i = 0; i < result.length; ++i)


{


DFAgentDescription ser = result[i];


if (!ser.getName().equals(this.getAID()))




dfa.add(ser.getName());


}


return dfa;


}


catch (FIPAException fe) 


{


fe.printStackTrace();


}

 
return dfa;

}

The above method creates a template description of a service, specifying that all agents should be looked up who offer a path-finding service. The results, in form of agent AID’s are stored in a java vector and returned to the calling method. After setting up the classes which deal with communicational aspects, boolean variables are initialized according to the parameter received from the controller, indicating whether a certain improvement of the LRTA* algorithm is activated or not. By default all specific boolean variables are set to false, meaning that the standard LRTA* algorithm will be executed without any improvements. The below code shows how functionalities are added.


if (option.equals("type1"))



backprop=true;


else


if (option.equals("type2"))


alternativeSearch=true;

Here, the option variable stores the parameter received from the controller and according to its value, some boolean variables are set true indicating that a certain service is available. The backprop variable for instance enables and disables the backpropagation mechanism, whereas the alternativeSearch variable determines which selection mechanism is activated. The last instructions in the setup() are used to initiate the FindPath() method, which actually executes the LRTA* algorithm. Instead of calling the FindPath() method directly, we set up a Jade behavior. In our case the FindPath() method executes just a single move, meaning that all phases of the LRTA* algorithm are executed just once, moving an agent just one node ahead. In order to execute a trial or even repeated trials we can call the FindPath() method multiple times by placing it into a CyclicBehavior or a TickerBehaviour. A CyclicBehavior executes its assigned method until the behavior is removed from the agent or the agent terminated. The TickerBehavior works similarly to the CyclicBehavior with the difference that the assigned method is executed at symmetric time intervals. 


The method in which the actual LRTA* algorithm is executed is the FindPath() method of the BasicAgent class. After retrieving the current Node, the computation phase is executed by examining all direct neighbors of the current node, thus using a look-ahead depth of factor 1. Next, the update phase determines whether the heuristic value of the current node needs to be updated.


if (communication.canSet(CurrentNode, minValue)==true)


  {


  
communication.setNode(CurrentNode, minValue);


    
changed=true;
The canSet method of the communication object determines if an update is needed on the current heuristic value. This situation occurs when the new heuristic value is bigger then the previous one, in this case storing the new value using the setNode method. The above example clearly shows that the algorithm is not affected by the communication type, the communication object being either of type MessageCommunication or of type BlackboardCommunication. 

If the communication object is a MessageCommunication object then besides storing a new internal value, a message is sent to all other agents indicating the value change. Throughout the algorithm, LRTA* optimizations blocks can be executed. One of this optimization blocks is presented below.


if (backprop==true)



if (this.VisitedNodes.size()>0)


propagateBackwards(VisitedNodes.size()-1,CurrentNode,minValue);
The above code is part of the FindPath() method and if executed propagates new values to previously visited nodes. The specialized block to do this is the propagateBackwards method of the BasicAgent class. This code is only executed when the corresponding mechanism is enabled through the backprop variable and if nodes were previously visited.


At the end of a LRTA* trial when an agent reaches the final node, several checks are required to choose the next action. First, it is checked if another agent completed the task. In this case, it is no longer necessary for the agent to continue the algorithm and thus execution is stopped. Secondly, it is checked whether some changes occurred in the heuristic values of the visited nodes. If changes were made, then a new trial is performed starting from the initial node. If no changes occurred, then no updates were executed, consequently the optimal path between start node and end node was found. Nevertheless, there are situations in which the heuristic values of nodes on a path are changed but some agents might not notice. For instance if two agents travel almost simultaneously along the same path from start node to end node, and if just one agent does some updates, the other may end the program because he did not update any heuristic value in his trial. To prevent this kind of situation each agent retains the list of visited nodes and their heuristic values. Once no changes occurred in a trial, an extra trial is performed, and again values are recorded. If in the extra trial, no updates are made and the values coincide with previous values, then the optimal path was found and the agent terminates algorithm execution. Although this type of situation rarely occurs, all of the above verifications are implemented. Usually these situations happen when many agents “live” in a small graph.


Before scheduling any behavior a time measurement is taken. After an agent terminates the algorithm, another time measurement is taken. The difference between these two time measurements results in the overall time the agent needed to perform the search. On behalf of time measurements different LRTA* based algorithms can be compared.


The Node class is responsible for storing all node related information. A node has the following structure:

· a label, which stores the number of the node;
· a list of neighboring nodes;
· a list of distances to the neighboring nodes;
· optionally a java Ponint2D object, storing geographical coordinates;
The DataManager class of the Model package is responsible for handling all file operations. A DataManager object is able to read both file formats, the custom application format as well as the EUC_2D format. After reading a file data is passed to an Environment object, which stores the graph by keeping a list of all Node objects.

5.3. Comparative results and analysis

The algorithms implemented by the application were tested on random test cases in order to compare them and to find the best configuration for solving particular path-finding problems. All the compared algorithms were executed in the same working conditions, all receiving the same input data. The performance of each algorithm is measured by the total execution time required to solve a path-finding problem. Several test units were run, each of them was having a different goal.

5.3.1. Single Agent vs. Multiple Agents

The tests carried out in this section have the goal of determining how a path-finding problem is solved faster, using a single agent or using multiple agents. The first test case is a tiny graph with just 7 nodes, searching for the optimal distance between nodes 1 and 7. The standard LRTA* algorithm, perhaps the most representative for all is chosen for execution in combination with a blackboard communication style. The test yields the following data:

	Trail No./ No. of Agents 
	1 Agent
	2 Agents
	3 Agents
	5 Agents

	1
	594 ms
	593 ms
	531 ms
	516 ms

	2
	594 ms
	562 ms
	469 ms
	515 ms

	3
	594 ms
	515 ms
	532 ms
	515 ms

	4
	594 ms
	516 ms
	516 ms
	515 ms

	5
	594 ms
	593 ms
	515 ms
	516 ms


The gathered data indicates that using multiple agents on a path-finding problem increases in most cases algorithm convergence. On the other hand, the different results obtained when using multiple agents can be explained through synchronization issues regarding threads as well as the data protection mechanism. In this particular case, there is no big difference between using 2,3 or 5 agents.


A second test is performed on a medium-sized graph, containing 52 nodes, using the previous configuration. In this case, all the agents will start from node 1 and have the goal to find the optimal path to node 52.

	Trail No./ No. of Agents
	1 Agent
	4 Agents
	10 Agents
	20 Agents

	1
	5656 ms
	3734 ms
	3125 ms
	1500 ms

	2
	5656 ms
	3891 ms
	2671 ms
	1547 ms

	3
	5656 ms
	3156 ms
	2562 ms
	1359 ms

	4
	5656 ms
	4750 ms
	2375 ms
	1500 ms

	5
	5656 ms
	5422 ms
	3890 ms
	1781 ms


In this case, having a medium-sized graph, the difference between overall execution costs is much bigger then in the previous test case. However, in some cases, for instance when using 4 agents, considerable variances between execution costs occur. This can be explained like in the previous example through synchronization mechanisms but also through a different amount of executed LRTA* trials. When using 4 agents, the minimal distance between the chosen points can be achieved for instance either in 10 trials or in 12 trial, depending on how agents travel throughout the graph. This variance in required trials explains some of the differing values.

In the next test case, we will consider a graph with 144 nodes, the biggest so far, in which the minimal distance from node 1 to node 144 is required. 

	Trail No./ No. of Agents
	1 Agent
	10 Agents
	30 Agents
	50 Agents

	1
	23250 ms
	9359 ms
	6859 ms
	8844

	2
	23250 ms
	6938 ms
	5500 ms
	9093

	3
	23250 ms
	8797 ms
	7563 ms
	9719

	4
	23250 ms
	10344 ms
	6562 ms
	7954

	5
	23250
	9594
	6921
	7578


From the above results, a clear pattern emerges, namely that the more agents are used, the faster the algorithm converges. Nevertheless, the last two columns do not validate this pattern, since results reveal that it is more convenient in this particular situation to use 30 agents instead of 50. There are two explanations for this situation. First, considering 50 agents in 144-size graph is quite inappropriate since it is highly likely that not all agents will contribute equally to the problems solution. Second, using 50 agents leads to high memory consumption and synchronization problems. Summarizing, the cost/benefit ratio for using 50 agents in this particular situation is inferior to the cost/ benefit ratio for using 30 agents.


This test showed the importance of choosing the right number of agents for a specific environment. Using too few or too many agents may not have the desired impact, thus an ideal balance has to be found in order to speed up LRTA*- based algorithms.

5.3.2. Message communication vs. Blackboard communication 


In this section, we will compare the message based communication style with the blackboard based communication style. Like in the previous section, we will run several test cases, measuring algorithm performance by execution time. For the sake of simplicity, we will run the tests on the previously selected graphs, with the same start and end nodes. In contrast to the previous section, two application algorithms will be considered either in combination with a message based communication or using a blackboard communication. We will use the conclusions from the previous section in order to choose the appropriate gents.

The first graph considered is the small one, with 7 nodes, using 3 agents.

	Trail No./ Algorithm 
	LRTA*- Blackboard
	LRTA* ACL Messages
	SLA* Blackboard
	SLA* ACL Messages

	1
	515 ms
	516 ms 
	203 ms
	265 ms

	2
	516 ms
	578 ms
	250 ms
	281 ms

	3
	594 ms
	594 ms
	281 ms
	250 ms

	4
	515 ms
	516 ms
	250 ms
	266 ms

	5
	516 ms
	500 ms
	172 ms
	359 ms


The above shown results are no clear indication whether one type of communication is faster then another. Although the SLA* – Blackboard approach achieved some good results, the obtained data are too close to the ones provided by the message‑based SLA* in order to designate the fastest communication mechanism. The SLA* algorithm is undoubtedly much faster than the standard LRTA* algorithm as the values confirm and as discussed in section 4.8.3. The next graph, on which evaluation takes place, is the medium-sized graph, containing 52 nodes, where 15 agents are used. Start node and final node remain the same.

	Trail No./ Algorithm
	LRTA*- Blackboard
	LRTA* ACL Messages
	SLA* Blackboard
	SLA* ACL Messages

	1
	3750 ms
	2203 ms
	2000 ms
	1031 ms

	2
	3688 ms
	1703 ms
	1594 ms
	1235 ms

	3
	3453 ms
	1594 ms
	1255 ms
	1125 ms

	4
	2328 ms
	1797 ms
	1329 ms
	1375 ms

	5
	3563 ms
	1703 ms
	1500 ms
	992 ms


The above results clearly show that the message-based approach is more efficient in this particular situation than the blackboard system, obtaining under both algorithms superior results.
In the next performed trial, the large graph is used to test the types of agent communication. The same data is used, starting from node one and having as destination node 144, using 30 agents.

	Trail No./ Algorithm
	LRTA*- Blackboard
	LRTA* ACL Messages
	SLA* Blackboard
	SLA* ACL Messages

	1
	5531 ms
	6468 ms
	2859 ms
	6609 ms

	2
	6235 ms
	6594 ms
	3250 ms
	6750 ms

	3
	6390 ms
	6672 ms
	2922 ms
	7422 ms

	4
	7125 ms
	7125 ms
	3156 ms
	6510 ms

	5
	6172 ms
	5634 ms
	3334 ms
	6640 ms


The results of this trial came unexpectedly, infirming the ones obtained in the previous trial. In this case, the situation is completely changed, the blackboard communication method performing better then the message approach. A possible explanation is the increasing number of exchanged messages compared to the previous trial. Not only that more agents are involved, but a bigger graph also involves more message passing. 

5.3.3. Algorithm Comparison


In this section, we will compare all the application algorithms by setting up most suitable scenarios inspired from the previous sections. We will opt for the same environment, using the each time a proper number of nodes with the appropriate communication method. The tested algorithms are the standard LRTA* algorithm, the SLA* algorithm, our algorithm and the P-LRTA* algorithm. We start with the small graph, using 3 agents and the blackboard communication style, in order to find the minimal distance between node 1 and node 3.
	Trail No./ Algorithm
	Standard LRTA*
	SLA*
	Our Approach
	P-LRTA*

	1
	515 ms
	281 ms
	250 ms
	296 ms

	2
	516 ms
	250 ms
	250 ms
	297 ms

	3
	515 ms
	250 ms
	281 ms
	297 ms

	4
	516 ms
	157 ms
	250 ms
	296 ms

	5
	515 ms
	281 ms
	281 ms
	250 ms


Test results reveal that that the fastest algorithms are the SLA* algorithm and our approach followed by the P-LRTA* algorithm. The differences between values are rather small indicating that all algorithm finish computation in the same number of steps.

The next test case is the medium graph, containing 52 nodes, starting from node 1 to node 52, using 15 agents.
	Trail No./ Algorithm
	Standard LRTA*
	SLA*
	Our Approach
	P-LRTA*

	1
	1734 ms
	1125 ms
	1000 ms
	1765 ms

	2
	1687 ms
	891 ms
	1141 ms
	1672 ms

	3
	1734 ms
	1141 ms
	922 ms
	1391 ms

	4
	1515 ms
	1356 ms
	968 ms
	1334 ms

	5
	1688 ms
	1235 ms
	953 ms
	1531 ms


The above shown data shows that when applying the best possible configuration, algorithm execution times tend to move closer together. However, even in this case all the LRTA* based improved algorithms clearly outperform the standard LRTA* algorithm, except the P-LRTA* algorithm which is just slightly better than the standard LRTA* algorithm. Comparing our algorithm to the SLA* algorithm we may state that a certain if not very significant improvement was brought to the SLA* algorithm when dealing with medium-sized graphs.


Proceeding in the same manner, we will perform a last test on the biggest graph that contains 144 nodes, starting from node 1 and finishing with node 144. Like in the previous example 30 agents are used to perform the task.

	Trail No./ Algorithm
	Standard LRTA*
	SLA*
	Our Approach
	P-LRTA*

	1
	6156 ms
	3219 ms
	2562 ms
	4516 ms

	2
	6953 ms
	3031 ms
	3547 ms
	4953 ms

	3
	6562 ms
	3219 ms
	3593 ms
	4625 ms

	4
	6094 ms
	2968 ms
	3406 ms
	5281 ms

	5
	5703 ms
	2828 ms
	2781 ms
	5157 ms


This last test reveals some interesting results, placing the SLA* algorithm before our algorithm. This is caused by choosing a bigger graph than in the previous example, which annihilates all the advantages the randomness brings to our algorithm. Although, in the first and the last trial our algorithm outperforms the SLA* algorithm overall test results show that randomness does not work so well on graphs this size. In practice, randomness works fine on what we call medium‑sized graphs, mostly outperforming the SLA* algorithm. A possible cause for this result might be the fact that in our test cases nodes in bigger graphs tend to have more neighbors than nodes in smaller graphs due to random edge generation. Consequently when having more neighbors, more node selection options are available, and this is perhaps the point where randomness fails to provide good results. In order to fix this problem a “controlled” randomness can be introduced where the probability of choosing a next node is given by the nodes heuristic value. The smaller a neighbor nodes heuristic value the bigger the chance for selection. However, without concluding evidence this approach remains just a hypothesis, which will be subject to a future work.
Conclusions

In the first chapter of this paper, the topic of intelligent software agents was discussed, and especially the field of multiagent systems. They are being studied and developed in quite a number of research and development laboratories, being still an emergent, complex interdisciplinary domain. Chapter two and three we introduced three different agent development environments, one of them being accorded a particular importance.

More specific the Java Agent Development Framework was presented, discussing in detail the offered features. Jade provides a whole infrastructure for developing multiagent systems achieving a high degree of portability and interoperability due to the compliance to FIPA standards. Jade additionally offers powerful graphical tools like the Sniffer agent, the Dummy or the Remote Monitoring Agent that significantly ease the development and debugging process of Jade applications. 


In chapter four, we presented real-time learning, focusing on learning in agent-centered search algorithms. We described two agent-centered search algorithms, the adaptive dynamic programming algorithm (ADP) and more detailed the learning-real time A* (LRTA*) algorithm. Three extensions of the base LRTA* algorithm were described, analyzing their advantages and disadvantages. All the presented extensions do not offer a magic solution to improved algorithm convergence but rather sacrifice some of LRTA*’s properties in order to speed up computations. Similar to these extensions, our proposed algorithm is trying to achieve a trade-off between preserving the on-line property of LRTA* and between a faster execution. Our experimental evaluation of different configurations, made in chapter five, revealed three major results. First, using more then one agent in path-finding problems can speed up computations, but employing too many agents can have in some cases the opposite effect. Second, we determined that depending on search space size, either a decentralized “blackboard” approach or a message based communication style is preferable. Third and most importantly, we introduced a LRTA* based algorithm, that introduces randomness in the action selection step of LRTA*. This approach combined with a backtracking mechanism achieved the best overall results for finding minimal distances in small and medium search spaces. We further remark that in larger spaces, the advantage of randomness fades due to a large number of states. Future work has to show whether the introduction of a “controlled” randomness can address the problems of large search spaces. Further efforts will also include the investigation of other LRTA* extensions, possibly combined with our proposed algorithm. 
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