
Multi-Agent Systems in E-Commerce

Marian Zsuzsanna

Abstract
This paper presents the usage of Multi-Agent Systems (MAS) in e-
commerce. First some of the first simple search agents like Bargain-
Finder, Jango and one of the first Multi-Agent Systems, Kasbah are
shortly presented. Then four auction types, which are often used in MAS
for the negotiation are described. Next a MAS is presented, whose pro-
totype is implemented in JADE, together with some modifications and
improvements done to transform it in a rule-based negotiation system. A
MAS that is capable of learning the best strategy, using knowledge dis-
covery is presented in more detail, followed by one that uses fuzzy logic
to determine the best strategy.

1 Introduction
The exponential growth of the Internet, and the fact that almost 2.000.000.000 people are using
it in the world (which is a 444.8 % growth compared to the values at the end of 2000) [3] lead
to the apparition and growth of e-commerce. By the definition of ECA (Electronic Commerce
Association) ”electronic commerce covers any form of business or administrative transaction or
information exchange that is executed using any information and communications technology”
[11]. Nowadays, this term refers almost exclusively to commercial activities over the Internet,
meanings like ”ordering an air ticket over the telephone” are no longer in use. In most scenar-
ios, the user uses a web browser and a search engine in order to find the items he or she wants
to purchase online. But there is another possibility, the use of the agent technology, which is
said to become for e-commerce, what Windows was for the PC - a relatively simple and user-
friendly way of utilising the new technology [2].

Different papers characterize agents differently, but all of them agree that they are autonomous
software programs, which means that they act independently on the behalf of their user. Besides
these they, can also be reactive (which means that they are capable of perceiving their environ-
ment and respond to changes in it), and pro-active (which means that besides reacting to the
environment’s changes, they are able to exhibit a goal-directed behaviour), to mention only the
most frequently enlisted characteristics.

Multi-Agent systems (MAS) are systems that are made of two or more agents, that can in-
teract via a commonly known protocol. Obviously, these agents have to use the same objective
language, so that they can communicate, and usually they need to posses some negotiation skill
also. In most applications of e-commerce, we can rather talk about a MAS than just a single
agent, because usually at least one agent that sells a good and one agent that wants to buy a
good is needed.

1

There are many ways in which agents can be helpful in e-commerce: they can monitor and
retrieve useful information and do transactions on the behalf of their users, Secondly, agents
can find the best deals for their users with less cost, quicker response, and less user effort.
Thirdly, agents can participate in negotiations with other agents, to get a good price of trade for
their users [11].

The structure of the paper is the following: Section 2 presents some of the first agents and
multi-agent systems. Section 3 starts with a short section about negotiation and presents four
auction types (English auction, Dutch auction, First price sealed bid auction and Vickery auc-
tion) used ofter in e-commerce models. The next subsections present some MAS prototypes
that can be used in e-commerce. The first is a prototype implemented in Jade. The next two
subsections are related to this system, and present improvements on it, unfortunately the exact
strategy that agents from the MAS should use is not discussed. The next MAS is capable of
negotiating even in cases when there are multiple attributes to consider, and uses knowledge dis-
covery to find the best strategy. The last MAS, FINA, uses fuzzy logic to find the best strategy.
Finally, in Section 4 the conclusions are drawn.

2 First agents in e-commerce
The first agents that were used in e-commerce were only used to search different online stores,
and display the results to the user. One of them was BargainFinder, created in 1995, an agent
that performs comparison price shopping among nine predefined on-line CD stores, in such a
short time that a human user would only be able to check one site in this time. Unfortunately,
Bargainfinder is no longer available on the Internet, but in the first two month after it being
released (30 June 1995) it was used over 100.000 times [4].

The problem with BargainFinder was that is only displayed the price of the CD without the
other offers that might have been related to it (free shipping for example). Since in this way
the price might have been higher than at other places, where there were no offers, some of the
stores banned the acces of BargainFinder to their page (but there were shops that sked to be
included in the list). Another similar agent, Jango, managed to avoid this problem, by initiating
the request from the address of the user, so that stores were unable to tell the difference between
requests from the agent or from human users.

One of the first MAS that used agents to sell and buy goods was Kasbah [1]. The system was
based on two types of agents: buying and selling agents which can interact in the marketplace.
Both the buying and selling agents are created with some initial parameters: the date to sell
(buy) the item by, the desired price to sell (buy) the item for, and the lowest (highest) acceptable
price. The agents have to figure out themselves what strategy to follow in order to sell (buy) the
desired item at the best price. The crude heuristic that is used, is something like this: start with
the desired price, and if there are no buyers (sellers) that accept that price, lower (increase) it
as time goes by, so that at the end of the period the price should be almost equal to the lowest
(highest) acceptable price. The third member of this system was the marketplace itself, where
these agents meet and negotiate. In Kasbah, when an agent entered the marketplace, it asked
about the product it is buying or selling, and directed it to other agents that could help it (they
wanted to buy or sell that given product). The system had a prototype, implemented in CLOS
using Harlequin Lisp.

2

3 MAS in e-commerce

Negotiation and auction
In most papers that describe MAS for e-commerce, the main scenario is very simple: buyer and
seller agents are created by the users, which will act on their behalf. These agents are placed in
a common environment (usually called masketplace, that has a yellow pages service, which can
pair buyer and seller agents, that have the same item), and they will start negotiating, until they
reach an agreement. It is easy to realize that the hardest thing to implement is the negotiation
strategy itself. Since the agent acts on the behalf of the user that created it, the negotiation
strategy should try to maximize the payoff of the user. The only problem is, that in many cases,
users don’t even know what they exactly want, let alone formulate it in a mathematical or logi-
cal way, that an agent should understand.

Probably this is the reason why, many e-commerce application frameworks designed for agents
decide to use auctions instead of simple negotiations, because in case of some auctions game
theory can provide the ideal strategy to be used.

Some of the main auction types together with their rules, outcomes and optimal strategy are
shortly presented in the following list:

• English auction - This is an open auction (which means that bidders can see the bids
submitted by others), where bidders successively raise bids for the item, until a single
bidder remains, which is the winner. The optimal strategy in this auction, is to bid up,
until the maximum limit allows.

• Dutch auction - Another open auction, where the auctioneer calls out descending bids,
and the bidder calls out a bid. The winner is the first bidder who calls the same bid as the
auctoneer. The optimal strategy is to shade bid a bit below true willingness to pay.

• First priced sealed bid - A sealed auction (participants cannot see the bid of ther people),
where bidders submit a single sealed bid, before a deadline. The winner is the highest
price. The optimal strategy is to shade bid a bit below true willingness to pay.

• Vickery auction - A sealed auction, where bidders submit a single sealed bid before a
deadline. The winner is the one who offers the highest price, but will pay the second
highest price. The optimal strategy is truthtelling.

MAS implemented in Jade

[5] presents a MAS system, implemented in Jade, which they claim to be usuful in building
a large-scale agent system for experiments, because a previous experiment showed that on 8
”antiquated Sun workstations” [5] a system with 1500 agents and 300000 messages was suc-
cessfully used. They mention as other advantages that Jade is FIPA compliant, runs on a variety
of operation systems, and is one of the best modern agent environment.

In this paper negotiation is in fact auction, and they shortly present two auction protocols: the
FIPA English Auction Interaction Protocol (where the seller starts with a price below the market
value, and as long as there is an agent willing to pay that price, it will increment it, a little. The
auction ends, when no buyer accepts the proposed price, in which case the winner is the buyer
from the previous round) and the FIPA Dutch Auction Protocol (where the seller starts with a

3

price above the market value, and decreases it, until a buyer accepts is). The paper presents
a MAS, where agents are general enough, so that they are capable of working with different
auction strategies. In order to achieve this, an agent is said to be made of several modules:

• Communication module - responsable for the communication between the agents. Since
the project is implemented in Jade it uses thr ACL communication language.

• Protocol module - contains the general rules of the negotiation (auction). When an agent
initiates a negotiation, it finds out which negotiation protocol should be used and dinami-
cally loads it from the user’s local machine or a server (since these modules are the same
for each agent).

• Strategy module - contains the proper reasoning module, that leads to the end of the
negotiation with a success. In order to find out what reasoning model to use, the agent
can consult a table which records the earlier history of transactions with the seller. In case
that no history is, or the table is unavailable (since this table is on the user’s computer, not
in the agent) a default strategy is used.

It is considered, that the strategy module and the protocol modules can be quite large, so that
they would impede the agent’s mobility. This is why, the agent only contains a skeleton, and the
communication module, while the other two modules are downloaded, after the agent arrives to
the actual marketplace. Unfortunately, no concrete negotiation strategy is presented, only two
very simple ones, used in the test cases.

The proposed system, is made of different types of agents. There is only one Client Infor-
mation Center (CIC) agent, that is responsible for storing, managing and providing information
about all participants in the system. All agents, have to register with the CIC agent, which stores
their data in the Client Information Database (CICDB). This database is both a client registry,
and a yellow pages service which gives information to client agents about the shops they are
interested in. A client agent (CA) acts int the marketplace on behalf of the user, that attempts to
buy something. Each such agent has a bunch of negotiation agents, called buyer agent, one for
each shop, that sells the good they are looking for. A shop agent represents a user that wants
to sell something and it has a number of negotiation agents with the ”seller role”, called seller
agent for each product sold in the shop.

A general usage scenarion for this environment consists of the following steps.

• A Client agent registers with CIC and receives an ID, which can be a new ID if the agent
has never been in the marketplace before, or if it has already been, the old ID is retrieved
from the database.

• The Client agent queries the CIC to get a list of Shop agents that sell the product he seeks.
For each such shop it creates a Buyer agent to handle the negotiations.

• Buyer agents migrate to the site their corresponding Shop agent exists, and query them
about the negotiation protocol used in the given e-store, and dynamically load the corre-
sponding negotiation and strategy protocols.

• The Seller agents periodically check if there are Buyer agents interested in their product,
and if there is at least one, an auction is started. At the end of the auction, the Seller
agent informs the Shop agent about the winner, which informs the Client agent that the
purchase is possible. The Client agent, then decides if he buys the good, and where he
buys it, in case that there are more than one possible Shops.

4

Framework for Automated Negotiation

Paper [9] describes a software framework, that allows automated negotiation. They start with
the formal definitions of FIPA for several standard negotiation protocols, but they say that these
definitions are not complete (for example the definition of the English auction does not contain
that a bid is valid only if it is higher than the highest current bid), so agents will have to contain
the rest of the details in the implementation code, which will stop them from being general,
and capable of participating in any negotiation. Instead they suggest a method, that includes all
these rules into the environment.

As first step they describe the abstract process of a negotiation, in which usually two roles
are implied: the negotiation host, and the negotiation participant. In a general setting, com-
munication between the participants is done through a ”negotiation locale”, which is a kind of
blackboard, for which the read and write access is given by the host.

The first action is taken by the participant, which goes to a host and requires admission to the
negotiation. If access is granted, the participant is informed about the rules of the negotiation,
gathered in a negotiation template that contains the parameters of the auction. This template
must be accepted at the admission. The next part is the negotiation itself, during which the par-
ticipants exchange proposals that represent the agreements that are currently acceptable to them.
These proposals are sent to the host, which validates them, before accepting it. A proposal may
fail validation in two cases: restriction of the parameter space specified in the template is not
respected or it does not follow the rules that govern the negotiation (who can make a proposal,
when they can make it, what proposals can be submitted, compared to previous ones and so on).
During the negotiation, agreements can be formed based on some agreement formation rules.
The negotiation is ended, when some rules are satisfied. For example, in an English auction the
termination rule would state that the auction finishes when there are no valid proposals for a
periode of time, while the agreement is formed between the seller and the highest bidder, at the
price of the highest bid.

Rule-Based Framework for Automated Negotiation

The above presented framework inspired the group of researchers that created the Jade based
MAS presented earlier and they decided to add it to their model [7]. Since in the Jade based
model, every Shop agent, has a separate seller agent for each product it sells, we can consider
each seller agent a separate host, so that the environment will have many instances of the frame-
work described above. For each of these intances we can have different rules for the negotiation.
The automated negotiation framwork contains a host agent, but it has a some ”sub-agents” that
can perform different actions: Gatekeeper (handles the access of new participants), Proposal
Validator (validates proposals against the negotiation template, and if they pass, will forward
them to the Protocol Enforcer), Protocol Enforcer (checks if the proposal satisfies posting and
improvement rules), Negotiation Terminator (checks if the condition to end the negotiation
holds), Information Updater (regularly updates information on the blackboard) and Agreement
Maker (applies the agreement formation rules to determine which agreements can be made).
This host agent and the sub-agents are present here also, but they share the same JESS infer-
ence engine which has separate modules for the separate rule categories, instead of each of them
having a separate one.

5

The actual strategies used by agents that particpated in experiments, were very simple: an agent
posted a bid immediately after being admitted to the auction, and any other times, when it was
informed that somebody else posted a bid higher than his own. The value of the new bid, was
the current highest bid, plus an increment, that was private for each agent. If the current bid was
above a limit, the agent stopped bidding.

In [8] the rules for this negotiation component for the cases of English and Dutch auction is
presented. Unfortunately, there is no detail about the strategy the agent could use.

Probabilistic negotiation agents

Unlike the previous example, real-life negotiations usually include other attributes beside price.
A MAS which takes more than one attribute into consideration is presented in [6]. Moreover,
agents in this MAS are also capable of learning the right negotiation technique. The basic ar-
chitecture of the system, is very similar to the previous ones: both the buyer and the seller uses
an agent which finds publicly available marketplaces. After finding the marketplace, the agent
can be deployed to it, which then can retrieve relevant information about the market from a
facilitator agent. Once the right negotiation partners are found, if there already is a previous
history with the agent, it is mined to find the preferences of the partner. Knowing these prefer-
ences helps the agent, because it can decide easier what offers to propose. If such a history does
not exist, the negotiation can start immediately. During the negotiation, the agent’s knowledge
discovery mechanism can be used to estimate the opponents preferences, based on the recent
negotiation history.

In order to understand how knowledge discovery can be used to adapt to the preferences of
the partner agent, first, the general structure of the negotiation should be presented, as defined
in [6]. The negotiation space is a 5 tuple Neg =< P, A,D,U,T > which is made of the set
of agents (P), the set of attributes over which the negotiation takes place (A), the domain for
these attributes (D), a utility function defined on the Cartesian product of the domains of the
attributes, with values in the [0,1] interval (U) and the set of deadlines for the agents (T). It is
supposed that P, A, D are supplied by the marketplace and they are known by everyone.

Using these notations, an offer o = (da1 , da2 , ..., dan) is a vector of attribute values, or attribute
value intervals. An example for an offer could be oi = (20−30, 1−2, 10−30, 100−500) where
the first attribute is the price, expressed in dollars, the second attribute is the ”warranty periode”
expressed in years, the third one is the ”shipment time” measured in days, and the fourth is the
quantity [6].

To evaluate such an offer, every agent has two valuation functions: one, UA
p : A → [0, 1],

which shows the weight of a given attribute (for some users, price may be more important
than shipment), and a second function U

Dai
p : Dai → [0, 1], which shows the importance of

the value of an attribute. Using these two functions the utility of an offer can be computed as:
Up(o) = Σai∈A,dai∈o

UA
p (ai) ∗ U

Dai
p (dai).

If the offer of an agent is rejected by its negotiation partner, it will have to make a counter
offer. This offer is chosen from the set of all possible, not yet suggested offers, such that the
decrease in own utility should be the minimum. The negotiation stops with an agreement if an
offer is received that is better than all possible not yet offered counter offers of the agent, or it is
an offer, that was already proposed by the current agent.

6

The probabilistic negotiation agents presented in [6] use the above description of an offer, and
they try to achieve two contradictory things: maximize own payoff, and maximize the chance
of reaching an agreement. The self payoff can be computed as described above, while the sec-
ond one can be achived using Bayesian learning, based on previous negotiation history with the
current agent, or (if this is not available) the current negotiation dialog. In this model, each pos-
sible offer gets a ranking computed in the following way: Rank(o) = [Up(o)]α∗[P(accept|o)]1−α,
where α is between 0 (agent tries to maximize opponents payoff) and 1 (agent cares only for his
payoff) [6]. This parameter can be set by the user, otherwise the 0.5 default value is used. This
rank is used to choose the best counter offer in case that the offer received from an agent is not
accepted.

The probability of accepting an offer o can be computed using Bayes theorem: P(c j|o) =
P(o|c j)∗P(c j)

P(o) , where c j ∈ {accept, re ject}. Using some rules from the probability theory, the prob-
ability of accepting an offer o becomes the following:

P(accept|o) =
P(accept)∗Π|A|i=1P(dai |accept)

P(accept)∗Π|A|i=1P(dai |accept)+P(re ject)∗Π|A|i=1P(dai |re ject)
.

In case that the counter offer does not contain some attributes, the corresponding P(dai |accept)
and P(dai |re ject) has the value 1. If we suppose that the preference of an agent does not change
during the negotiation, then these probabilities can be estimated based on previous negotiation
history with the agent, once before the start of negotiation and consider it unchanged during it.
On the other hand, for agents that might change their preference during the negotiation, the
value of P(accept|o) is recomputed after each round, based on the most recent negotiation.

In order to compute the prior probabilities P(accept), P(reject), P(dai |accept) and P(dai |re ject)
knowledge mining on negotiation history is done. The basic assumption is, that avery offer that
an agent receives from its partner is a positive training example, while every offer that the agent
proposes, but is rejected, is a negative example. Moreover, recent offers give more information
about the partner’s preference, than older ones. Using these asspumptions, training examples
from the previous sessions, and the current negotiation dialog are weighted. The weight of a
session i, wS

i is computed in the following way: wS
i = wmax − step ∗ wmax−wmin

|session|−1 . wmax and wmin

are positive parameters of the method, and represents the maximum and the minimum weight
that can be assigned to a negotiation session; step is the number of the session, the most current
session having step 0, the previous step 1 and so on.

One negotiation session can contains multiple offers. Each such offer can have different weights.
The weight computed with the above formula is assigned to the first counter offer of the part-
ner from the session (based on the idea, that this counter offer, would have been the best
from the point of view of the partner). For the rest of the offers, the weight is computed as:
wE

i j = wS
i − (j − 1) ∗ wS

i −wS
i+1

|E| , where |E| is the number of entries in this session.

An example of such weights can be seen on Table 1 taken from [6]. The maximum weight
is 500 while the minimum one is 200. The sum of all weights is 3650, and the sum of weights
for offers where the category is accept (it has Y in the opponent accept column) is 1500, so
P(accept) = 1500

3650 = 0.41. The other conditional probabilities can also be computed, for exam-
ple P(price = 25 − 30|accept) = 675

1500 = 0.45.
One common problem with the naive Bayesian learning is the presence of zero conditional prob-
abilities, i. e. cases which does not appear in the training set. For such cases, this method uses

7

Table 1: Example of weights associated with different offers from negotiation sessions

Session Offers Price (da1) Shipment Time (da2) QTY (da3) Opponent accept Weights
4 o1 5 - 10 1 - 2 20 - 30 N 200

o2 15 - 20 3 - 4 50 - 50 Y 175
o3 1 - 2 2 - 2 10 - 20 N 150
o4 25 - 30 5 - 8 60 - 100 Y 125

3 o1 5 - 10 1 - 2 20 - 30 N 300
o2 15 - 20 3 - 4 50 - 50 Y 275
o3 1 - 2 2 - 2 10 - 20 N 250
o4 25 - 30 5 - 8 60 - 100 Y 225

2 o1 5 - 10 1 - 2 20 - 30 N 400
o2 15 - 20 3 - 4 50 - 50 Y 375
o3 1 - 2 2 - 2 10 - 20 N 350
o4 25 - 30 5 - 8 60 - 100 Y 325

1 o1 5 - 10 1 - 2 20 - 30 N 500

a constant, the probability which is computed as P(dai |c j) =
P(c j)

N , where N is the sum of weights.

In case of an offer which contains an interval that intersects more than one from the history,
two different approaches can be adapted, depending on the optimism characteristic of the agent.
If it is optimistic, it can take the highest available accept and the lowest reject probability used,
while for pessimistic agents it is vice versa.

Experiments done with this model are described in [6], and they demonstrate that the proba-
bilistic agents perform better than the Pareto optimal agents (agents that use only the technique
described at the negotiation part - so no probabilities, and knowledge discovery).

FINA

[10] presents an agent model that uses fuzzy logic in negotiation. This model is designed for
multi-issue one-to-one negotiations (no auction). In order to build any negotiation agent three
main ideas have to be considered: negotiation protocols (rules of the negotiation), negotiation
issues (issues over which agreement must be reached) and the agent reasoning models. The
agent reasoning model concentrates on processing incoming offers, generating counter offers
sent to the seller (or buyer) and on making the decision to interact with the opponent or not.

The general structure of a reasoning model for such an agent, as described in [10], consist
of the following parts: it has as input the incoming offer, which can contains values for more
than one attribute, and it has one of the following three outputs: accept, reject (no further com-
munication), counter-offer. Inside the model there are three components: new offer generation
engine (which generates new offers), offer evaluation block and the decision making block.
The offer evaluation block receives both the new offer generated by the engine and the in-
comming offer from the opponent. It does an analysis of them, and computes the degree of
satisfaction of them. The result is scaled over the values 0 and 100. Finally, the decision mak-
ing block makes the final decision, which can be one of the above mentioned three possiblities.

The modeling of the new offer generation engine can be seen as a Distributed Fuzzy Con-

8

straint Satisfaction Problem [10]. The offer evaluation system can be considered a fuzzy expert
system. Since human preferences usually are vague and uncertain, fuzzy logic is a good choice
for this module. A simple variant for the decision block can be a function with the following
rules:

• if Ain < Amin REJECT

• if Ain ≥ Acounter ACCEPT

• if Ain < Acounter COUNTER OFFER

4 Conclusions and discussion
Most of the above described examples are only theoretical, with the exception of the search
agents BargainFinder and Jango, which were used online, but now they are not accessible. The
MAS implemented in Jade (and extended with JESS) seems to be a nice framework that could
scale up to become a large application, but there still is a lot of work to be done, especially be-
cause that model has no description about the optimal negotiation strategy (although, that group
of researchers has many papers related to the subject, so they might have solved that problem,
too). Still, the paper tries to present a general framework that can be used for any auction, which
is a positive thing, since some of the early applications, had problems with the lack of standards.

The fuzzy logic based approach seems interesting, because it tries to capture the uncertainty
that is characteristic to human users. The most complex, and maybe promising seems the be the
model, where the strategy can be learnt during negotiation, although there the whole set of not
yet tried possible offers is needed to find the best one to offer, which might be time consuming
to compute, and can have many elements, even if attributes intervals are used instead of simple
values.

Agent technology is an important improvement for e-commerce and it will definitely improve
in the future, because it makes buying things on the internet faster and easier. While negotiation
using e-mails could take days, if not weeks, until an agreement is reached, the same thing can
be done with agents in a matter of seconds. On the other hand, almost all the above presented
examples lack a very important part from the agents: the exact strategy that they should follow
during the negotiation. This can partially be explained by the fact, that humans are unable to
express their wishes and utility functions clearly, in many cases the actions they take are not
based on logic, or computations, but on intuition and feelings, which are unable to teach to an
agent. Still, if these utility functions could somehow be expressed using mathematics or logic,
due to the computing power of the agents (which is a lot larger than that of humans) they would
find better solutions than humans.

Another problem with these agents could be connected to their autonomy. Ideally, because
they are autonomous, these agents should take the final decisions in the negotiation (up to the
point of making credit card transactions), but I don’t know if humans would trust them suffi-
ciently to let them do this. Possible, if the above described problem with the definition of a
negotiation strategy would be solved, people’s trust grew.

9

References
[1] Antony Chavez, Pattie Maes: Kasbah: An Agent Marketplace for Buying and Selling

Goods, Proceedings of the First International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology pg. 75-90, 1996

[2] Nir Vulkan: Economic Implications of Agent Technology and E-Commerce, The Economic
Jurnal, pg. 67-90, 1999

[3] Internet World Stats: http://www.internetworldstats.com/stats.htm (visited on 6. 12. 2010)

[4] Bruce Krulwich: Information Integration Agents: BargainFinder and NewsFinder, Internet-
Based Information Systems: Papers from the 1996 AAAI Workshop, pg. 72-77, 1996

[5] Maria Ganzha, Marcin Paprzycki, Amalia Pirvanescu, Costin Badica, Ajith Abraham: Jade
Based Multi-Agent E-Commerce Environment: Initial Implementation, Analele Universitatii
din Timisoara, Seria Matematica-Informatica, Vol. XLII, pp. 79-100, 2004

[6] Raymond Y.K. Lau, Yuefeng Li, Dawei Song, Ron Chi-Wai Kwok: Knowledge Discovery
for Adeptive Negotiation Agents in E-Marketplaces, Decision Support Systems, Vol.45, Nr.
2, pg. 310-323, 2008

[7] Costin Badica, Adriana Badita, Maria Ganzha, Alin Iordache, Marcin Paprzycki: Rule-
Based Framework for Automated Negotiation: Initial Implementation, Proceedings of
RuleML, 2005

[8] Costin Badica, Gabriel-George Popa, Mihnea Scafes, Maria Ganzha, Maciej Gawinecki,
Pawel Kobzdej, Marcin Paprzycki: Degin Considerations for a Negotiation Component in a
Model E-commerce Agent System, Symbolic and Numeric Algorithms for Scientific Com-
puting, 2006

[9] Claudio Bartolini, Chris Preist, Nicholas R. Jennings: A Software Framework for Auto-
mated Negotiation, SELMAS 2004, LNCS 3390, 2005, pg.213-235

[10] Xin Wang, Xiaojun Shen, Nicolas D. Georganas: A fuzzy logic based intelligent negotia-
tion agent (FINA) in e-commerce, Proceedings of IEEE Canadian Conference on Electrical
and Computer Engineering, 2006

[11] Minghua He, Ho-fung Leung: Agents in E-commerce: State of the Art, Knowledge and
Information Systems, Nr. 4, pg. 257-282, 2002

10

