Fuzzy decision trees

Catalin Pol

Abstract

Decision trees are arguably one of the most popular choices for learning
and reasoning systems, especially when it comes to learning from discrete
valued (feature based) examples. Because of the success they acquired
in their area, there have been many attempts to generalize the method
to better suit working with real-valued, numerical attributes, but also
for missing values or even numerical outcomes (i.e. for regression tasks).
In this paper, we will present a few methods aiming to combine the in-
creased readability of decision trees with the ability to deal with numeric
or inaccurate data provided by fuzzy reasoning.

1 Introduction

In recent years, neural networks have become increasingly popular when it comes
to classification problems, due to relative ease of application and abilities to pro-
vide gradual responses. However, they lack similar levels of readability[7], which
can be a problem, especially if users need to justify and understand their deci-
sions. In these cases, only decision trees managed to get satisfactory results.
Decision trees were popularized by Quinlan[5], along with the ID3 program.
Systems based on this approach perform particularly well on symbolic domains.
When a numerical outcome is desired, or when numerical values improves the
subsequent reasoning, this algorithm is not applicable. One of the most common
methods is to pre-partition the values in fixed length intervals (thus, predifining
a set of compact intervals that cover the entire data). Subsequent improvements
of this algorithm, such as C4.5, are able to deal with numerical data, by choosing
a split point based on the learning examples. We will describe how such trees
are constructed in more detail Unfortunatelly, this may decrease the accuracy of
the classification, especially for values that are close to the limits of the intervals
determined during the training step. In order to complement the problems that
are posed by the limitations of decision trees, different approaches have been
made to work around this issue. One of these approaches is provided by fuzzy
logic.

In fuzzy rule-based systems, the symbolic rules provide ease of understanding
and transfer of high-level knowledge, while the fuzzy sets, along with fuzzy logic
and approximate reasoning methods, provide the ability to model fine knowledge
details. Accordingly, fuzzy representation is becoming increasingly popular in
dealing with problems of uncertainty, noise, and inexact data, being successfully
applied in a number of industrial problems|3].

Traditionally, decision trees have two major components: a procedure to build
the symbolic tree and a method for decision making. We will present a few



methods to approach both of these components. The rest of this paper is or-
ganized as follows: section 2 contains a short introduction to decision trees; a
short introduction to fuzzy set theory is covered in section 3, then a method
on how to apply fuzzy reasoning is presented in section 4. Finally, section 6
concludes this article with a few thoughts regarding other possible directions in
this fuzzy decision tree research field.

2 Decision trees

Decision trees, as their name suggests, are decision support tools that use a
tree-like predictive model which map observations about an item on several lev-
els in the tree until reaching the final conclusion regarding the outcome of the
desired function. One of the most used algorithms for constructing decision
trees has long been the ID3 method! introduced by Quinlan[5]. This algorithm
tries to construct the smallest classification tree based on a small set of training
examples. The main disadvantage is that this algorithm only considers symbolic
(discrete) values both for attributes, as well as for the resulting class. Another
major disadvantage of this method include the fact that the pre-partitioning
requires previous knowledge of the data (how many intervals are required, how
to choose the split points between the intervals). Subsequent improvements of
the ID3 algorithm, such as C4.5[4] and CARTJ[1] try to deal with intervals in
an optimal manner (they always try to split a compact interval into two subin-
tervals, and they accomplish this by choosing the optimal split-point, based of
course on the training data).

In this paper, we will discuss a possible extension of ID3 and C4.5 that uses
fuzzy logic mechanisms for decisions. Therefore, we will start by presenting
the general idea behind these algorithms. The justification behind them lies in
the Occam’s razor principle: it will always try to construct a node that maxi-
mizes the information gain when choosing the attribute for that particular node.
However, this does not always produce the smallest tree, and is therefore only
a heuristic. The information gain is formalized by the concept of information
entropy:

E(S)=~ ) fs(c)-log, fs(c)

ceCls
Where:

e E(S) is the entropy of the set S
e (s is the set of all classes encountered in the training set

e fs(c) is the frequency (proportion) of the instances that have the value ¢
in the set S 2

Entropy is used to determine which attribute to use at the current node. An
entropy of 0 marks a perfectly classified set. A higher entropy means that the

11D3 stands for “Iterative Dichotomiser 3”
2by convension, xzlogaz = 0



attribute is better suited for a bigger information gain, which is defined by the
following formula:

G(S,A) = E(S) — ZfS(Ai) ~E(Sa;)

Where:
e (G(S,A) is the gain of the set S after a split over the A attribute
e E(S) is the information entropy of the set S

e m is the number of different values of the attribute A in S

fs(A4;) is the frequency (proportion) of the items possessing A, as value
for Ain S

e A; is i*" possible value of A
o Sy4, is a subset of S containing all items where the value of A is A;

The information gain quantifies the improvement obtained by splitting according
to a given attribute. The above formula however, applies only if the attribute
for which we are computing the information gain is discrete. If the attribute
is numerical, a similar formula is used?, but, of course taking into account the
fact that we cannot operate on all possible values for the given attribute:

G(S’Ava) - E(S) - fS(SSa) . E(Sga) - fS(S>O/) : E(S>a)

Here, S<, is the subset of S containing the instances with the values for the

attribute A less or equal than a so-called “cut-point” «. Similarly, S~ contains
the elements for which the corresponding value is greater than a. For choosing
the best cut-point, many C4.5 implementations suggest sorting the data samples
in S according the attribute under inspection and computing the information
gain for all midpoints between consecutive instances. At each step, both the
C4.5 and ID3 algorithm choose the attribute that maximizes the information
gain. The ID3 algorithm is described below.
Of course, one difference between the ID3 and C4.5 algorithm is that the C4.5
algorithm can reuse a numerical attribute at multiple levels of the tree. For
discrete attributes however, one attribute can be used only once on every path
from the root down to a leaf. There are of course many other differences, but
they are beyond the purpose of this paper. We will describe the details about
infering rules in such a tree in section 4.

3 Fuzzy set theory

In order to better understand the notion of fuzzy set theory, we should first take
a short review of the classical set theory (also known as crisp set theory). In
this case, you can say that an element either belongs to a certain set or it does
not. A crisp set A C U can be defined by a two-valued characteristic function
Ay : U — {0,1}, where U is the universe of all possible values of the elements

3Between the two algorithms in discussion, only C4.5 can deal with numerical data



Algorithm 1 ID3 (Exzamples, TargetAttribute, Attributes)

create a root node for the tree, Root
A + the attribute with highest information gain
set decision tree attribute for Root < A
for all v; € A do
add a new tree branch below Root, labeled with the value v;
let Examples(v;) < the subset of examples that have the value v; for A
if Examples(v;) = () then
add leaf node for this branch with label = the most common value in the
examples
else
add as subtree for this branch the tree provided by ID3(Examples(v;),
Target Attribute, Attributes — {A})
end if
end for

(sometimes called the universe of discourse). Moreover, the characteristic func-
tion of a set uniquely identifies the set. However, in some cases, because of
imprecise measurements or even for some lingvistic concepts, such a character-
istic function may not suffice. Concepts like ‘tall’; ‘cold’ or ‘small’ are inherently
fuzzy concepts and most of the times these are subjective or dependent on the
context.

The fuzzy set theory extends the two-valued characteristic function of a set to
a real-valued function. So, a fuzzy set A is described by a membership function
puy 2 U — [0, 1], which represents the degree to which an element u € U belongs
to the set U. Similar to the basic operations of union, intersection, and comple-
ment defined in classical set theory?, such operations are defined for fuzzy sets.
Unlike the crisp case, these operators are not uniquely defined. For example, the
Zadeh operators for union and intersection are max and min respectively (cor-
responding to the most optimistic/most pessimistic of two given membership
degrees). On the other land, the Lukasiewicz operators that the sum (bounded
by 1) for the union and the product of two membership degrees for the intersec-
tion (this approach was consider in order to closer match the operations from
probability theory). However, in both these cases, the complement of a given
degree x is defined as 1 — .

4 Fuzzy decision tree algorithm

A simple way to explain how the rules that are infered from a decision tree
is to consider all the leaves of the tree. For each leaf, a conjunction can be
easily constructed by reading the labels of the nodes and branches that are
encountered starting from the root of the tree down to the corresponding leaf.
Then, in order to get the condition for one of the classes, we would normally
construct a disjunction between all the leaves that have a value associated with
that class. This approach is basically the idea behind the classical decision trees,
but we will extend it by using fuzzy logic.

4The intersection, union and complement defined in the crisp set theory are sometimes
refered to by their equivalent logical operators: AND, OR and NOT, respectively



One of the major disadvantages of classical decision trees is that each tested
object will have only one leaf associated with it. Moreover, this leaf is closely
related to the input samples. In many cases, it would be a nice feature to have
close values somehow related to each other. Also, it would be nice to be able
to construct decision trees by using symbolic values (tall/short, hot/cold), but
test objects having a numerical value. All these issues are solvable using a fuzzy
approach.

Going back to the classical decisions infered by a decision tree, in order to test
an object against a given decision tree, we would start from the root of the
tree, and go down the tree by testing the attribute corresponding to the current
node and following only the branch of the tree that corresponds to the value
that has the same value as object we are testing. In fuzzy terms, this would
mean to follow only the branch corresponding to the set where our value has a
strictly positive membership degree. In the case of crisp decision trees, only one
branch will have degree 1 and all the other values will have degree 0, but for
our fuzzy approach, we will consider all the branches for which the membership
degree of our object to that particular set is non-zero (or, if we are interested
in a faster algorithm, for a membership larger than a certain threshold). For
each node, we will also have to keep in mind the membership of the object down
the current path (from the root of the node, where the membership is always
1, down to the current node). Again, in the case of crisp decision trees, the
membership on the current path is always 1 (only one path and only one leaf has
membership 1, all the other ones have membership 0 and are therefore ignored).
For simplicity, we will reffer to the membership degree of an object to a certain
set of attributes as the membership of the object to the corresponding tree node
(or to the corresponding path in the tree). This membership can be computed
gradually and needs to use an intersection operator for fuzzy memberships. In
other words, considering that the attributes Ay, As,...Ar were encountered
from the root of the tree to a certain node (the node will in this case be on
level k), the membership degree of our object (considering that the values for
the corresponding attributes are vy, ve,...vy) is:

k

m A, (vl>

=1

If we are testing a symbolic attribute, depending on the semantics of the at-
tribute, we can either test it against numerical values (for example, a tempera-
ture of 25°C might be considered 70% hot and 30% cold), or against symbolic
values. Again, depending on the semantics of the attribute, we can either as-
sign a certain degree of similarity between similar attributes or assume they are
completely disjoint, as in the case of classical decision trees. If we are testing a
numerical attribute, we always have to deal with a condition against a cut point
«. In this case, for each such attribute, we can introduce an extra parameter
B > 0. Around each cut point, we say that there is an uncertainty interval of
length 5. Inside this interval, the condition z < « has a certain membership
degree between 0 and 1. If the attribute is missing when testing the object,
Quinlan proposed [6] that the best approach is to evenly split an example into
all children if the needed feature value is not available. In the end, instead
of reaching a single leaf, as in the case of a crisp decision tree, we will reach
multiple leaves. The result returned by our tree for our given object can be



computed in various ways, depending on the semantics of the classes. Either
way, for each class, we compute the membership of our object. This is easy
to compute because for each leaf we have the corresponding value as well as a
membership degree associated with it. We just need to compute the disjunction
between the leaveas that have a particular value. If the classes are not indepen-
dent, we can compute a weighted average of the leaf values (the weights being
the membership degrees for each leaf):

ZmeLeafNodes value(x) * [y

ZmGLeafNodes Ha

where:

e LeafNodes is the set of all leafs in the tree (since the membership of
non-accessible leafs is zero, they can be excluded from this computation)

e value(z) is the value corresponding to the leaf node x
® /i, is the membership degree of the given leaf

For example, consider that we have a decision tree that originally classified sam-
ples into 3 classes: white, gray or black and the combined leaf memberships 0.45,
0.3 and 0.25 respectively. In some cases, we can consider that a combination
of two classes be considered as one of the other classes (in this case, the class
“grey” will be the output, even if this is not the most likely class according to
our decision tree). In other cases, classes are not comparable, in which case,
we will output the class with the highest combined membership among the leaf
nodes (in our example, “white” will be the output).

5 Experimental setup

For our testing purposes, we used the J48 classifier provided by the Weka ma-
chine learning tool, which is an open-source, freely available implementation of
the C4.5 algorithm presented earlier®. We chose this in order to generate a deci-
sion tree based on a given function. The function we chose for our first test was
sin(x), restricted to the interval [—2,2] (see figure 1). Because we are dealing
with only one continuous attribute, the resulting tree was a binary tree with 23
leaves, as seen in figure 2. One of the disadvantages of a decision tree is that the
output is not continuous. There are some algorithms, such as CART[1], which
produce an estimate for each leaf (based of course on the training samples), but
C4.5 has a discrete output. We chose as the output classes 21 nominal strings
corresponding to the numbers {—1,—0.9,—0.8,...,0.9,1}. The training data
was chosen as the sin(x) function rounded to 1 decimal, on 400 equidistant
points in the [—2,2] interval. The learned function is also depicted in parallel
with the original function in figure 1.

As you can see, the function learned is a step function, which is caused by
our approximation (keep in mind this tree was constructed by rounding the sin
function on 400 points to 1 decimal). Even if such a decision tree might suffice
for most applications, we will try to improve it even further. For example, we

5Weka is available at http://www.cs.waikato.ac.nz/ml/weka/



T T
1k aproximated sin(x

0.5

-1

Figure 1: sin(z) as learned by the C4.5 algorithm

tested how well this tree performs on 40000 equidistant points in the same [—2, 2]
interval (we tested if the tree correctly predicted the value of the sin function
rounded to 1 decimal on these numbers). The accuracy on these points is about
97.27%: 1089 instances out of the 40000 were incorrectly classified (however, for
all these points, the error was by just 0.1). Furthermore, all of these incorrect
instances were near the cut points.
This means that in order to improve the accuracy of our decision tree, we must
correct one of the major drawbacks of most supervised learning algorithms.
That is, all such algorithms rely on representative, accurate data during the
learning phase. In our case, the lack of instances near the actual cut points has
lead to incorrectly predicted cut points. The solution we propose is to create a
fuzzy cut point. First, let’s analyze the characteristic function of a typical cut
point:
i <
At = Hose 1)

Next, we introduce the notion of a fuzzy cut point, by using an extra positive
parameter (3:

1 ifxga—g
Acapl@)=1{ 3+95* ifzelo-5a+4) (2)
0 ifoa—i-g

In other words, near the cut point, there is an “uncertainty” interval of length 3,
where the characteristic function decreases linearly instead of changing its value
from 1 to 0 directly. Since we chose this linear representation in the “uncertain”
interval, the value of this function is 0.5 at the original cut point.



L2 ET0 =5 ST09T°0- =>

Y s N\ / h W

PR FR0 =2 850 850 = SE'Q SE0 =>
N s M
88T 88T => L=< 0= STO =
S2T 2T =2 8r'0 < ap'0 ==
0T < 0T =>
80°0- <

N s M / B s b s

S0°0 S0°0 =2 SZ0BT0- => LP0-LE0- = TLOTED- =
M / A .
ST => 9E0- < 90— => S8'0-58°0- => 63 THET- =>
BS0- < 65°0- => ST HET- =>
E0°T- = E0'T- =>

9070~ =>

Figure 2: Decision tree generated



Comming back to the decision tree, normally we would construct our rules by
starting at the root node and descending in the tree by using the correct branch.
In this case, the branch was always unique, because only one branch had the
characteristic function equal to 1, all the other ones having the characteristic
0 (if the attribute chosen by the algorithm was numeric, in C4.5, this would
correspond to a node with only two branches, but if the attribute was discrete,
the node should have one branch for each possible value of the attribute). In our
fuzzy cut point model, the “correct” branch is no longer uniquely determined.
More exactly, each branch has a truth value associated to it, a number between
0 and 1 (the membership function associated with the condition that labels
that branch). As with the classical reasoning in decision trees, we will ignore all
branches with a 0 truth value (and their corresponding subtrees), but we will
explore all leaves which have a combined membership that is strictly positive.
By the combined membership of a leaf node we mean the intersection of the
truth values of the labels which are encountered from the root node down to
the leaf in question. In our experiment, we used the Lukasiewicz operator for
intersection (the product).

The final step is to consider all the non-zero leaves and their membership degrees
and to generate the output of the function. One of the easiest solutions for this
problem is to take the weighted sum of the leaf values (the weights being the
leaf memberships). This also means that the output of our decision tree will
no longer be a step function, but a continuous one. In the following pages, we
will present a few results obtained using this method (by comparison to the
actual sin(z) function), for different values of 8 (figures 3, 4, 5 and 6). Just as
a remainder, the classical decision tree corresponds to a value of § = 0 (same
values as the function in figure 1).

6 Summary and conclusions

This paper proposes a method of interpreting decision trees by using fuzzy logic.
Some of the best results achievable with this method are when we are trying to
learn a function that is continuous with respect to a given attribute, for which
we are considering fuzzy logic. Although a lot of issues are still up for discussion
(such as choosing the appropriate fuzzy operators, choosing the crisp partition
on each attribute, then the membership function for each attribute). By using
this fuzzy interpretation of the nodes, we can achieve greater accuracy when
computing the outcome of our classifier. However, this difference between the
construction and the interpretation of the resulting tree, can lead to some errors
while computing the value for the training data itself. This can sometimes be a
big issue, especially around local extremum points, but it can also provide a very
valuable piece of information: it can signal where an error in the original data
has occured, especially if we are dealing with a regression task. In this case, noisy
input data will cause less disturbance in the predicted values, since the general
bias of fuzzy decision trees is to towards a “smooth” continuous function. The
“smoothness” of the function which is predicted by a fuzzy decision tree comes
from the bias of this fuzzy interpretation: similar values in the input should
cause similar output. Moreover, while the crisp interpretation of decision trees
would normally yield a function with many discontinuity points (usually, the
output of such a decision tree is a function which is constant on small intervals,



Figure 3: Function obtained for § = 0.1

Figure 4: Function obtained for g = 0.8

10



Figure 5: Function obtained for f = 1.2

Figure 6: Function obtained for 8 = 3

11



with discontinuity points when switching from one value to another), the fuzzy
interpretation we suggested will always have a continuous output (considering
that we define the membership degrees on the attributes for each interval to
overlap neighbouring intervals).

References

[1] L. Breiman, J.H. Friedman, R.A. Olsen, C.J. Stone Classification and Re-
gression Trees 1984

[2] Cezary Z. Janikow Fuzzy Decision Trees: Issues and Methods 1998

[3] Cristina Olaru, Louis Wehenkel A Complete Fuzzy Decision Tree Technique
2003

[4] J.R. Quinlan C4.5: Programs for Machine Learning 1993
[5] J.R. Quinlan Induction on Decision Trees 1986

[6] J.R. Quinlan Unknown Attribute-Values in Induction Proceedings of the
Sixth International Workshop on Machine Learning, 1989,

[7] S. Sestino, T. Dillon. Using Single-Layered Neural Networks for the Fx-
traction of Conjunctive Rules and Hierarchical Classifications Journal of
Applied Intelligence 1, 1991.

12



