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Abstract

Often data analysis problems in Bioinformatics concern the fusion of multisensor
outputs or the fusion of multi-source information, where one must integrate dif-
ferent kinds of biological data. Natural computing provides several possibilities in
Bioinformatics, especially by presenting interesting nature-inspired methodologies
for handling such complex problems. In this article we survey the role of natural
computing in the domains of protein structure prediction, microarray data analysis
and gene regulatory network generation. We utilize the learning ability of neural
networks for adapting, uncertainty handling capacity of fuzzy sets and rough sets
for modeling ambiguity, and the search potential of genetic algorithms for efficiently
traversing large search spaces.
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1 Introduction

The 20th Century is frequently referred as the Century of Biology, given the
huge developments of this scientific area that concluded that century with the
great success of the Human Genome Project [1,2] producing the full human
DNA sequencing.
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Nowadays, we are at the beginning of the so called Post-Genomics Era char-
acterized on one hand by the availability of immense amount of bioinformatics
data (often in the public domain) and on the other hand by the need of new
and efficient mathematical and algorithmic methods able to extract the in-
formation embedded in those data (for an introduction to Bioinformatics see,
e.g., [3–5]), and as a matter of fact, the focus of the research in Bioinformat-
ics is shifting from the development of efficient data storage methods to the
extraction of useful information from data.

A vital issue concerns, in particular, the need of reliable algorithms capable
of fusing the information embedded in heterogeneous biological data. For ex-
ample, in protein structure prediction one should integrate with the available
information on the sequence of residues some other biological information like
hydrophobicity, evolutionary information, and solvent accessibility. Moreover,
multisensor outputs in microarrays (where thousand of biological experiments
are performed in parallel on a single slice of glass) may need to be combines
for enhanced performance. This fusion can be at different levels of resolution,
depending on the focus of interest of the user.

Natural Computing models, inspired in part by nature and natural systems,
are a family of powerful data analysis methods able to transform available
heterogeneous data into biological knowledge. They include Neural Networks
mimicking the mechanisms of the nervous system [6], Fuzzy Systems based on
an extension of traditional logic in order to represent uncertainty and qualita-
tive reasoning [7], Machine Learning approaches [8], and general optimization
techniques, such as Evolutionary Computation based on simulation of biologi-
cal evolution [9,10], Swarm Intelligence based on simulation of social behavior
of animals [11], Immunocomputing inspired by the biological immune sys-
tem [12], and Simulated Annealing derived by Statistical Mechanics [13].

In recent years, many Natural Computing models have been successfully ap-
plied to the solution of complex problems related to signal processing, clas-
sification, clustering, feature selection, data visualization, data mining, and
information fusion [14]. These provide efficient paradigms for fusion of differ-
ent kinds of information. The aim is to synergistically merge the techniques
so that they cooperate with each other in enhancing the overall performance.

The application of Natural Computing techniques encompasses several fields
of Bioinformatics. An attempt has been made in this survey to compile some
of the existing literature pertaining to the use of Natural Computing in Bioin-
formatics, concentrating on those fields where most of the research efforts have
been concentrated in the last twenty years. Section 2 introduces the method-
ologies used for the prediction of Protein Structure. Section 3 presents a study
of various natural computing tools used for the analysis of microarray data.
Section 4 completes the survey with an overview of biological networks and
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throws some light into their extraction. Finally, Section 5 concludes the article.

2 Protein Structure Prediction

A protein is a polymer constituted by a chain of amino acids (also called
residues) linked by peptide bonds. Protein sequence can be represented by
a string of alphabets, each of which belongs to 20 letters representing 20
amino acids. The biological function of a protein depends on its 3-dimensional
structure (fold or tertiary structure).

The Protein Data Bank (PDB) [15] 1 contains at present time roughly 40,000
resolved 3D protein structures deposited while more than 2 million non-redundant
protein sequences are known. This gap is due to the cost of the process of
experimental determination of protein structures, either by X-ray crystallog-
raphy or by nuclear magnetic resonance methods, that limits the growing of
PDB to not more than 5000 new protein structures per year.

The folding of a protein corresponds to the minimization of its free energy
and depends on its sequence and on external environment [16]. As the explicit
minimization of protein potential functions from first principles is infeasible on
today available computers, an extraordinary research effort has been carried
out in the last 20 years in order to develop efficient methods able to predict
the 3D structure of a protein starting from is amino acid sequence. A valuable
international initiative stimulating this effort is the Critical Assessment of
Techniques for Protein Structure Prediction CASP 2 , a community-wide ex-
periment taking place every two years since 1994, aimed to allow the research
groups to assess the quality of their methods [17].

Prediction methods can be classified as [18]: (a) Template-based modeling
(TBM), based on finding known structures (templates) related to the se-
quence to be modeled (target); (b) Free-modeling (FM), or ab initio, used
when structural analogs do not exist in the PDB library or could not be suc-
cessfully identified. At present, TBM methods are quite accurate, especially
when the match with existing sequences is above 50%, while FM methods are
less effective [18].

In 1998, Qian and Sejnowski [20] proposed the first application of neural net-
works to secondary protein structure prediction, making use of a multilayer
perceptron and a binary sequence encoding method.

Subsequent studies proposed some variants of this approach [21–24,26]. For

1 http://www.wwpdb.org/
2 http://predictioncenter.org/
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example, in [23] the input of the neural network has been augmented with the
hydrophobicity of each residue, while [25] studied different encoding schemes
and a modular architecture.

In all these works, protein sequences were analyzed using sliding windows of
fixed-length segments. The goal of the neural networks was to correctly predict
the secondary structure for the middle amino acid of the window, which coded
for either a three-state (α helix, β sheet, and random coil) or a two-state (e.g.
helix, non-helix). The three-state prediction was encoded using three or two
output units of the neural network.

The obtained accuracy with those methods was not better than 65% for three-
state prediction, i.e., not much better than a simple Bayesian statistical ap-
proach assuming independent probabilities of residues [24].

Some small improvements in accuracy were notified in [23] using protein ter-
tiary structural class, while in [26] the neural network design for secondary
structure prediction of globular proteins was extended to the prediction of
membrane proteins, obtaining better results than those obtained with statis-
tical methods.

The addition of evolutionary information in the form of multiple alignment
profiles proposed in [27], substantially boosted the prediction accuracy, sur-
passing a 70% level of the average three-state accuracy. The multiple alignment
profile contains the frequency of every possible amino acid in each position of
a protein, as obtained from the multiple alignment in that position.

Some architectural enhancements where proposed in [28], introducing an adap-
tive encoding of amino acids, while [29] adopted position specific matrices for
incorporating evolutionary information.

A Hidden Markov model method for finding remote homologs of protein se-
quences was proposed in [30]. The method begins with a single target sequence
and iteratively builds a Hidden Markov model from the sequence and homologs
found using the Hidden Markov model for database search.

Bi-directional recurrent neural networks, proposed in [31,33,32], can learn to
make predictions of protein secondary structure based on variable ranges of de-
pendencies. These architectures extend recurrent neural networks introducing
non-causal bidirectional dynamics to capture both upstream and downstream
information.

Hidden Markov models and bi-directional recurrent neural networks reached
an accuracy between 75 and 79% in the three-state secondary structure pre-
diction. Further improvements were obtained in [34], using a recursive and
bi-directional neural network. The network takes as inputs the protein se-
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quence, evolutionary information obtained from multiple sequence alignments,
and predicted secondary structure and relative solvent accessibility (obtained
in its turn using predictor based on an ensemble of three recursive neural
networks trained on a non-redundant set of protein contact maps) 3 .

Genetic algorithms have been applied to the determination of protein structure
from sequence, using a full atom representation in [35]. A free energy function
with point charge electrostatics and an area based solvation model is used.

A multi-objective evolutionary algorithm has been proposed in [36], as a search
procedure for exploring the conformational space of the protein structure pre-
diction problem for the minimization of two different interaction energies: local
(bond atoms) and non-local (non-bond atoms).

A fuzzy sets-based adaptive neighborhood search optimization heuristic for
protein structure prediction was proposed in [37]. A fuzzy generalization of
contact map has been presented in [38].

A two-stage machine learning, information retrieval, approach to fold recog-
nition has been studied in [39]. A set of similarity measures between query-
template protein pairs is computed, including alignment scores, pairwise struc-
tural compatibility features, solvent accessibility, contact map and beta- strand
pairings of the query protein against the tertiary structure of the template pro-
tein. Finally, these features were fed into support vector machines to predict
the structural relevance of the query-template pairs.

In [40,41], multilayer perceptrons have been applied to protein tertiary struc-
ture prediction. A simple simulated annealing procedure to assemble native-
like tertiary structures from fragments of unrelated protein structures with
similar local sequences using Bayesian scoring functions is presented in [42].

The strong coupling between secondary and tertiary structure formation in
protein folding was exploited to improve protein secondary structure predic-
tion in [43]. The architecture of a neural network for secondary structure
prediction that utilizes multiple sequence alignments was extended to accept
low-resolution nonlocal tertiary structure information as an additional input.

3 Microarray Data Analysis

For the proper understanding of the function of genes and proteins, protein
structure evaluation is essential. Each DNA array contains the measures of

3 A contact map represents the distance between every two residues of a three-
dimensional protein structure.
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the level of expression of many genes. Gene expression data, coupled with
various analysis methods, serves as an indispensable tool for the analysis of
protein functions. Various distances and/or correlations can be computed from
pairwise comparison of these patterns. Let genej(ej1, . . . , ejn) denote the ex-
pression pattern for the jth gene for i = 1, . . . , n samples. The Euclidean
distance between the jth and kth genes, computed as

dj,k =
√∑

i

(eji − eki)2, (1)

is suitable when the objective is to cluster genes displaying similar levels of
expression. Cluster validation can be done using either external and internal
criterion analyses [65]. A quantitative data-driven framework has been devel-
oped [44] to evaluate different clustering algorithms, without using additional
biological knowledge about the gene expression data. The Pearson correlation
coefficient −1 ≤ r ≤ 1 measures the similarity in trend between two profiles
(genes). The distance is given as

dj,k = (1− r) = 1−
∑

i{(eji − êj)(eki − êk)}/n
σej

∗ σek

, (2)

where êj and σej
indicate the mean and standard deviation, respectively, of

all points of the jth profile.

Fuzzy c-means [45] is a well-known fuzzy partitive algorithm employed for
clustering overlapping data. Use of fuzzy clustering enables genes to simul-
taneously belong to multiple groups, thereby revealing distinctive features of
their function and regulation. Fuzzy c-means algorithm has been applied to
cluster microarray data [46]. The value of the fuzzifier m is appropriately tuned
for gene selection, based on resultant distribution of distances between genes.
The selected genes exhibit tight association to the clusters.

Many proteins serve different functions depending on the demands of the or-
ganism, such that a corresponding set of genes is often coexpressed with multi-
ple, distinct groups of genes under different conditions. This type of conditional
coregulation of genes is modeled using a heuristically modified version of fuzzy
c-means clustering [47], to identify overlapping partitions of genes based on
the response of yeast cells to environmental changes.

Kohonen’s SOM has been applied to the clustering of gene expression data
[66–68]. It generates a robust and accurate clustering of large and noisy data,
while providing effective visualization. SOMs require a selected node in the
gene expression space (along with its neighbors) to be rotated in the direction
of a selected gene expression profile (pattern). However, the predefinition of
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a two-dimensional topology of nodes can often be a problem considering its
biological relevance.

SOTA has also been applied to gene expression clustering [69]. As in SOMs
the gene expression profiles are sequentially and iteratively presented at the
terminal nodes, and the mapping of the node that is closest (along with its
neighboring nodes) is appropriately updated. Upon convergence the node con-
taining the most variable (measured in terms of distance) population of ex-
pression profiles is split into sister nodes, causing a growth of the binary tree.
Unlike conventional hierarchical clustering, SOTA is linear in complexity to
the number of profiles. The number of clusters need not be known in advance
as in c-means clustering. The algorithm starts from the node having the most
heterogeneous population of associated input gene profiles. A statistical pro-
cedure is followed for terminating the growing of the tree, thereby eliminating
the need for an arbitrary choice of cutting level as in hierarchical models.

Classification of acute leukemia, having highly similar appearance in gene ex-
pression data, has been made by combining a pair of classifiers trained with
mutually exclusive features [70]. Gene expression profiles were constructed
from 72 patients having acute lymphoblastic leukemia (ALL) or acute myeloid
leukemia (AML), each constituting one sample of the DNA microarray 4 . Each
pattern consists of 7129 gene expressions. A neural network combines the out-
puts of the multiple classifiers. Feature selection with nonoverlapping correla-
tion (such as Pearson and Spearman correlation coefficients) encourages the
classifier ensemble to learn different aspects of the training data in a wide
solution space.

Fuzzy adaptive resonance theory (ART) network [48] has been employed for
clustering the time series expression data related to the sporulation of budding
yeast [49].

An evolving modular fuzzy neural network, involving dynamic structure grow-
ing (and shrinking), adaptive online learning and knowledge discovery in rule
form, has been applied to the Leukemia and Colon cancer gene expression data
[72]. Feature selection improves classification by reducing irrelevant attributes
that do not change their expression between classes. The Pearson correlation
coefficient is used to select genes that are highly correlated with the tissue
classes. Rule generation provides physicians, on whom the final responsibility
for any decision in the course of treatment rests, with a justification regarding
how a classifier arrived at a judgement. Fuzzy logic rules, extracted from the
trained network, handle the inherent noise in microarray data while offering
the knowledge in a human-understandable linguistic form. These rules point to
genes (or their combinations) that are strongly associated with specific types

4 http://www.genome.wi.mit.edu/MPR
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of cancer, and may be used for the development of new tests and treatment
discoveries.

A dynamic fuzzy neural network, involving self-generation, parameter opti-
mization and rulebase simplification, is used [71] for the classification of cancer
data such as Lymphoma 5 , small round blue cell tumor (SRBCT) 6 , and liver
cancer 7 . Initial feature selection is done in terms of t-tests. It is observed that
a small number of important genes (5 out of 4026, 8 out of 2308, 24 out of
1648 features, in the three datasets respectively) succeed in attaining 100%
classification.

The identification of gene subsets for classifying two-class disease samples has
been modeled as a multiobjective evolutionary optimization problem, involv-
ing minimization of gene subset size to achieve reliable and accurate clas-
sification based on their expression levels. The Non-Dominated Sorting GA
(NSGA-II) [73], a multiobjective GA, is used for the purpose. This employs
elitist selection and an explicit diversity preserving mechanism, and empha-
sizes the non-dominated solutions. It has been shown that this algorithm can
converge to the global Pareto front, while simultaneously maintaining the di-
versity of population.

Results are provided on three cancer samples, viz., Leukemia, Lymphoma and
Colon. An l-bit binary string, where l is the number of selected (filtered)
genes in the disease samples, represents a solution. The major difficulties faced
in solving the optimization problem include the availability of only a few
samples as compared to the number of genes in each sample, and the resultant
huge search space of solutions. Moreover many of the genes are redundant
to the classification decision, and hence need to be eliminated. The three
objectives simultaneously minimized are (i) the gene subset size, (ii) number
of misclassifications in training, and (iii) number of misclassifications in test
samples.

Some recent applications of GAs, in microarray, deal with biclustering. This
aims at determining subsets of genes which are similarly expressed over an
optimal subset of conditions (or samples), thereby better reflecting the biolog-
ical reality. Existing greedy algorithms for biclustering often yield suboptimal
solutions. GAs are employed [50], by integrating a greedy algorithm as a local
search in order to improve the quality of biclustering. Optimization is done
with respect to the conflicting goals of homogeneity and size. Results are pro-
vided on 2884 genes of yeast data, involving 17 conditions.

5 http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt
6 http://research.nhgri.nih.gov/microarray/Supplement/
7 http://genome-www.stanford.edu/hcc/
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4 Biological Networks Modeling

Biological networks relate genes, gene products or their groups (like protein
complexes or protein families) to each other in the form of a graph, where nodes
and edges correspond to molecules and their existing inter-relationships re-
spectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database
[51] provides a public standardized annotation of genes 8 .

Understanding of regulatory networks is crucial to the understanding of fun-
damental cellular processes involving growth, development, hormone secretion
and cellular communication. Determination of transcriptional factors that con-
trol gene expression can offer further insight into the misregulated expressions
common in many human diseases. All this is often crucial for application in
drug development, medicine, nutrition, and other therapeutic activities.

A genetic regulatory network consists of a set of DNA, RNA, proteins and
other molecules, and it describes regulatory mechanisms among them. Regu-
lation of gene expression may occur at any stage of the cellular information
flow from DNA, RNA to protein, like mRNA splicing, translational and post-
translational control. Nevertheless, the one involving the initiation of tran-
scription has been most widely studied in literature [52–54].

The gene regulatory network determines which subset of genes is expressed,
upto what level, and in response to what conditions of the cellular environ-
ment. While the metabolic networks form the basis for the net accumulation of
biomolecules in living organisms, the regulatory networks modulate their ac-
tion – thereby leading to physiological and morphological changes. Time-series
gene expression data measure mRNA abundance of genes over a sequence of
time points, thereby enabling exploration of gene interactions over the entire
genome.

Recurrent neural network has been used to model the dynamics of gene ex-
pression [55]. The significance of the regulatory effect of one gene product on
the expression of other genes of the system is defined by a weight matrix.
Multigenic regulation, involving positive and/or negative feedback, are con-
sidered. The process of gene expression is described by a single network, along
with a pair of linked networks independently modeling the transcription and
translation schemes.

Adaptive Double Self-Organizing Map (ADSOM) [56] provides a clustering
strategy for identifying gene regulatory networks. It has a flexible topology
and allows simultaneous visualization of clusters. DSOM combines features of
SOM with two-dimensional position vectors, to provide a visualization tool for

8 http://www.genome.ad.jp/kegg/
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deciding on the required number of clusters. However, its free parameters are
difficult to control to guarantee proper convergence. ADSOM updates these
free parameters during training, and allows convergence of its position vectors
to a fairly consistent number of clusters (provided its initial number of nodes is
greater than the expected number of clusters). The effectiveness of ADSOM in
identifying the number of clusters is proven by applying it to publicly available
gene expression data from multiple biological systems such as yeast, human,
and mouse.

Fuzzy rules of an activator-repressor model of gene interactions were used
[57] to transform expression values into qualitative descriptors. The algorithm
searches for regulatory triplets consisting of the activator, repressor and tar-
get genes. However the method is found to be computationally intensive and
is limited to determining possible interactions between one positive and one
negative regulator per gene. Clustering has been employed [58] as an inter-
face to a fuzzy logic-based method, in order to improve the computational
efficiency. Interactions between multiple genes were investigated [59] using a
scalable linear variant of fuzzy logic.

Gene regulatory networks were inferred from microarray data [60], using GAs
for interactive reverse engineering 9 . The chromosome of the GA corresponds
to the floating point weight matrix between the gene time-steps [61]. The av-
erage of squared error, over all time-steps, is minimized as the fitness function.
The cardinality of the connectivity is also simultaneously minimized. However
the combinatorial complexity is expected to be unmanageable in real-world
problems, involving a large number of genes [62].

A simple and novel correlation-based approach has been employed to auto-
matically extract gene interaction networks from biclusters in microarray data
[63]. The Pearson correlation coefficient −1 ≤ r ≤ 1, which measures the lin-
ear similarity in trend between two profiles (genes), was used. The distance is
given as

dj,k = (1− r) = 1−
∑

i{(eji − êj)(eki − êk)}/N
σej

∗ σek

, (3)

where êj and σej
indicate the mean and standard deviation, respectively, of all

points of the jth profile. Preprocessing was done to preserve only the stronger
correlated gene interaction pairs. A gene along a weaker link (of correlation) is
considered to be not interacting or regulating the other gene. Incorporation of
additional knowledge in the form of biclustering helped focus our attention to
a smaller subset of genes and/or time points, thereby reducing computational

9 Reconstructing interactions in gene regulatory networks, using gene expression
data.
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burden while extracting the network structure. The relationship between the
expression level variation over time of a transcription factor and that of its
target was analyzed, in the framework of the evolutionary biclusters [64]. The
relationship was represented in terms of rules, linking a transcription fac-
tor (TF) to the target gene that it regulates. Subsequently these rules were
mapped to generate parts of the entire regulatory network.

5 Conclusions

In recent years, Natural Computing models have been successfully applied
to several fields of Bioinformatics, including protein structure prediction, mi-
croarray data analysis, and biological networks modeling. Natural Computing
models demonstrated to be a family of reliable data analysis methods able to
transform available heterogeneous biological data into biological knowledge,
especially when the task concerns the fusion of multisensor outputs, such as in
the case of microarrays, or the fusion of multi-source biological information.

In the coming years the development and the application of new powerful
Natural Computing data processing tools will become all the more crucial,
given the fast growing volume of available biological data.
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