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Abstract

This project discusses about the popular statistical spam filtering pro-
cess: naive Bayes classification. A fairly famous way of implementing the
naive Bayes method in spam filtering by Paul Graham is explored and a
adjustment of this method from Tim Peter is evaluated based on applica-
tions on real data. Two solutions to the problem of unknown tokens are
also tested on the sample emails. The last part of the project shows how the
Bayesian noise reduction algorithm can improve the accuracy of the naive
Bayes classification.



Declaration

This piece of work is a result of my own work except where it forms an
assessment based on group project work. In the case of a group project,
the work has been prepared in collaboration with other members of the
group. Material from the work of others not involved in the project has
been acknowledged and quotations and paraphrases suitably indicated.



Contents

1 Introduction

2 Naive Bayes Classification

2.1 Trainingdata . . . .. .. .. .. Lo

2.2 Filtering process . . . . . . . .. ..o

2.3 Application . . . .. ...
3 Paul Graham’s Method

3.1 Filtering process . . . . . . . ... Lo

3.2 Application . . . . ...

3.3 Tim Peter’s criticism . . . . . . . .. ..o oL

4 Unknown Tokens

4.1 Modified sample emails . . ... ... ... ... .......
4.2 Problem . . . ... ... e
4.3 Solution . . . . .. ...
4.4 Application . . . .. ... L
5 Bayesian Noise Reduction
5.1 Introduction. . . . . . . .. ... .. ... .. ...
5.2 Zdziarski’s BNR algorithm . . . . . ... .. ... ... .. ..
5.3 Application . . . . . . .. ...

6 Conclusion

12
12
15
19

24
24
24
25
27

33
33
33
35

39



Chapter 1

Introduction

In this project, I investigate one of the widely used statistical spam filters,
Bayesian spam filters. The first known mail-filtering program to use a Bayes
classifier was Jason Rennie’s iFile program, released in 1996. The first schol-
arly publication on Bayesian spam filtering was by Sahami et al. (1998)[12].
A naive Bayes classifier[3] simply apply Bayes’ theorem on the context clas-
sification of each email, with a strong assumption that the words included in
the email are independent to each other. In the beginning, we will get two
sample emails from the real life data in order to create the training dataset.
Then a detailed filtering process of the naive Bayes classification will be
explained and we will apply this method on our sample emails for testing in
the end of the chapter. These sample emails will be tested throughout the
project using the other methods we will discuss about later.

Among all the different ways of implementing naive Bayes classification,
Paul Graham’s approach has become fairly famous[2]. He introduced a new
formula for calculating token values and overall probabilities of an email
being classified as spam. But there is a unrealistic assumption in his formula
which assume the number of spam and ham are equal in the dataset for
everyone. Where Tim Peter correctly adjust the formula later to make it fit
into all datasets[7], and both methods will be evaluated using our training
dataset.

Also two different solutions to the problem of unknown tokens will be
discussed in this project, the simple one is introduced by Paul Graham
and the more accurate approach is created by Gary Robinson[10]. Where
Robinson’s method lets us consider both our background knowledge and
the limited data we have got from unknown tokens in the prediction of their
token values. Again, their performances will be measured against our sample
emails.

Then, we will discuss about a major improvement on the Bayesian filter-
ing process: Bayesian noise reduction. Jonathan A. Zdziarski first discussed
about the Bayesian noise reduction algorithm in 2004[15], and also include



this idea in his book later[16, p. 231]. The BNR algorithm is particularly
useful in making the filtering process more effective and gain a higher level
of confidence in the classification.



Chapter 2

Naive Bayes Classification

2.1 Training data

Here I want to introduce some email examples to demonstrate the process
of naive Bayes classification. Each of them contains 15 words or tokens in
the filtering way of saying, and all of them will be included in the training
data table later on.

e Example for spam:
Paying too much for VIAGRA?
Now,you have a chance to receive a FREE TRIAL!

e Example for ham:

For the Clarins, just take your time. As i have advised her to exercise
regularly.

The following table is made to show the frequency of a token appear
in both email groups, the appearances of each token count only once for
each email received. I estimated these word counts based on some previous
work done by Vasanth Elavarasan[l] and the book written by Jonathan A.
Zdziarski[16, p. 65]. Due to the email group size for Zdziarski’s word counts
list is smaller than Elanvarasan’s, I only took the ratio factor into account
and reproduced the new word counts according to our dataset. For example,
tokens such as The, Vehicle and Viagra are not included in Elavarasan’s word
list. In order to make use of Zdziarski’s data, I simply multiply the ratio in
his dataset by the total number in the new table. Here is how I get the new
frequencies for these three tokens.(Table 2.1) Note the training dataset here
has a total number of 432 spam and 2170 ham.(Table 2.2)



The 96/224 x 432 ~ 185 | 48/112 x 2170 ~ 930

Vehicle | 11/224 x 432 =~ 21 3/112 x 2170 =~ 58

Viagra | 20/224 x 432 ~ 39 1/112 x 2170 ~ 19

Table 2.1: Table of estimated data

Feature Appearances in Spam | Appearances in Ham
A 165 1235
Advised 12 42
As 2 579
Chance 45 35
Clarins 1 6
Exercise 6 39
For 378 1829
Free 253 137
Fun 59 9
Girlfriend 26 8
Have 291 2008
Her 38 118
I 9 1435
Just 207 253
Much 126 270
Now 221 337
Paying 26 10
Receive 171 98
Regularly 9 87
Take 142 287
Tell 76 89
The 185 930
Time 212 446
To 389 1948
Too 516) 141
Trial 26 13
Vehicle 21 58
Viagra 39 19
You 391 786
Your 332 450

Table 2.2: Table of training data




2.2 Filtering process

Firstly, we break the email we want to classify into a group of individual
words w1, ..., w,, and denote this email as a capital letter E. The probabil-
ity of receiving the email F is equal to the probability of receiving the list
of words wy, ..., w,.

P(E) = P(wy, ..., wy) (2.1)

But a strict application of the Bayes theorem requires a list of all the
possible combinations of the probabilities of words in the email. In order to
calculate the value of P(wy,...,w,), we need a huge training dataset if the
email contains a big number of words(n is big). Even if we have a reasonable
large dataset, it is still very unlikely that we can find all the possible combi-
nations everytime we receive a new email. Therefore we need to make a big
assumption that the words in the email are independent of each other and
randomly displayed in the email[5]. In other words, we assume the probabil-
ity of a chosen word being classified as a spammy word does not affect the
probabilities of other words being spammy. The purpose of assumption is to
simplify the computations of probabilities in the Bayes formula and reduce
the size of the training dataset we need. Despite this assumption is clearly
false in most real-world cases, naive Bayes often performs classification very
well. The reason is correct probability estimation is not necessary for ac-
curate prediction in practice, the key issue that we are looking for is only
the order of the probabilities[8]. Therefore by this naive Bayes assumption,
(2.1) becomes:

n
P(wy,... wy) = [[ P(w)

i=1
Next, let’s denote the two classes of emails as spam(S) and ham(H).
What we need to know next are the two probabilities P(FE|S) (probability
of given a email from email class S that it is the email E) and P(E|H)
(probability of given a email from email class H that it is the email FE),
and we have to make a assumption of conditional independence[9]. The
assumption here is that the appearance of a particular token w; is statically
independent of the appearance of any other tokens wj, j # 1, given that we
have either a spam or a ham. Then we can express P(E|S) and P(E|H) as:

P(E|S) = P(wy, ..., wy|S)

= [[ P(wils)
=1



and
P(E|H) = P(w, .., w,|H)

= 1 Ptwilo)
=1

The reason that we set up a training dataset is to estimate how spammy
each word is, where probabilities P(w;|S)(probability of given a email from
email class S which it contains the word w;) and P(w;|H )(probability of
given a email from email class H which it contains the word w;) are needed.
They denote the conditional probability that a given email contains the
word w; under the assumption that this email is spam or ham respectively.
We estimate these probabilities by calculating the frequencies of the words
appear in either groups of emails from the training dataset. In the following
formula, P(w;N.S) is the probability that a given email is a spam email and
contains the word w;. Thus, by Bayes theorem:

P(H)

P(wi N S)
P(S)

For example,the word Free in our training dataset:

P(w;|S) = and P(w;|H) =

9253
P . av
(ws N S) = oo 5170

and

432
P(S)=—"
)= 210

thus, we get

253

P S)=—

(wslS) = 753
The following step is to compute the posterior probability of spam email
given the overall probability of the sampling email by Bayes’ rule, this is the

crucial part of the entire classification.

P(S|E) =




and similarly,

P(E|H)P(H)
P(E)
P(H) [] P(wi|H)

=

1
P(E)

P(H|E) = (2.3)

Therefore we can classify the email by comparing the probabilities of
P(S|E)(probability of a given email is classified as spam which belongs to
the email class S) and P(H|E)(probability of a given email is classified as
ham which belongs to the email class H). Firstly, we find the ratio of these
two probabilities. In the equations below, the denominators P(E) from (2.2)
and (2.3) cancel out each other.

P(S|E) _ P(E|S)P(S)
P(H|E) — P(E|H)P(H)

n

P(S) IT P(wilS5)

1

.

P(H) [] P(w|H)

=1

P(S) & P(wi|S)
HHP H)

=1

.

But there is a problem here, the products in the above equations can be
extremely small values if we have a big amount of words w;. To overcome
this issue, we apply log to the probability ratio.

g POIE) _ 1 (P(S) 1 P(wi|s>>

=1

At this point, we can use equation (2.4) to calculate the log poste-
rior probability when we receive a new email. If the result is greater than
zero(which means P(S|E) > P(H|E)), we classify email F as spam. Sim-
ilarly, we classify the email as ham if it is less than zero(which means
P(S|E) < P(H|E)).



2.3 Application

Once we have the naive Bayes classifier ready, we can investigate how
spammy each word is based on the training dataset. Here is the new ta-
ble with the columns P(w;|S) and P(w;|H) added on. (Table 2.3)

With a total number of 432 spam and 2170 ham. We can calculate the
values of P(S) and P(H):

432
P = —— =0.1660261
(5) 432 + 2170 0166026
2170
PH)=———=0.
(H) 432 + 2170 08339739
For our sample emails, example of spam ES contains 14 different words
w;, 1 = 1,...,n and example of ham F'H contains 15 different words w;, j =
1,...,m. We apply the naive Bayes classification as follow:

P(S|ES) wl]S
log —2122)
°® P(H|ES) Og +Z (wi H)
L 0.1660261 ) 0.0601852+ 1o 00208333
~ %8 78339739 % 0.0046083 % 0.0059908
— 14.8341602
P(S|EH) wj\s
log =2 122)
%% P(H|EH) o8 5 *Z (w; | H)
B 01660261 0.8750000 | = 0.0601852
= %% 58339739 ' | °® 0.8428571 8 0.0400922

= —5.1473422
Therefore the value of log P((Ib;“ ES)) is greater than zero, which indicates

email £S is spam. And the value of log % is negative, it shows that

email FH is classified as ham. Finally, we successfully classified two sample
emails into the correct email groups by using naive Bayes classification.
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Feature In Spam | In Ham | P(w;|S) | P(w;|H)

A 165 1235 0.3819444 | 0.5691244
Advised 12 42 0.0277778 | 0.0193548
As 2 579 0.0046296 | 0.2668203
Chance 45 35 0.1041667 | 0.0161290
Clarins 1 6 0.0023148 | 0.0027650
Exercise 6 39 0.0138889 | 0.0179724
For 378 1829 0.8750000 | 0.8428571
Free 253 137 0.5856481 | 0.0631336
Fun 99 9 0.1365741 | 0.0041475
Girlfriend 26 8 0.0601852 | 0.0036866
Have 291 2008 | 0.6736111 | 0.9253456
Her 38 118 0.0879630 | 0.0543779
I 9 1435 0.0208333 | 0.6612903
Just 207 253 0.4791667 | 0.1165899
Much 126 270 0.2916667 | 0.1244240
Now 221 337 0.5115741 | 0.1552995
Paying 26 10 0.0601852 | 0.0046083
Receive 171 98 0.3958333 | 0.0451613
Regularly 9 87 0.0208333 | 0.0400922
Take 142 287 0.3287037 | 0.1322581
Tell 76 89 0.1759259 | 0.0410138
The 185 930 0.4282407 | 0.4285714
Time 212 446 0.4907407 | 0.2055300
To 389 1948 0.9004630 | 0.8976959
Too 56 141 0.1296296 | 0.0649770
Trial 26 13 0.0601852 | 0.0059908
Vehicle 21 58 0.0486111 | 0.0267281
Viagra 39 19 0.0902778 | 0.0087558
You 391 786 0.9050926 | 0.3622120
Your 332 450 0.7685185 | 0.2073733

Table 2.3: New table of training data
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Chapter 3

Paul Graham’s Method

3.1 Filtering process

Paul Graham has a slightly different way of implementing naive Bayes
method on spam classifications.[2] His training dataset also contains two
groups of emails, one for spam and the other for ham. The difference is that
the size of his groups are almost the same, each has about 4000 emails in it.
And not like the sample emails I created in the last chapter, which only have
message bodies, he takes into account the header, javascript and embedded
html in each email. For better filtering, he enlarges the domain of tokens by
considering alphanumeric characters, dashes, apostrophes, and dollar signs
as tokens, and all the others as token separators. Of course, more symbols
will be discovered as useful indicators of spam in the future. But at that
time, he ignores purely digits tokens, and html comments.

The filtering process begin with generating the same table as Table 2.2,
which states the number of appearance of each token in both email groups.
Again, the appearances of each token count only once for each email re-
ceived. After that, he calculates the probability of each token that an email
containing it is a spam[16, p. 69]. Now, we denote AS and AH as the to-
ken’s frequency of appearances in spam and ham respectively. By using our
training dataset, the probability P(S|w;) of a token will be computed as
follow:

AS/432
PSlw) = Fs7ma 1 am2im

For example,the probability of the token Fxercise will be:

6/432
P(S|wg) = — 0.4359180
(Shws) = 57135 + 392170

In this case, the word Ezercise is considered as a hammy word where
probability 0.5 is neutral.

12



Here, Graham discovered two ways to reduce false positives in the clas-
sification. One way is doubling the number of appearances in ham for each
token in the email. By doing this, we can find out which token is rarely used
in legitimate email and also consider some of the tokens as not appearing in
ham at all. The other slight bias Graham used to fight against false positives
is using the number of emails in each individual email group, rather than
the total number of emails in both groups, as the divisor in the equation of
calculating probabilities P(S|w;).

The modified version of Graham’s method calculate the probability as
follow:

AS/432
P(Slwi) = F57a33 + 2402170

Then, the probability of the token Ezercise will become:

6/432
P(S|we) = — 0.2787054
(Slws) = & /232 + 2 x 39,2170

Clearly, the word FEzxercise is more hammy in this version as the prob-
ability is closer to 0. Which shows Graham is trying to enhance the effect
of all the hammy words in the calculation of overall probability by doubling
their appearances in ham. This slight bias will help reducing the probability
that filters misjudge a ham as spam, which means minimize the number of
false positives.

In Graham’s classification, the filter will assign a probability to the to-
ken only if its appearance in total is more than five times. In maths, the
threshold will be AS + 2AH > 5 for any token in the dataset.

In case of a token’s appearance in both email groups is less than five
times, this type of tokens will be considered as unknown tokens(or called
hapaxes). Which means a word that never occurs in both email groups,
and it will be assigned a neutral probability 0.5, also known as the hapaxial
value.(In Graham’s method, he use 0.4 since he thought unknown tokens are
usually fairly innocent.) This action can effectively prevent dictionary attack
which flood the emails with lots of random words in order to mislead filters.
At this moment, we ignore these tokens in our calculation by assigning the
neutral probability and they will become useful after more relative data has
been collected. Then another problem arised, how about the probabilities of
tokens that only appear in one of the email groups? These are called single-
corpus tokens, we normally assign a probability of 0.99 for tokens that only
found in spam and a probability of 0.01 for tokens only appear in ham.

Based on Paul Graham’s method, our training data table will look like
this.(Table 3.1)

Now we tokenize the new email we receive, same as what we did for
the original naive Bayes classification. But not taking all the tokens into
account, only pick up the most interesting 15 tokens. The further a token’s

13



Feature Appearances in Spam | Appearances in Ham | P(S|w;)

A 165 1235 0.2512473
Advised 12 42 0.4177898
As 2 579 0.0086009
Chance 45 35 0.7635468
Clarins 1 6 0.2950775
Exercise 6 39 0.2787054
For 378 1829 0.3417015
Free 253 137 0.8226372
Fun 59 9 0.9427419
Girlfriend 26 8 0.8908609
Have 291 2008 0.2668504
Her 38 118 0.4471509
I 9 1435 0.0155078
Just 207 253 0.6726596
Much 126 270 0.5396092
Now 221 337 0.6222218
Paying 26 10 0.8671995
Receive 171 98 0.8142107
Regularly 9 87 0.2062346
Take 142 287 0.5541010
Tell 76 89 0.6820062
The 185 930 0.3331618
Time 212 446 0.5441787
To 389 1948 0.3340176
Too 56 141 0.4993754
Trial 26 13 0.8339739
Vehicle 21 58 0.4762651
Viagra 39 19 0.8375393
You 391 786 0.5554363
Your 332 450 0.6494897

Table 3.1: Training data table with Paul Graham’s method
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probability is from the neutral probability 0.5, the more interesting it is.
And Graham choosed the number 15 for a reason, he found out that a large
percentage of spams in his dataset tend to contain around 15 spammy words
in them. Therefore if you consider 30 tokens instead of 15, most likely you
will include 15 innocent tokens in the calculation which are clearly noise
added by the spammers. The number of spam in your inbox will increase as
more innocent tokens are included in the calculation. But at the same time,
you also need to have a sufficient amount of tokens in order to make the
correct decision. It is possible for a legitimate email to contain the words
like Paying, Free, and Trail, even they are considered as Top 5 spammy
words in my training dataset. Here is a example for it:

Hey,Leon. Tell you a great news, the new bar is giving out
free trail of all the cocktails this week. And Gary is paying
tonight since he is about to finish the course. So leave your
wallet at home and join us for dinner at 7pm, don’t be late!

For sure, you do not want to classify a email from your close friend as
spam. Otherwise, you will miss out a lovely evening with free dinner and
cocktails provided. This can be one of the worst outcome when you get false
positives.

After collecting the 15 most interesting tokens, we combine their proba-
bilities P(S|w;) by Bayes’ theorem to produce a overall probability P(S|E)
with the assumption that the tokens are all independent of each other.[16,
p. 76] The combination works as follow, with n = 15 in this case:

{1 (Sl

P(S|w;) + ﬁlP(H\wi)

P(S|E) = (3.1)

e

1

1

where

P(H!wz) =1- P(S|wz)

In Graham’s algorithm, he classifies the email as spam if the overall
probability P(S|E) is higher than 0.9. The boundary seems to be quite
high at this point, but the applications of this method in the next section
will show that the overall probabilities will always end up somewhere near
either 0 or 1.

3.2 Application

In the first section, we already have a table contains Graham’s probabilities
P(S|w;) of each token. Since our sample emails have only 15 words, I will

15



Feature In Spam | In Ham | P(S|w;) | Interestingness
Paying 26 10 0.8671995 0.3671995
Viagra 39 19 0.8375393 0.3375393
Trial 26 13 0.8339739 0.3339739
Free 253 137 0.8226372 0.3226372
Receive 171 98 0.8142107 0.3142107
Chance 45 35 0.7635468 0.2635468
A 165 1235 0.2512473 0.2487527
Have 291 2008 0.2668504 0.2331496
To 389 1948 0.3340176 0.1659824
For 378 1829 0.3417015 0.1582985
Now 221 337 0.6222218 0.1222218
You 391 786 0.5554363 0.0554363
Much 126 270 0.5396092 0.0396092
Too 56 141 0.4993754 0.0006246

Table 3.2: Ordered training data table for sample spam

Feature In Spam | In Ham | P(S|w;) | Interestingness
As 2 579 0.0086009 0.4913991
I 9 1435 | 0.0155078 0.4844922
Regularly 9 87 0.2062346 0.2937654
Have 291 2008 0.2668504 0.2331496
Exercise 6 39 0.2787054 0.2212946
Clarins 1 6 0.2950775 0.2049225
Just 207 253 0.6726596 0.1726596
The 185 930 0.3331618 0.1668382
To 389 1948 0.3340176 0.1659824
For 378 1829 | 0.3417015 0.1582985
Your 332 450 0.6494897 0.1494897
Advised 12 42 0.4177898 0.0822102
Take 142 287 0.5541010 0.0541010
Her 38 118 0.4471509 0.0528491
Time 212 446 0.5441787 0.0441787

Table 3.3: Ordered training data table for sample ham
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include all the tokens in the calculation first and see how it works. But
in order to attain the best information of the testing email, I decide to
add another column into the table, which measures the Interestingness of
each token. I rearrange the order of each token by its absolute value of
P(S|w;) — 0.5, which directly shows us how hammy or spammy each token
is, and how much effect each token contribute to the calculation of the overall
probability. Above is the ordered training data tables for the sample spam
and ham: (Table 3.2 and Table 3.3)

Before we do any statistical combination of these token probabilities,
let’s have a brief look at the tables first. For the table of sample spam, five
out of fourteen words are considered hammy words since their probabilities
are less than 0.5. But at the same time, all of the top five most interesting
words are very spammy with probabilities exceed 0.8. And plus the other
four spammy words left in the table, we can simply make a decision for the
classification already. Similarly, the sample ham contains only four spammy
words in the entire message. And the top six most interesting words are also
hammy words with token probabilities less than 0.3. Therefore it is very
straight forward for a real person to classify the email with these tables, but
computer needs a more logical way to do that.

This is where Graham’s Bayesian combination formula(3.1) becomes use-
ful, let P(S|ES) and P(S|EH) be the overall probabilities for the examples
of spam and ham respectively:

P(S|wy) x -+ x P(S|wiq)
(S|wy) x -+ x P(S|lwia) + P(H|wy) X -+ x P(H|wi4)
_ 0.8671995 x --- x 0.4993754
~0.8671995 X - - - x 0.4993754 + 0.1328005 X - - - x 0.5006246
= 0.9988236

P(S|ES) = 3

P(S|w1) X X P(5’|w15)
(S\wl) X oo X P(S|w15) +P(H|w1) X oo X P(H”wlg,)
_ 0.0086009 x - -- x 0.5441787
~0.0086009 X - - - x 0.5441787 4+ 0.9913991 x - - - x 0.4558213
=8.913810 x 107

P(S|EH) = -

As I mentioned in the end of last section, the overall probabilities do end
up very close to 0 or 1 in our examples. Therefore we correctly classified the
two sample emails with Graham’s method, but we used every single token in
our examples instead of a proportion of the tokens. What if we only consider
the top 5 most interesting tokens in this relatively small email samples? Let’s
calculate the new overall probabilities P(S|ES*) and P(S|EH*) with just
five tokens included in each calculation.

17



P(S|wy) x -+ x P(S|ws)

P(S|ES*) =
(SIES™) = BlShwr) x - x P(Sws) + P(Hun) % - x P(H]ws)
_ 0.8671995 x --- x 0.8142107
~0.8671995 x --- x 0.8142107 + 0.1328005 x --- x 0.1857893
= 0.9997092
P(S <o X P(S

P(S|wy) x --- x P(S|ws) + P(H|wy) X --- x P(H|ws)

B 0.0086009 x - - - x 0.2787054

~0.0086009 X - - - x 0.2787054 + 0.9913991 X - - - x 0.7212946
= 4.993545 x 107°

Both results are slightly bigger than the previous ones, which means the
messages are considered more spammy in the reduced classification method.
What caused these small changes in the final results? Remember that we
calculate the interestingness of each token by computer the absolut value of
P(S|w;) — 0.5, this time we only want the value of P(S|w;) — 0.5. Exclude
the top five most interesting tokens, we calculate the sum of P(S|w;) — 0.5
from the remaining tokens:

In the sample spam:

> " [P(S]w;) — 0.5] = 0.2635468 + - - - + (—0.0006246)
i=1
— —0.3259937

In the sample ham:

> " [P(Sw;) — 0.5] = (—0.2049225) + - - - + 0.0441787
=1
— —0.4106717

If the value of P(S|w;) — 0.5 is negative, it means the word wj is consid-
ered to be a hammy word since its probability is less than 0.5. Thus these
two negative results from the above equations show us that the remaining
tokens in both emails contribute a hammy effect to the overall probabilities
on the whole. This is why the reduced method gave out higher overall prob-
abilities by eliminating them from the calculations. But this small change
does not really affect the classification, we can still make the right decision
with the reduced method after all.

18



3.3 Tim Peter’s criticism

Despite Graham’s method works fine on our sample emails, there is still room
for improvements. Tim Peter[7] claimed that Graham mistakenly assumed
P(S) = P(H) = 0.5 in everyone’s dataset, which means the probability
of a email being a spam is equal to the probability of being a ham in the
dataset. It is in fact true in Graham’s dataset where he has the same
number of messages in each group of emails. But this is unlikely to be true
for everyone since the amounts of spam and ham people receive in their
datasets will not be exactly the same, normally we receive more ham than
spam in the real world. Therefore, the way Tim Peter applies naive Bayes
classification is the following:

Firstly, let E be the email we want to classify. And by Bayes theorem,
we can get:

P(E|S)P(S)
P(E)
_ P(E|S)P(S)
~ P(S)P(E|S)+ P(H)P(E|H)

P(S|E) =

With the assumption of all the tokens are independent from each other,
we combine the token probabilities as below:

P($) 11 P(wi$)

P(S|E) = (3.2)

P($) [1 P(uwi$) + P(H)

i
=

P(wi|H)

But from Graham’s method, we only know the values of P(S|w;). In
order to make use of these probabilities, we transform the equation into the
following by applying Bayes theorem in it one more time:

P(S|w;) P(w;)

Then equation (3.2) becomes:

P(S) TT (P(S|wi) P(w;)/ P(S))
P(S|B) = — = .
P(S) [T (P(SJws) P(ws)/P(S)) + P(H) [T (P(Hlwi) Plawi)/ P()

All the P(w;) cancel out each other in the numerator and denominator,
after reducing some of the P(S) in the equation gives us:
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P(S)'= TT P(S|wi)

P(S|E) = (3.3)

P(S)1—n ﬁlp(S\wi) + P(H)I-" ﬁlP(H\wi)

This is obviously different from Graham’s formula (3.1), his formula does
not include the terms P(S)!™™ and P(H)!'~™. The reason is that P(S) =
P(H) in Graham’s method, they will be canceled out in the equation. This
is clearly not appropriate for my dataset with 432 spam and 2170 ham,
where P(S) = 0.1660261 and P(H) = 0.8339739 in my case. But Peter’s
method is actually equivalent to method we used in the second chapter,
where previously P(S|E) is calculated as follow:

P(S|E) =

P(w;|S)

1=1
P(E

~—

This equation is identical to our formula (3.2), with a substitution of the
denominator P(FE):

P(E) = P(S)P(E|S) + P(H)P(E|H)

(S) [ P(wilS) + P( )Hp(wi\H)

=1

After applying the Bayes theorem to replace P(w;|S) with a function of

P(w;|S) = IW

Then we will end up with Peter’s formula (3.3) in the following way:

P($) [T Pluifs)
P(S) [T P(uwifS) + P(H) [T Pl )

P(S)!=" [T P(SJw)

P(S)=" [T P(Sfwi) + P(H) [T P(H|w)
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Therefore we can transform the formula (3.3) into equation (2.4) by the
following steps:
n

pesipy P ILP(SIw)

P(H|E)

i=1

n
P(H)=" [T P(H |wi)
Then substitute P(S|w;) = %
cancel out P(w;) in the numerator and denominator, we will get:

into the above equation, after

P(S) [T P(w;|S)

risip) L
PUHIE) pgy [T P(uwi| )
=1

In the last step, by applying log to this probability ratio, we will get
exactly the same expression as equation (2.4).

Now we can classify the sample emails again with Tim Peter’s amend-
ment added into the equation, and at the same time, stop doubling the
numbers of appearances in ham for each token. In order to reduce the time
for calculation, we only consider the top 5 most interesting tokens in the
sample emails:

For the sample spam:

n

P(S)" " T P(S|wi) = 0.1660261* x (0.9288772 x - - x 0.8975922)
=1
= 821.2162372

and

n

P(H)'™" HP(H]wi) =0.83397397* x (0.0711228 x - - - x 0.1024078)
=1
=1.1727064 x 107°

then we get

s

P(S)'—"
P(S|ES) = _ i
P($)'=n 1 P(S|ws) + P(H)1=

=1

P(S|w;)
1

.

P(H|w;)

=1

= 0.99999999

For the sample ham:
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Feature In Spam | In Ham | P(S|w;) | Interestingness
As 2 579 0.0170552 0.4829448
I 9 1435 | 0.0305419 0.4694581
Just 207 253 0.8042995 0.3042995
Your 332 450 0.7875038 0.2875038
Take 142 287 0.7130824 0.2130824

Table 3.4: Reduced training data table for sample ham

n

P(S)" " T P(S|wi) = 0.1660261* x (0.0170552 x - - - x 0.7130824)
=1
= 0.3096396

and

n

P(H)' " [ P(H[wi) = 0.83397397* x (09829448 x - - - x 0.2869176)

i=1
= 0.0235044
then we get
P(S)'=" [T P(Swi)
P(S|EH) = - =1 -
P(S)t=m [T P(S|wi) + P(H)' =™ [[ P(H]w)

i=1 i=1

= 0.9294468

Unfortunately, Tim Peter’s new formula classifies our sample ham as
spam with overall probability 0.9294468. From Table 3.4, we can see there
are three spammy tokens among the top 5 most interesting tokens, where
the top 5 tokens used to be all hammy ones with the doubling effect. Just
out of curiosity, I tried the process again with all tokens included. The
answer still remains the same, the value turns out to be extremely close to
1(precisely P(S|EH) = 0.9999999947).

If we compare the ratio of each token’s number of appearance in both
email groups(Table 3.5), we will discover that the spammy tokens appear a
lot more often in spam than the hammy ones. Therefore by doubling the
number of appearance in ham, Graham makes every single token become
more hammy in the classification by twisting its ratio of appearance in ham.
And the good thing is that you will get less false positives, but the bad thing
will be spam which contain a few relatively hammy tokens might be able to
get through the filter as false negatives.
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Feature In Spam In Ham

As 0.0046296 | 0.2668203
I 0.0208333 | 0.6612903
Just 0.4791667 | 0.1165899
Your 0.7685185 | 0.2073733
Take 0.3287037 | 0.1322581

Table 3.5: Ratio of appearance for sample ham

As a conclusion, Graham tries to minimize the false positives by lower
the boundary of spam classificaion. I hope there is other method to improve
the filters’ performance without boosting the number of spam we receive in
the email inbox.
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Chapter 4

Unknown Tokens

4.1 Modified sample emails

In order to investigate the consequence of containing an unknown token in
the email, I add one extra word into each of the sample emails we had earlier.
Word great is added into the sample spam and word do is added into the
sample ham, now the messages become:

e Example for spam with one extra word:
Paying too much for VIAGRA?
Now,you have a great chance to receive a FREE TRIAL!

e Example for ham with one extra word:

For the Clarins, just take your time. As i have advised her to do
exercise regularly.

And of course, these two extra words are not included in my training
dataset. The filters will therefore consider them as unknown tokens in the
classification later.

4.2 Problem

These tokens will cause a failure to the entire naive Bayes filtering process.
The key factor here is that the overall probability of a email is a product of
all the individual token probabilities, one of them becomes 0 will result in
the overall probability equal to 0. Let’s review the previous two naive Bayes
filtering methods one by one to give us a better understanding of what has
gone wrong.

In the naive Bayes classification, we calculate token probabilities as fol-
low, where AS and AH are the number of appearances of each token in
spam and ham email groups respectively:
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and

P(H) 2170

P(w;|H) =

An unknown token will have probabilities P(w;|S) = 0 and P(w;|H) = 0,
since the numerators in both equations will be 0 with no relevant data
available.

And our overall probability of the email is calculated by combining the
token probabilities in the following way:

P(S|E) P(w|S)
log BHE) ~ + Zl Plw; | H)

Even though the log domain prevents the overall probability equal to 0
by using addition to produce the final result. But still, the whole equation
is not defined due to one of the denominators P(w;|H) = 0. Therefore
this type of filtering method fails to classify messages containing unknown
tokens.

In the other hand, Graham’s method use a different route in measuring
token probabilities:

AS/432
AS/432+ AH/2170
Because an unknown token has never appear in the dataset before, we

will have AS = AH = 0. The method collapses again since the denominator
equals to 0.

P(S|wi) =

4.3 Solution

Firstly, I want to introduce Graham’s solution to deal with the unknown
tokens(the method we briefly described in the last chapter). His method is
the simplest one among all, which just attaches a probability of 0.4 to any
unknown tokens. From his observations, he believes that spammy words
are usually too familiar and unknown tokens should be relatively innocent.
This neutral probability(or called hapaxial value) can protect filters from
dictionary attacks which contain a lot random words that normally don’t
appear in our datasets. By assigning a fairly neutral probability to the
unknown tokens, they won’t be able to appear in the top 15 most interesting
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tokens. Therefore the classification will only take them into account until
more data has been collected.

But it is not advisable to handle this deadly issue with assigning a fixed
token probability all the time. We need a more precise way to measure the
token probabilities of rare words, which should include such words that have
appeared in our dataset less than 5 times(where Graham consider them as
unknown tokens).

The second solution will be Gary Robinson’s smoothing method[10, 11],
it is one of the best solutions to solve the problem. The formula is based on
a assumption that the classification of a e-mail containing word w; is a bino-
mial random variable with a beta distribution prior. Same as other binomial
models, we have n trials in total. Each trial represents the classification re-
sult of a new email containing a certain word w;, the trial is considered as a
success if the email is classified as spam and a fail if the email is classified
as ham. Under the big assumption that all tokens are independent to each
other, this model clearly meets all the criterias for being a binomial experi-
ment. And now we can assume a beta distribution Beta(c, 3) for the prior,
which helps us to predict the probability of a extra token being a spammy
word as follow:

a+ AS
a+p+ (AS+ AH)

where AS and AH are the numbers of appearances of word w; in spam
and ham respectively.

At this point, Robinson tries to connect this formula to the probabilities
we have calculated by Graham’s formula for each token. The substitution
he used is:

P(Slwi) =

AS = (AS+ AH) x P(S|w;)

But this equation will not work for my dataset. Because the sizes of
spam emails and ham emails in my dataset are not equal, which will break
the equation above. Therefore in my case, I think it will be more suitable
to remain AS as before in the formula.

Then, Robinson introduced two parameters to predict the probability of
an unknown token:

C : the confidence level of our general knowledge

G : predicted probability of a unknown token being in a spam, based on
our general knowledge of the word

Their values will be adjusted in practice, aim for high accuracy in the
classification and low false positives. Normally, we set a starting value of 1
for C' and a neutral probability of 0.5 as a starting point for G. Now, we
use the following substitutions to get our new formula:
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a+p3=C and a=CxG

and we get:

P*(S|wn) = CxG+ AS
C+ (AS+ AH)

In the case of unknown tokens, since AS = AH = 0, the token probabil-
ity will be exactly 0.5, based on our general knowledge.

Generally, the formula weakens the token’s confidence if it has only a few
appearances in either spam and ham email groups. And the best thing is it
lets us consider both our general knowledge and the limited data we have
got from unknown tokens in the prediction of their probabilities. Thus in
the next section, we will replace all the probabilities P(S|w;) with P*(S|w;)
so that we can get a more reliable classification result without any extreme
values from the unknown tokens.

4.4 Application

For Graham’s solution, we don’t really need to do anything. Basically,
the slightly hammy probability 0.4 he assigned to unknown tokens will not
change the value of overall probability too much. So our classificaion results
will be almost the same until more data has been collected, just ignore the
unknown tokens for now.

But Robinson’s solution completely changed the way of measuring our to-
ken probabilities, we need to calculate another probability table with Robin-
son’s formula:

P(Slwi) = 1x05+AS
1+ (AS+ AH)

Table 4.1 in the next page is the new table for our dataset, include the
unknown tokens.

And it will be better to use Tim Peter’s formula (3.3) to calculate the
overall probabilities this time, since we have more ham than spam in the
dataset. Another purpose is to see whether Peter’s formula still classifies
the sample ham as spam with these new token probabilities, it is bad to
have a false positive at all time. First, we use all the tokens in our sample
emails to calculate our overall probabilities.

Classification of the sample spam:

n

P(S)' " T P(S|ws) = 016602617 x (0.1181299 x - - x 0.5000000)
=1
— 15557.318093
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Feature Appearances in Spam | Appearances in Ham | P*(S|w;)
A 165 1235 0.1181299
Advised 12 42 0.2272727
As 2 579 0.0042955
Chance 45 35 0.5617284
Clarins 1 6 0.1875000
Exercise 6 39 0.1413043
For 378 1829 0.1714221
Free 253 137 0.6483376
Fun 59 9 0.8623188
Girlfriend 26 8 0.7571429
Have 291 2008 0.1267391
Her 38 118 0.2452229
I 9 1435 0.0065744
Just 207 253 0.4501085
Much 126 270 0.3186398
Now 221 337 0.3962433
Paying 26 10 0.7162162
Receive 171 98 0.6351852
Regularly 9 87 0.0979381
Take 142 287 0.3313953
Tell 76 89 0.4608434
The 185 930 0.1662186
Time 212 446 0.3224583
To 389 1948 0.1665954
Too 56 141 0.2853535
Trial 26 13 0.6625000
Vehicle 21 58 0.2687500
Viagra 39 19 0.6694915
You 391 786 0.3323430
Your 332 450 0.4246488
Great 0 0 0.5000000
Do 0 0 0.5000000

Table 4.1: Training data table with Gary Robinson’s method
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and

n

P(H)'"™ ][ P(Hw;) = 0.8339739~ ' x (0.8818701 x - - - x 0.5000000)
i=1
= 0.001179893

then we get

—

P(s)lfn
P(S|ES) = i

P(S5)1-" ﬁl P(S|w;) + P(H)1=n ﬁlP(H\wi)

P(S|w;)
1

= 0.999999924

Classification of the sample ham:

n

P(S)" " T P(S|wi) = 0.1660261'% x (0.2272727 x - - x 0.5000000)
=1
= 0.01249972

and

n

P(H) " [ P(H[wi) = 0.833973971 x (0.7727273 x -+ x 0.5000000)

i=1
= 0.1992480
then we get
P(S)' ] P(Slwr)
P(S|EH) = - =1 -
P(S)= [1 P(S|wq) + P(H)'=" [T P(H|w;)
i=1 i=1

= (.059031178

Finally, we get the correct classification results in Peter’s formula by
using Robinson’s method to calculate our token probabilities. In particular,
the table below shows us the enormous difference in token probabilities from
the sample ham between Robinson’s formula and Graham’s formula(Table
4.2). Apparently all the tokens become more hammy under Robinson’s
formula, and not a single token considered as a spammy word from this new
formula. By considering cases where not much data has been collected for
tokens, Robinson’s formula improves the accuracy for many neutral-looking
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Feature In Spam | In Ham | P*(S|w;) | P(S|w;)

Advised 12 42 0.2272727 | 0.5893536
As 2 579 0.0042955 | 0.0170552
Clarins 1 6 0.1875000 | 0.4556909
Exercise 6 39 0.1413043 | 0.4359180
For 378 1829 0.1714221 | 0.5093555
Have 291 2008 0.1267391 | 0.4212816
Her 38 118 0.2452229 | 0.6179742
I 9 1435 0.0065744 | 0.0305419
Just 207 253 0.4501085 | 0.8042995
Regularly 9 87 0.0979381 | 0.3419477
Take 142 287 0.3313953 | 0.7130824
The 185 930 0.1662186 | 0.4998070
Time 212 446 0.3224583 | 0.7048131
To 389 1948 0.1665954 | 0.5007694
Your 332 450 0.4246488 | 0.7875038
Do 0 0 0.5000000 | 0.4000000

Table 4.2: Comparison table of token probabilities in sample ham

Feature In Spam | In Ham | P*(S|w;) | Interestingness
A 165 1235 0.1181299 0.3818701
Have 291 2008 0.1267391 0.3732609
To 389 1948 0.1665954 0.3334046
For 378 1829 0.1714221 0.3285779
Paying 26 10 0.7162162 0.2162162

Table 4.3: New ordered training data table for sample spam

emails. It successfully classified our sample ham as a legitimate email this
time, which reduced the number of false positives.

Next, we consider only the top 5 most interesting tokens in the calcula-
tion. Let’s have a table of these tokens for each sample email first. (Table
4.3 and Table 4.4)

Surprisingly, the top 4 most interesting tokens in the table for sample
spam are all hammy words based on the token probabilities. This makes it
difficult for the formula to classify the message correctly with this misleading
information.

The new overall probabilities of the sample emails are calculated as fol-
low:

Classification of the sample spam:
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Feature In Spam | In Ham | P*(S|w;) | Interestingness
As 2 579 0.0042955 0.4957045
I 9 1435 | 0.0065744 0.4934256
Regularly 9 87 0.0979381 0.4020619
Have 291 2008 0.1267391 0.3732609
Exercise 6 39 0.1413043 0.3586957

Table 4.4: New ordered training data table for sample ham

n
P(S)' " [[ P(S|wi) = 0.1660261~* x (0.1181299 x - - - x 0.7162162)
=1
= 0.4030312

and

P(H)' =" ] P(H|w;) = 0.8339739~* x (0.8818701 x - -- x 0.2837838)
=1
= 0.3119720

then we get

= 0.5636775

Classification of the sample ham:

P(S)" " T P(S|wi) = 0.1660261* x (0.0042955 x - - - x 0.1413043)
=1
= 0.0000652

and

P(H) " T P(H|w;) = 0.8339739~* x (0.9957045 x - - x 0.8586957)
i=1
= 1.3831702
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then we get

—

P(s)l—n
P(S|EH) = d

P(S)= [T P(Shuy) + P(H)' " [] P(HJw)

P(S|w;)
1

= (0.000047129

With a slightly spammy result from the classification of the sample spam,
we can still identify the message as a spam. The reason will be that the num-
ber of ham in our dataset is roughly five times the amount of spam we have
got. This factor reduces the effect of hammy words in the classification and
give more attention to the spammy ones. We also classify the sample ham as
a legitimate email with no doubt. In conclusion, Robinson’s formula solves
the problem of unknown tokens smoothly and generates a more accurate
classification for emails containing rare words.
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Chapter 5

Bayesian Noise Reduction

5.1 Introduction

This chapter we are going to look at one of the major improvements in
Bayesian spam filtering, particularly useful in making the filtering process
more effective and gain more confidence in the classification. Jonathan A.
Zdziarski first discussed about the Bayesian noise reduction algorithm in
2004[15], and also include this idea in his book later[16, p. 231].

The noise we are talking about here is defined as words inconsistent
with the disposition of the pattern they belong to and can possibly lead to
a misclassification of the message if not removed. Generally, the noise we
receive can be divided into two different groups. One group is the noise in
daily chatting, it can be one of user’s close friends discuss about girls or any
spammy topics in a email which should indeed be classified as ham. The
other group will be the noise in spam, which normally is a bunch of random
words with innocent token probabilities. They are added by the spammers
in an attempt to flood filters with misleading information. But by applying
the BNR algorithm before the classification, our filters will get a clearer
display of the messages’ original disposition and have a higher confidence
level in decision making.

5.2 Zdziarski’s BNR algorithm

The Bayesian noise reduction algorithm consists of three stages: pattern
contexts learning, identifying interesting contexts and detecting anomalies
in the contexts. In stage one, we sort out all the tokens into a set of patterns
which contains three consecutive tokens each(the size of pattern may vary,
normally a window size of 3 is used in the algorithm). In stage two, value of
the contexts will be measured and only the most interesting contexts will be
considered into the next stage. In the final stage, we detect the statistical
anomalies in the contexts we get from the previous stage and eliminate them
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Token P(S|w;) | Band
Advised 0.59 0.60
Chance 0.87 0.85
I 0.03 0.05
Regularly 0.34 0.35

Table 5.1: Pattern examples

from the classification.

Before we can analyse the contexts, each token value will be assigned to
a band with width 0.05. We try to reduce the number of patterns need to
be identified in our dataset by doing this. For instance, some of the tokens
from our dataset will fall into the bands shown at Table 5.1.

With a window size of 3, the following patterns will be created from the
tokens above:

0.60-0.85_0.05 0.85.0.05_.0.35

In practice, we will need to create such patterns for all the words in the
email we receive. A series of these patterns is called artificial contexts, and
they will be treated as individual tokens in the calculation later. Then we
calculate a probability for each pattern by using Graham’s method, but we
do not bias the number of appearances in ham for the BNR algorithm. Thus
the probability of pattern is calculated as follow:

AS/432
P56 = AS/432 4+ AH /2170 (5:1)

where in the equation above, AS is the number of appearance of the
context C; in spam and similarly AH represents the number of appearance
in ham. We will also apply Robinson’s formula in calculating unknown
tokens’ probabilities, in this case, both of our unknown tokens will have a
token probability of 0.5 and fall into the band 0.50.

Once we have all the context values, the next step is to find the most
interesting contexts. This time we require not only the context’s value
need to be at the two ends(close to 0 or 1), but also contains at least one
contradictory token. In order to be a interesting context in most Bayesian
filters, its value need to be in the range of either 0.00 to 0.25 or 0.75 to
1.00. And the context must include at least one token with a relatively big
difference between its probability and the overall probability of the pattern,
normally a threshold of 0.30 will be suitable for the difference.

For the two patterns we created above, the pattern probabilities calcu-
lated by equation (5.1) is the following:

0.60_0.85.0.05 [0.0260111] 0.85.0.05-0.35 [0.0956177]
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Feature P(S|w;) | Bands | P(S|C})
Paying 0.9288772 | 0.95 | 0.7462422
Too 0.6661112 | 0.65 | 0.4255745
Much 0.7009691 | 0.70 | 0.9556228
For 0.5093555 | 0.50 | 0.9134995
Viagra 0.9115879 | 0.90 | 0.8967813
Now 0.7671230 | 0.75 | 0.8354241
You 0.7141871 | 0.70 | 0.6012374
Have 0.4212816 | 0.40 | 0.0125417
A 0.4015949 | 0.40 | 0.5648126
Great 0.5000000 | 0.50 | 0.3582559
Chance 0.8659218 | 0.85 | 0.9633257
To 0.5007694 | 0.50 | 0.2894563
Receive 0.8975922 | 0.90 | 0.8691328
A 0.4015949 | 0.40 | 0.9991318
Free 0.9026889 | 0.90 None
Trial 0.9094719 | 0.90 None

Table 5.2: Context values in sample spam

Both of the context values lie in the range of 0.00 to 0.25, which means
once we see patterns display in the same way as them, we can assume they
are jointly innocent no matter what words are actually included. And the
spammy tokens inside of these contexts are contradictory tokens if the differ-
ences between their individual token probabilities and the overall probabili-
ties are bigger than 0.30. Therefore token values 0.60 and 0.85 are considered
as contradictory tokens in the first context, and token value 0.85 is the only
contradictory token in the second context. The last step of the BNR al-
gorithm is to eliminate these contradictory tokens from the classifications,
which leaves us only the useful data to evaluate the email.

5.3 Application

Before we apply the BNR algorithm on our sample emails, there is one very
important feature of the algorithm we need to keep in mind, which is that
it sorts out the emails without any background information of the emails’
dispositions.

Firstly, we will tidy up the contents we have in our sample spam. Differ-
ent from the previous methods, this time we need to display all the tokens
in exactly the same order as they appear in the actual email. And we can
have the same token appear in our table as many times as it does in the
email, Table 5.2 shows us a table of context values in the sample spam, with
all the tokens divided into bands with a width of 0.05.
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Based on this table, we identify all the interesting patterns and find
out the contradictory tokens in them. For the sample spam, we decide to
eliminate the following tokens:

For Have A Great To A
0.50 0.40 0.40 0.50 0.50 0.40
Thus, only the following tokens will be considered in the classification:
Paying Too Much Viagra Now You Chance Receive Free Trial
0.95 0.65 0.70 0.90 0.75 0.70 0.85 0.90 0.90 0.90

As you can see, the noise we removed from the email are the tokens
with neutral probabilities. Now we can classify the sample spam easily with
purely spammy tokens within the email. By using Tim Peter’s formula (3.3),
we get a overall probability of 1.0000000 for the sample spam(the value is
not actually equal to 1, but extremely close to). This will be a ideal case
for applying the BNR algorithm to prevent innocent word attacks from the
spammers.

Next, we will apply the BNR algorithm in the sample ham, which is
more important since reducing the number of false positives is crucial for
all types of filters. Similarly, we will create a table of context values for the
sample ham(Table 5.3).

The table of context values is quite different this time, half of the pattern
probabilities are less than 0.6. Therefore the dispositions of our patterns
from this sample email are relatively hammy, which is consistent to the
character of a ham. And also we have less interesting patterns but one more
contradictory tokens in the sample ham, the eliminations is as follow:

Clarins Just As I Have Advised Her
0.45 0.80 0.00 0.05 0.40 0.60 0.60
And the remaining tokens is the following:
For The Take Your Time To Do Exercise Regularly
0.50 0.50 0.70 0.80 0.70 0.50 0.50 0.45 0.35

Even three relatively spammy tokens have been removed from the classi-
fication, the overall probability of the sample ham still indicates the email as
a spam with a very spammy value(0.9999997) under Peter’s method. In this
case, I decide to enlarge the window size of patterns. Instead of a window
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Feature P(S|w;) | Bands | P(S|C;)
For 0.5093555 | 0.50 | 0.3699153
The 0.4998070 | 0.50 | 0.2298456
Clarins 0.4556909 | 0.45 | 0.8231455
Just 0.8042995 | 0.80 | 0.6542389
Take 0.7130824 | 0.70 | 0.7543587
Your 0.7875038 | 0.80 | 0.9723396
Time 0.7048131 | 0.70 | 0.9128645
As 0.0170552 | 0.00 | 0.9988764
I 0.0305419 | 0.05 | 0.3207863
Have 0.4212816 | 0.40 | 0.7324567
Advised 0.5893536 | 0.60 | 0.2378975
Her 0.6179742 | 0.60 | 0.5156789
To 0.5007694 | 0.50 | 0.5982764
Do 0.5000000 | 0.50 | 0.2180439
Exercise 0.4359180 | 0.45 None
Regularly 0.3419477 | 0.35 None

Table 5.3: Context values in sample ham

Feature P(S|w;) | Bands | P(S|C;)
For 0.5093555 | 0.50 | 0.8965467
The 0.4998070 | 0.50 | 0.8145563
Clarins 0.4556909 | 0.45 | 0.9543357
Just 0.8042995 | 0.80 | 0.7043126
Take 0.7130824 | 0.70 | 0.2398641
Your 0.7875038 | 0.80 | 0.1974217
Time 0.7048131 | 0.70 | 0.1746881
As 0.0170552 | 0.00 | 0.7169663
1 0.0305419 | 0.05 | 0.0965754
Have 0.4212816 | 0.40 | 0.5524785
Advised 0.5893536 | 0.60 | 0.6519348
Her 0.6179742 | 0.60 | 0.4145956
To 0.5007694 | 0.50 None
Do 0.5000000 | 0.50 None
Exercise 0.4359180 | 0.45 None
Regularly 0.3419477 | 0.35 None

Table 5.4: New context values in sample ham
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size of 3, we will create a new table of context values for the sample ham
with a window size of 5(Table 5.4).

Surprisingly, with the same number of interesting patterns(7 patterns,
same as the previous case with a window size of 3), we have 10 contradictory
tokens under the new criteria for patterns.

Contradictory tokens:

For The Clarins Take Your Time Have Advised Her To
0.50 0.50 0.45 0.70 0.80 0.70 0.40 0.60 0.60 0.50

And we have the following tokens left for classification:
Just As I Do Exercise Regularly
0.80 0.00 0.05 0.50 0.45 0.35

With only one spammy token in our classification, our overall proba-
bility for the sample ham decreases to 0.7426067 by using Peter’s formula.
Basically, the BNR algorithm will be able to perceive more inconsistencies
by expanding the window size of patterns and improve the accuracy of clas-
sification.

Since our filter still classify the sample ham as a spam, I tried the BNR
algorithm again with a window size of 6 for the patterns. And two more
tokens are eliminated as contradictory tokens, which are the following:

Just Do
0.80 0.50

These are the top 2 most spammy words in the remaining text we got
previously. Finally we have all hammy tokens in the classification, and the
result is very encouraging this time, a overall probability of 0.0270686 for
the sample ham. That means we managed to reduce the amount of false
positives with bigger window size for the patterns, in a exchange of slightly
higher false negative rates. This side effect should be acceptable for most
Bayesian filters, because reducing the number of false positives is always
their number one priority.
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Chapter 6

Conclusion

The aim of this project is to demonstrate the high performance of a simple
statistical filtering method: naive Bayes classification.

The project starts with a introduction of the basic naive Bayes classifi-
cation in Chapter 2, working along with our two sample emails as training
data. The filtering process was quite straightforward, and by applying the
log into the equation overcomes the problem of extremely small value from
the products. And the application in the end showed that the naive Bayes
classification successfully classified the two sample emails into the correct
email groups.

In Chapter 3, we introduced Paul Graham’s way of implementing the
naive Bayes classification on spam filtering. In Graham’s method, he decides
to calculate the probabilities P(S|w;) and P(H |w;) for each token instead of
probabilities P(w;|S) and P(w;|H) in the previous chapter. And he doubles
the number of appearance in ham for each token in order to reduce false
positives in the classification. Another important feature of his method is
that he only consider the top 15 most interesting tokens in the classification.
As the sample emails we had only have 15 tokens in each, I applied the
method on the sample emails again with only the top 5 most interesting
tokens were considered. Not surprisingly, the results of the classification
were still correct. But Graham’s method is created based on a dataset with
equal amount of spam and ham, which is clearly not suitable for general
cases. Tim Peter’s adjustment for the method sorted out this problem, but
unfortunately, his method failed to classify our sample ham correctly in the
application later.

Chapter 4 discussed the problem of containing unknown tokens in our
classification and the sample emails were modified for further testing. Two
solutions were introduced in this chapter, where Graham’s solution is simply
assign a neutral probability of 0.4 to all the unknown tokens and Gary
Robinson’s smoothing method completely changed the way of calculating the
token values. By considering cases where not much data has been collected
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for tokens, Robinson’s formula improves the accuracy for many neutral-
looking emails. It successfully classified our sample ham as a legitimate
email in the application later, which reduced the number of false positives.

The last chapter showed us one of the major improvements in Bayesian
spam filtering: Bayesian noise reduction. The BNR algorithm was demon-
strated in three stages, pattern contexts learning, identifying interesting
contexts and detecting anomalies in the contexts. And we managed to clas-
sify our sample emails more effectively in the application section.

But still, there are many other ways of implementing the naive Bayes
classification haven’t been discussed in this project. Such as Multi-variate
Bernoulli naive Bayes classifier[14, 6], Multinomial naive Bayes classifier[4]
and Poisson naive Bayes classifier[13]. All of them have great improvements
based on the basic naive Bayes classification and works particularly well
under different circumstances. Spam filtering is a race between spammers
and spam filtering programmers, study and research in this field will never
stop as long as the spam still appears in our email inbox.

Acknowledgement

I want to give many thanks to my project supervisor, Matthias Trof-
faes. For his superb guidance throughout my project and lots of decent
suggestions during the final stage of this project.

40



Bibliography

[1]

[11]

[12]

Vasanth Elavarasan and Mohamed Gouda. Email filters that use
spammy words only, May 2006.

Paul Graham. A plan for spam. In Reprinted in Paul Graham, Hackers
and Painters, Big Ideas from the Computer Age, O Really, 2004, 2002.

Konstantinos V. Chandrinos George Paliouras Ion Androutsopoulos,
John Koutsias and Constantine D. Spyropoulos. An evaluation of naive
bayesian anti-spam filtering. In Workshop on Machine Learning in the
New Information Age, pages 9-17, Jun 2000.

J. Teevan J. Rennie, L. Shih and D. Karger. Tackling the poor assump-
tions of naive bayes text classifiers. In ICML, 2003.

David D. Lewis. Naive (bayes) at forty: The independence assumption
in information retrieval. In Proceedings of ECML-98, 10th FEuropean
Conference on Machine Learning, number 1398, pages 4—15. Springer
Verlag, Heidelberg, DE, 1998.

A. Mccallum and K. Nigam. A comparison of event models for naive
bayes text classification, 1998.

Tim Peter, August 2002. http://mail.python.org/pipermail/python-
dev/2002-August/028216.html.

Prabhakar Raghavan and Christopher Manning. Text classification:
The naive bayes algorithm, 2003.

Peter E. Hart Richard O. Duda and David G. Stork. Pattern Classifi-
cation (2nd Edition). Wiley-Interscience, November 2000.

Gary Robinson. A statistical approach to the spam problem. Linux J.,
2003(107), March 2003.

Gary Robinson. Spam detection, January 2006.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz.
A bayesian approach to filtering junk e-mail. In Learning for Text

41



[13]

Categorization: Papers from the 1998 Workshop, Madison, Wisconsin,
1998. AAAI Technical Report WS-98-05.

Hee C. Seo Sang B. Kim and Hae C. Rim. Poisson naive bayes for
text classification with feature weighting. In Proceedings of the sixth
international workshop on Information retrieval with Asian languages,
pages 33—40, Morristown, NJ, USA, 2003. Association for Computa-
tional Linguistics.

Ion Androutsopoulos Vangelis Metsis and Georgios Paliouras. Spam
filtering with naive bayes - which naive bayes?, 2006.

Jonathan A. Zdziarski. Bayesian noise reduction:contextual symmetry
logic utilizing pattern consistency analysis, December 2004.

Jonathan A. Zdziarski. Ending spam:Bayesian content filtering and the
art of statistical language classification. No Starch Press, San Francisco,
2005.

42



