
REMARKS ON SOME PROBLEMS IN METRIC FIXED POINT

THEORY

KAZIMIERZ GOEBEL

During over forty years of studying and working on problems of metric fixed point
theory, I raised some problems and asked several questions. For some I was lucky
to get answer or find followers who did it for me. Some are still open and seem to
be difficult. Some are of my own and some came out after fruitful discussions with
my friends and colleagues. The problems are connected to the: geometry of Banach
spaces, minimal invariant sets, classification of Lipschitz mappings, stability of fixed
point property, minimal displacement and constructions of optimal retractions.

The aim of this talk is to present a selection.

1. Rotundity

Let (X, ‖·‖) be a Banach space. The first and standard method of measuring
”the rotundity” of the unit ball in X is via defining the modulus of convexity of
X, δX : [0, 2] → [0, 1] ,

δX (ε) = inf

[

1−
∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

]

and the characteristic of convexity

ε0 (X) = sup [ε : δX (ε) = 0] .

The modulus of convexity has ”two dimensional character”, meaning that

δX (ε) = inf [δE (ε) : E ⊂ X, dimE = 2] .

It is known that the Hilbert space H is the most rotund space among all Banach
spaces. It is understood in the sense that

δX (ε) ≤ δH (ε) = δE2
(ε) = 1−

√

1− ε2

4
,

for all Banach spaces X and E2 being the two dimensional Euclidean space.
Now, fix a ∈ [0, 2) and consider the class Ea of all two dimensional spaces (E, ‖·‖)

having ε0 (E) = a. Which of these spaces is the most rotund? It can be formulated
in the following questions.

Question 1. For any ε ∈ [a, 2) what is sup[δE (ε) : E ∈ Ea]?
Question 2. Does there exists a space Ea ∈ Ea such that for all E ∈ Ea, δE (ε) ≤

δEa
(ε)?
Question 3. If the answer to the above is yes, is such space Ea in some sense

unique?
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2. Minimal invariant sets

Goebel-Karlovitz Lemma

The tool known nowadays as Goebel-Karlovitz Lemma was introduced to the
nonexpansive mapping theory in 1975 and 1976 independently by both authors..

The standard setting is the following. Given a convex, closed and bounded subset
C of a Banach space X and a nonexpansive mapping T : C → C,

‖Tx− Ty‖ ≤ ‖x− y‖ .
It may be the case that there are many convex and closed subsets D ⊂ C

invariant under T, T (D) ⊂ D. A set D ⊂ C is said to be minimal invariant if it does
not contain any proper, closed, convex and T invariant subsets. Such invariant sets
always do exists if C is weakly compact. Any one point set {x} such that x = Tx

is minimal invariant. However there are weakly compact sets C which do not have
fixed point property. If FixT = ∅ then C contains a minimal invariant subset D
with diamD > 0.

Sets which do not contain diametral convex subsets, other then of consisting of
one point, are known as having normal structure.

Minimal invariant sets share a lot of special properties. Any minimal invariant
D is diametral, which means that all the points of D are diametral. In other words,
for any x ∈ D, sup {‖x− y‖ : y ∈ D} = diamD.

The mentioned Lemma reads:

Lemma 1. Suppose, D is a weakly compact, convex, minimal invariant set for a
nonexpansive mapping T. If for a sequence {xn} ,

lim
n→∞

‖xn − Txn‖ = 0,

then for any z ∈ D

lim
n→∞

‖z − xn‖ = diamD.

However, it occurs that there are (weakly compact) diametral sets which are no
minimal invariant for any nonexpansive mapping. Such is the subset of c0 defined
as

K = Conv {ei : i = 1, 2, ...} =

{

x = (xi) : xi ≥ 0,

∞
∑

i=1

xi ≤ 1

}

.

All the points of K, and for example two points e1 and 0, satisfy ‖e1 − 0‖ = 1 =
diamK. However for any 0 < ε < 1

2
, the sets K \B (e1, 1− ε) and K \B (0, 1− ε)

have different structure. First is connected of diameter 1, and the second consists
of disjoint pathways connected components of diameter smaller then ε. This leads
to the following definition.

Definition 1. Let K be a convex diametral set with diamK = d > 0. A point
x ∈ K is said to be almost nondiametral if, there exists ε > 0 such that each
pathways connected component of K \B (x, d− ε) has diameter smaller then d.

It was shown that the weakly compact minimal invariant sets for nonexpansive
mappings can not contain almost diametral points. It leads to a formal generaliza-
tion of classical Kirk’s result.

Theorem 1. If any convex diametral subset K (not a singleton) of a weakly com-
pact convex set C contains an almost nondiametral point, then C has FPP for
nonexpansive mappings.
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Problem 1. Is the above a real generalization of Kirk’s theorem?

Problem 2. Does there exists a Banach space X, containing nontrivial diametral
sets, such that any such set contains an almost nondiametral point?

Families of minimal invariant sets

Working with Brailey Sims we came back to the old problem of describing pecu-
liar properties of minimal invariant sets. Our results has been presented in Catania
on the World Congress of Nonlinear Analysts.

Let us recall the standard setting.
Given a convex, closed and bounded subset C of a Banach space X and a non-

expansive mapping T : C → C,

‖Tx− Ty‖ ≤ ‖x− y‖ .
It may be the case that there are many convex and closed subsets D ⊂ C

invariant under T, T (D) ⊂ D. A set D ⊂ C is said to be minimal invariant if it
does not contain any proper, closed, convex and T invariant subsets. Such invariant
sets always do exists if C is weakly compact.

We observed that there may be a situation in which C has a number of weakly
compact minimal invariant subsets.

Stan Prus produced a very nice example showing that there may be a convex
closed and bounded set C and a fixed point free nonexpansive mapping T : C → C

such that for any ε > 0 there exists a minimal invariant subset D ⊂ C with
diam (D) < ε. However, the set C is not weakly compact. It raises the first

Problem 3. Does there exists a weakly compact convex set and a nonexpansive
mapping T : C → C having no fixed points but minimal invariant subsets of arbi-
trary small diameter?

Some geometric properties prevent such existence. Two basic facts are:

• If the spaceX is strictly convex then all minimal invariant sets are isometric
and each one is a translation of any other.

• If the space X has Kadec-Klee property than all the minimal invariant sets
are of the same diameter.

Advanced form of the above problem can be also formulated as follows:

Problem 4. Suppose C is a weakly compact, convex set. Assume that for any
ε > 0 any nonexpansive mapping T : C → C has a minimal invariant subset D
with diamD < ε. Does C have the fixed point property.

3. Minimal displacement problem

Let C be a convex, bounded, and closed subset of a Banach space X and let
T : C → C be continuous mapping. The minimal displacement for T is the
number

d (T ) = inf {‖x− Tx‖ : x ∈ C} .
I believe that the first examples of continuous and lipschitzian mappings with d (T )
were shown in 1973 by myself. It was shown that if T satisfies Lipschitz condition

‖Tx− Ty‖ ≤ k ‖x− y‖ ,
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with k ≥ 1 then

d (T ) ≤
(

1− 1

k

)

r (C) ,

where r (C) is the Chebyshev radius of C. In some spaces, for some sets the above
is the best estimate possible. For regular spaces, whatever it means, the estimate
is not sharp. The strongest qualitative result about minimal displacement came in
1985 in the work of P.K. Lin and Y. Sternfeld:

Theorem 2. For any convex,bounded, closed but noncompact and set C and for
any k > 1 there exists k−lipschitzian mapping T : C → C with d (T ) > 0.

Let B = BX denotes the unit ball of the space X. To formalize the problem, let
us define the characteristic of the minimal displacement as the function

ψ (k) = ψX (k) = sup {d (T ) : T : B → B, T ∈ L (k)} .
The general estimate

ψX (k) ≤ 1− 1

k
,

is valid for all the spacesX. Equality holds for many ”square” spaces like c0, c, C [0, 1] , Cn [0, 1]
and others. For all uniformly convex spaces strong inequality holds for all k > 1.
Basic properties of the function ψX are presented in my books (with W.A. Kirk,
and individual) and several articles.

For the Hilbert space H the old (1973) estimate

ψH (k) ≤
(

1− 1

k

)

√

k

k + 1
,

has not been improved till now.
For l1 which is ”very square” the basic inequality is also not sharp. The best

known estimate is

ψl1 (k) ≤
[

2+
√
3

4

(

1− 1

k

)

for 1 ≤ k ≤ 3 + 2
√
3

k+1

k+3
for k > 3 + 2

√
3

.

Problem 5. What is the exact value of ψH (k)? Is the above estimate sharp?

Problem 6. The same for l1 or for any space for which ψ (k) < 1− 1

k
.

Problem 7. Does there exists a space X for which ψX (k) is the smallest possible
comparing with other Banach spaces, for all k > 1 or for a fixed k? Is this the
Hilbert space?

The presented estimates for H and l1 do not give clear indications since no one
majorizes the other.

4. Optimal retractions

IfX is a finite dimensional Banach space, then the unit sphere S is not the retract
of the unit ball B. It means that there are no continuous mappings (retractions)
R : B → S which keep all the points of S fixed

The problem of optima retraction is closely related to the discussed problem of
minimal displacement. In the first paper from 1973, written long before Benyamini-
Sternfeld result was known, there is the following:
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Lemma 2. The characteristic of minimal displacement ψX (k) is positive if and
only if there exists a lipschitzian retraction R : B → S.

In 1983 Y. Benyamini an Y. Sternfeld proved:

Theorem 3. If dimX = ∞ then there exists a lipschitzian mapping R : B → S

such that for all x ∈ S, x = Rx.

The proof is very technical and it is difficult to evaluate the Lipschitz constant
of R from such mapping. It raises the following optimal retraction problem.

For any Banach space X define the number

k0 (X) = inf {k : there exists R : B → S,R = I on S and R ∈ L (k)} .
and call it the optimal retraction constant.

The exact value of k0 (X) is not known for any space. There are only some
estimates. The progress in finding good estimates of this constant is very slow.
Most of the results are obtained via constructions some tricky examples.

Basic known selected facts are:

• For any X, k0 (X) ≥ 3 but k0 (H) ≥ 4.5 and k0
(

l1
)

≥ 4,

• 3 ≤ k0 (C [0, 1]) ≤ 4
(

2 +
√
3
)

= 14.92.. but 3 ≤ k0 (C0 [0, 1]) ≤ 2
(

2 +
√
2
)

=
6.83...

• 3 ≤ k0
(

L1 (0, 1)
)

≤ 8 and 4 ≤ k0
(

l1
)

≤ 8,

• If ψX (k) = 1− 1

k
, then k0 (X) < 32,

• k0 (H) < 28.99.

There are many challenging and open questions in this field. The oldest are:

Problem 8. Does there exist a space X such that k0 (X) is the smallest possible?

Problem 9. Is it true that k0 (X) ≤ k0 (H) for all Banach spaces X.

The natural and more accessible challenge is:

Problem 10. Improve the known estimates of k0 (X) for classical Banach spaces.

5. Equivalents of Schauder Fixed Point Theorems

All proofs of classical Brouwer’s fixed Point Theorems contain some nonele-

mentary elements (whatever it means). There is a temptation to find a proof as
simple as possible. One way to do so is to study various equivalents of the famous
result. standard books, usually list two or three. The most common facts are

• Sphere Sn−1 is not the retract of the ball Bn,

• Sphere Sn−1 is not contractible to a point.

Both have topological and not metrical character. Finding ”metrical” equivalents
requires some tricks.

Classical Schauder Theorem reads:

Theorem 4. Every convex, compact subset of a Banach space has topological fixed
point property.

It means that if K ⊂ X is convex and compact then any continuous mapping
T : K → K has a fixed point.

Let us list some ”metric” equivalents of this fact.

• Given k > 1. Any mapping T : K → K of class L (k) has a fixed point.
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• Given integer n ≥ 1and k > 1. Any mapping of class L (k) has a point of
period n, Tnx = x.

• For any continuous mapping T : K → K,there exists a point x ∈ K such
that,

∥

∥x− T 2x
∥

∥ ≤ ‖x− Tx‖ .
• Given n ≥ 1 and ε > 0.For any continuous mapping T : K → K, there
exists a point x ∈ K such that,

‖x− Tnx‖ ≤ (n− ε) ‖x− Tx‖ .
• For any two continuous mappings T, S : K → K, there exists a point x ∈ K

such that
‖x− Tx‖ ≤ ‖x− Sx‖ .

6. Rotative mappings

The notion of rotative mappings has the origin in my old result about involutions.

Theorem 5. Let T : C → C be the involution, T 2 = I. If T satisfies Lipschitz
condition with constant k < 2, then T has a fixed point.

There are examples of continuous involutions without fixed points. It raises the
natural question whether the estimate k < 2 is the best possible. Even more, the
general problem reads:

Problem 11. Does there exists a set C which admits an uniformly continuous fixed
point free involution

The same question can be raised for periodic mappings, Tn = I, n > 2. The more
general approach to the problem is based on the definition of rotative mappings

Let T : C → C be a nonexpansive mapping. It is easy to see that for any
n = 2, 3, ... and any x ∈ C,

‖x− Tnx‖ ≤ n ‖x− Tx‖ .
If for certain 0 ≤ a < n the sharper inequality

‖x− Tnx‖ ≤ a ‖x− Tx‖
holds, we call T to be (n, a)−rotative. Any n−periodic T is (n, 0)−rotative. The
basic result, obtained with M. Koter reads

Theorem 6. If C is convex and closed (not necessarily bounded) and T : C → C

is nonexpansive and rotative, then FixT 6= ∅.

The condition of rotativeness is independent on Regularity. It can be considered
for any mapping, not necessarily nonexpansive. Even so, it is not as natural the
following is known:

Theorem 7. For any n ≥ 2 and for any 0 ≤ a < n there exists a maximal
constant γn (a) > 1 such that if T : C → C is k−lipschitzian with 0 ≤ k < γn (a) ,
then FixT 6= ∅.

So, rotative lipschitzian mappings have fixed points even if their Lipschitz con-
stants exceed 1, but not too much. Present and known estimates for the function
γn (a) are rough and unsatisfactory.

Problem 12. For periodic mappings, estimate γn (0) . Is γn (0) <∞?
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For n = 2,and a ∈ (1, 2) there are examples of (n, a)−rotative mappings without
fixed points. It is known that for a ∈ (1, 2) , γ2 (a) ≤ 1

a−1
but nothing is known for

a ∈ [0, 1).

Problem 13. Is γ2 (a) <∞ for a ∈ [0, 1)?

7. Mean nonexpansive mappings

Maria Japon Pineda, in connection with her talk, raised a simple question. I new
the answer. However in the discussion we proposed a notion of α−nonexpansive
mappings.

Let α = (α1, α2, ...αn) be multiindex such that α1 > 0, αn > 0, αi ≥ 0, for i =

1, 2, ..., n and
∑i=n

i=1
αi = 1. A mapping T : C → C is said to be α−nonexpansive,

if for any x, y ∈ C
n
∑

i=1

αi

∥

∥T ix− T iy
∥

∥ ≤ ‖x− y‖ .

For the case n = 2 the formula reads

α1 ‖Tx− Ty‖+ α2

∥

∥T 2x− T 2y
∥

∥ ≤ ‖x− y‖
All nonexpansive mappings are α−nonexpansive for any index α. However, there

are α−nonexpansive mappings such that none of their powers is nonexpansive.
Today it is known that on any convex set C and any α the class of α−nonexpansive
mappings is properly wider than the class of nonexpansive ones.

A surprising finding concerning such mappings is:

Theorem 8. If C has the FPP for nonexpansive mappings, then all the α−nonexpansive
mappings T : C → C with α = (α1, α2, ...αn) such that α1 ≥ 1

n−1
√
2
also have fixed

points.

For n = 2, the condition α1 ≥ 1

2
, can be roughly understood as saying that the

first iterate of T has an advantage over the second. In general case there are several
open problems:

Problem 14. For n = 2, is the α1 ≥ 1

2
estimate the best possible? Are there

mappings T satisfying the defining condition with α1 <
1

2
and without fixed points

or even such that d (T ) > 0?

Problem 15. For given n > 2. How can one describe the set of all α′s of length
n, for which the above theorem holds?

It is known that condition α1 ≥ 1
n−1

√
2
is sufficient but not necessary. For example

for n = 3 the conclusion of the Theorem hold also for any α = (α1, α2, α3) such
that α1 ≥ α2 ≥ α3 and α1 ≥ 1

2
.

8. Commuting mappings

During our discussions Art Kirk often mentioned the following question originally
raised (around 40 years ago) by J.B.Baillon,

Problem 16. Do two commuting nonexpansive mappings have a join approximate
fixed point?

It means: is it true that for any ε > 0 there exists a point xε ∈ C such that
‖xε − Txε‖ < ε and ‖xε − Sxε‖ < ε ?
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The answer to this question is unknown!!!

There are cases for which the answer is affirmative. Observe first that if both
mappings have fixed points then S : FixT → FixT and T : FixS → FixS. If one
of the mappings, say T, is affine, then the set Fix (T ) is convex and we have

inf [‖x− Sx‖ : x ∈ Fε (T )] = 0.

If the space is strictly convex, then both sets FixT and FixS, are convex. For
the same reason as above, if at least one of them is nonempty, the answer is also
affirmative. If both are nonempty we have

inf [‖x− Tx‖ : x ∈ FixS] = inf [‖x− Sx‖ : x ∈ FixT ] = 0.

Example 1. In c0 space define two mappings:

Tx = T (x1, x2, x3, ...) = (x1, 1− |x1| , x2, x3, ...)
Sx = S (x1, x2, x3, ...) = (−x1, x2, x3, ...) .

Both are nonexpansive (isometric) and map the unit ball B into itself. Also they
commute,

ST (x) = TS (x) = (−x1, 1− |x1| , x1, x2, ...) .
Both mappings have fixed points. FixT consists of two points

FixT = {(1, 0, 0, 0, ...) , (−1, 0, 0, 0, ...)}
and FixS in the whole space, as well as in B is the defined by the condition x1 = 0,

F ixS = {x : x1 = 0} = {x : x = (0, x2, x3, x4, ...)} .
Of course FixT∩FixS = ∅. Also, since FixS is convex, we have inf [‖x− Tx‖ : x ∈ FixS] =
0 but inf [‖x− Sx‖ : x ∈ FixT ] = 2 6= 0.

9. Stability of FPP

The notion of stability of FPP has its origin in our paper with Art Kirk.
We found that, if X is uniformly convex, then in fact the bounded closed convex

subsets of X have the fixed point property for a broader class of mappings then
nonexpansive ones.

Let K be a bounded closed convex subset of a uniformly convex space suppose
T : K → K is uniformly lipschitzian in the sense that

‖Tnx− Tny‖ ≤ k ‖x− y‖
for all x, y ∈ K and n = 1, 2, ···. It was shown that if k > 1 is sufficiently near 1 (how
near depends on the modulus of convexity), then T always has a fixed point. The
class of all uniformly lipschitzian mappings is also fully characterized by the fact
that such mappings are nonexpansive with respect to some equivalent metrics but
not necessarily generated by equivalent norms. This justifies the word ”stability”
and prompted further the study of this property.

Let us illustrate the problem in a simplified version. For any Banach space X
define the constant

γ0 (X) = sup

{

k :
any closed bounded convex subset K ⊂ X

has the FPP for k-uniformly lipschitzian mappings

}

.
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Obviously, if X does not have FPP, then γ0 (X) = 1. The mentioned above, basic
result states that if X is uniformly convex then γ0 (X) > 1. There are several results
concerning estimates of γ0 (X) for various spaces having FPP but exact value of it
is not known for any. In case of Hilbert space we have

√
2 ≤ γ0 (H) ≤ π

2
.

The natural problem which was recently solved was

Problem 17. Does there exists a Banach space X having FPP for nonexpansive
mappings for which γ0 (X) = 1?

It came as a surprise to many when Pei-Kee Lin showed that l1 can be given a

new equivalent norm ‖·‖0 for which the space Z =
(

l1, ‖·‖0
)

has the FPP. Lin’s

norm is given by

‖x‖0 = max

{

γn

∞
∑

k=n

|xk| : n = 1, 2, ...

}

,

where γn = 8
n

8n+1
.

Recent results of T. D. Benavides state that l1 can not be renormed to have
γ0 > 1. There is also a nice example of K. Bolibok of a convex subset U of Lin’s
space Z such that for any ε > 0 there exists (1 + ε)−uniformly lipschitzian, fixed
point free mapping. this solves the problem, γ0 (Z) = 1.

Unsolved remain some problems concerning the minimal displacement of uni-
formly nonexpansive mappings. It is known that for the unit ball B in any Banach
space X, for any ε > 0 there exists a uniformly lipschitzian mapping T : B → B

with d (T ) > 1− ε.

To formalize the problem, let us define the characteristic of the minimal dis-
placement uniformly lipschitzian mappings as the function

ψu (k) = ψu,X (k) = sup {d (T ) : T : B → B, T ∈ UL (k)} .
For all spaces ψu,X (k) = 0 on[1, γ0 (X)]and limk→∞ ψu,X (k) = 1.

It prompts us to define next constant

γ0 (X) ≤ γ1 (X) = sup

{

k :
Any k − uniformly lipschitzian

mapping T : B → B, has d (T ) = 0

}

=

= sup {k : ψu,X (k) = 0} .
Problem 18. Does there exists a space for which γ0 (X) < γ1 (X)?

Problem 19. Find some estimates for ψu,X (k) for classical spaces.

Problem 20. (Risky and naive) Is γ0 (H) =
√
2 and γ1 (H) = π

2
?

Problem 21. Does there exists a space X having FPP such that γ1 (X) = 1? Is it
the space Z?
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