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Abstract. The paper addresses the problem of stack smashing or stack
overflows in modern operating systems. We focus on a security solution
for this problem, namely compiler generated canary protection and, to be
more specific, we consider the Stack Smashing Protector (SSP) present in
the most popular C compiler, the GCC. We first analyze the limitations of
the GCCs SSP and then present three improvements that will harden the
security offered by the SSP making an attackers attempt more difficult.
All improvements refer to the most recent version of GCC, 4.6.2.

1. Introduction to Stack Smashing

The stack is an essential part of a running process (i.e. essential for im-
plementing function calls), parts of it, called logical stack frames, correspond
to every function which is being executed at a given moment; each time a
function is being called, a new stack frame is created, and when the control
flow returns to the caller, the related frame is popped out [11]. Smashing the
stack is one of the most known and exploited variety of buffer overflow vulner-
abilities, in the same time is considered to be the most readily treatable [4].
Even though attacks of this type are reported for over 25 years [12], the se-
curity patches, hardware and software protections seem to always be one step
behind the latest type of exploit. Smashing the stack became a more popular
issue once an interesting article with the title Smashing the Stack For Fun and
Profit was published by Elias Levy (also known as Aleph One), in the Phrack
online magazine [11] in 1996. This publishing did not only set off a multi-
tude of system attacks, but, more importantly, raised the awareness of these
problems and triggered the creation of defenses against them. Lets consider
a simple C program which has a function named func(), that receives two
arguments and has as local variables, a character buffer buf[80] and an int.
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A depiction of the stack after the control flow reaches inside func() follows
in Figure 1.

Figure 1. Representation of a standard process stack after
entering the func() function

A simple unchecked strcpy() into buf[80] with more than 80 bytes will
result in writing the excess data on the stack in neighboring places at con-
secutive higher memory addresses. Given that the stack grows towards lower
addresses, overflowing buf[80] means altering the data beneath it (higher
address), in this case: var1, the Saved %EBP, then the Return Address, and
so on, based on how many surplus bytes were supplied. The Return address

is saved on the stack whenever a function is called, in order to know where
the control should return to (i.e. following instruction after the function call),
so by changing this address an attacker can trigger the execution of arbitrary
code when the vulnerable function finishes [11, 13]. In most cases, the data
which is copied into buf[80] consists of an shellcode (i.e. machine instructions
of code that typically spawns a terminal). By changing the Return Address

to point inside this shellcode, as soon as the function is finished, the shellcode
gets executed provided the privileges with which the process is run under are
elevated enough to run those instructions and the address where the shell-
code resides was correctly given (usually it is guessed). Other attacks involve
changing the %EBP register [5], or altering some local data which is needed
further in the function [5, 6].

2. Related work. GCC Stack Protection. Limitations

Leaving aside any hardware-enforced protections, which basically consist
of a No Execute flag (NX) placed on certain areas of memory marking them as
non-executable, on the Linux family of operating systems, most of the progress
that was obtained can be observed at two particular levels:
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• GNU Compiler Collection
• Kernelspace

First of all, the compilers defense against exploits we are considering can
be divided into two subcategories [1]:

(1) Array bounds checking - the design of the C language makes this
method unachievable without compromising either the performance
or the compatibility, as an example see the Bounds Checking Project
[14].

(2) Data integrity checking - the principle is simple: guard the sensitive
data using some predefined value and detect changes (corruptions) to
the guarded data by checking the predefined value. Achieved through
the StackGuard project [2], which was reimplemented in GCC under
the name of Propolice, but generically referred to as Stack Smashing
Protector (SSP).

Security enhancements were added in several steps to the GNU Compiler
Collection, increased abstractization was desired in order to achieve a wider
platform independence, and the most notable achievements that are now part
of this compiler system are:

• GNU STACK ELF Markings - A stack-controlling ELF program header,
used to emulate the behavior of the NX bit. By default this is disabled,
no marking being inserted, so, if no GNU STACK note is found, it is
assumed that the stack needs to be executable (this might be needed
for trampolines) [3].

• D FORTIFY SOURCE flag - Compiler flag that inserts compile and
run-time checks for certain unsafe libc functions. Enabled whenever
the optimization level is set to a value bigger or equal with 2 (-O2).

• Stack Smashing Protector (SSP) - An extension to the compiler based
on the StackGuard security model, that is, guarding the stack frames
of a process through a known value placed in certain areas on the stack.
The discussion on the protections and flaws of this mechanism is done
in the next subsection.

2.1. SSP Protection Model. Firstly, it is necessary to point out that the
contents of this section refer to version 4.6.2 of the GCC which is the latest
version up to the date of this writing. The idea behind the design of this pro-
tection lies in the fact that whenever a buffer overflows, all adjacent memory
areas up to a certain point are overwritten, and by placing a known value just
after a buffer, if an overflow takes place that value will be altered. By doing
a simple check to see if the value remained unchanged it can be deducted
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whether the guarded buffer has overflown or not. The value pushed on the
stack is named a canary, and there are two types that are mainly used:

• Random Canary - the value of the canary will be random and the
rationale behind this is to avoid the situation in which an attacker
knows (or guesses) the value of the canary and fills the overflowing
bytes with this value, thus when the canary state is checked it will not
be detected as corrupted, but an overflow still took place.

• Terminator Canary - a canary with the value 0x000AFF0D [4]. The
significance of this special value stands in the fact that an attempt
to overflow the buffer and preserve the canary value unchanged (thus,
writing at some point 0x00) will stop the strcpy() C function and,
the same effect has 0x0A on *gets() [5], 0xFF represents EOF, and
0x0D is the code for carriage return, used as well in order to stop string
manipulation or copying functions.

As a side note, other two types of canaries exist: Null Canary - holding the
null value, which was given up on, and the XOR Random Canary - represented
by a random number which is xor-ed with the return address saved on the stack
[5]. The SSP protection does not resort to any of these two canary types, so
we shall not insist on them.

The location where the canary is placed, whatever its type is, is essential
for the design of this defense mechanism. Initially - in StackGuard - the canary
was placed between the saved %EBP and the Return Address, but in SSP the
canary code resides above both %EBP and Return Address (remember that
above on the stack in this context means being at a lower address because the
stack grows from bigger to lower addresses) and below the local variables. In
this way, if one of the variables overflows the stack it will inevitably change
the canary before the overflow gets to %EBP or the return address of the
function (see Figure 2).

Figure 2. Canary placement on the stack

The canary protection code is automatically inserted in an application by
the compiler at compile time. For each call to a user defined function two
types of actions are performed:
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• Canary Insertion: The value of the protective canary is inserted in
one of the compilation phases, more precisely, at the function prologue
level (i.e. entry-code).

• Verification: Canary state is verified for consistency before the data
that the canary is meant to protect is used, that is, before the stack
frame is discarded - action undertaken in the Return Code (i.e. epi-
logue level).

As said earlier, each protection was meant to stop one particular aspect of an
exploit, the canary mechanism’s job being to guard the important values of
the return address and the saved EBP. However, together with the canary
protection, other two important security enhancements were added to GCC
along the way:

(1) Reordering of function local variables: If it is written in a local buffer
more than its declared size, some other local variables will be altered
before reaching the canary; moreover, in some cases the canary is not
reached at all, and the intention is to only overwrite some local variable
that is used elsewhere - the attacker could be after a format string
exploit for example (more can be read in [6] or [5]). Thus, the variables
are ordered respecting a single criteria: buffer or not. The buffers are
all arranged adjacent to the canary, successively, and the other non-
buffer locals will reside above the buffers - in this way if any overflow
happens, only other arrays may be corrupted, no local data is altered
[7]. A flaw in this type of protection can be observed here in the fact
that not only non-buffers should be protected from overflow corruption,
but also buffers that might hold important information. By reordering
the local data in this way, the buffers are left to overflow into each
other, posing a serious security risk to the application.

(2) Copy of function arguments above the local variable buffers: Through
this, whenever inside a function the arguments are needed, they will
no longer be taken from below the %BP register, but from an area pre-
ceding the local data of this function. Done in the first moments after
entering the function, after the creation of the stack frame, each argu-
ment is copied from %EBP+8, %EBP+12 etc., on top of the newly created
frame. The logic behind this mechanism is the following: during the
execution of instructions from the function, its arguments can be cor-
rupted (along with the canary, %BP etc.) and then used all throughout
that function, even passing them further to other subroutines. The
canary state is only checked at the moment when the function returns,
which is too late, because probably the execution flow was already
corrupted. The parameters are so copied and they will precede the



6 DRAGOŞ-ADRIAN SEREDINSCHI AND ADRIAN STERCA

buffers which could overflow [7], and the possibility of using corrupted
data is solved.

Illustration of all the three SSP mechanism for protecting against stack-
smashing are presented in Figure 3.

Figure 3. SSP Protection added on the stack: canary (1),
reordering of local variables (2) and copying of the function
parameters (3)

3. Improvements to the GCC Stack Smashing Protection

Since its beginning in 2001, when it was introduced as a FreeBSD GCC
protection patch [7], several improvements were consecutively added to SSP to
fix newly discovered ways of compromising the stack. The fact that limitations
and flaws can still be observed along with the existence for some time of
attacks that can bypass SSP [5], stand as proof that the system needs further
development and maintenance. Based on the observed limitations and the
evolution of SSP, a final version of SSP which would fix all possible security
holes seems very hard to find, and, just as it is seen in all aspects of computer
security, simply going on and continually hardening and limiting the attacker
possibilities might be the best solution.

In this section we present three proposals for increasing GCC stack smash-
ing protection and hardening a hackers effort to compromise the target ma-
chine. All our proposals refer explicitly to the most up-to-date, stable version
of the GCC compiler which is, at the time of this writing, 4.6.2 [10]. They
are intended to complement existing security protection mechanisms present
in GCCs SSP (i.e. canary protection, variable reordering, and argument copy-
ing).
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3.1. Improvement #1 - Canary state verification not only when the
function returns, but also when the function issues a call to another
function. The idea behind this proposal is that the canary signalizes a cor-
ruption, but the moment when the value is checked is essential. Currently,
this check is performed only in the function epilogue (i.e. when the functions
stackframe is released and the control is returned back to the caller through
the Return Address) because the initial intention was to provide a protection
to the saved %EBP and Return Address only - which are only used at this point
in the execution flow. But, as it can be seen, not only the Return Address

and the saved %EBP are corruptible. Even with the local variables reordered,
a possible attacker can still overflow local buffers or variables (i.e. buffers
and variables declared by the current function) or structure members can be
corrupted by arrays from inside those structures (because inside a structure
variables are not reordered by SSP) and these local buffers, variables or struc-
tures might be passed in subsequent function calls. The idea behind adding
this enhancement lies in the fact that, applications compiled with the SSP
protections do not benefit from corruption detection throughout a function
code, only at the function end, and at that moment it could be too late, given
that local data could have been altered and passed to other function, then
used in a chain of exploits.

A method of avoiding the aforementioned problems is to check the canary
of the caller function when the execution is about to enter in a new subroutine.
In order to do this, there are two ways, or possible points, where the new
verification can be placed:

(1) The callers canary could be checked to see if it is unchanged in the
prologue of the called function. Doing this check here makes sense
because canary operations (i.e. canary placement on the stack and
canary verification) are performed in the GCC in a functions prologue
and epilogue so in order to keep the injection code clean and compact
the check of the callers canary should be performed either in the called
functions prologue or epilogue and the called functions prologue is the
closest point in execution time to a possible stack corruption in the
caller function. However there is an important drawback of doing the
callers canary check at this point, in the called function, because the
prologue of the called function must be aware of the structure of the
callers stackframe (more specifically, the location of its canary) which
is normally isolated from the current (i.e. called functions) stackframe.

(2) Another place where the canary can be checked is when a call to a new
function is issued, before issuing the call and creating the stackframe
for the called function. The advantage of this approach is that the
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corruption is detected a bit earlier than in the first case and there is
no need of violating the stackframe isolation between function calls,
but it also adds complexity to the SSP code making it less compact, as
SSP code is normally inserted only in a functions epilogue or prologue,
not when a call to a new function is issued.

Figure 4. The Verification of the canary value done at multi-
ple steps (the rectangles represent the two best positions where
the new verification should be inserted)

A note regarding Figure 4: The rectangles represent points where the
verification of the canary of the main() function are to be done, not func();
the canary for main() is inserted automatically by the compiler, main() being
called from the global initializer (constructor) function localized in init (see
Section 17.21.5 of [1]).

This improvement mainly aims at doing a preemptive canary corruption
detection by simply adding another verification of its state. The overhead
should be considered especially for applications that are very modular and for
which the flow of execution is expected to pass through many user-defined
functions. Particular attention also needs to be given for programs that rely
on recursive and highly recursive functions, for which this protection should
probably not be used. The targeted set of applications upon which multiple
canary verification will have the best impact are the special-purpose daemon
services like crond, ftpd, sshd, init, postfix or sendmail that are crit-
ical for any Unix machine, very rarely recursive calls being found in these
programs and their security is vital for the system defense. The overhead is
comparable with the one for the current SSP canary verification step in the
epilogue, so it should not be regarded as an drawback only in special cases as
the ones we have mentioned above.

3.2. Improvement #2 - Canaries for every individual buffer. One of
the obvious flaws of SSP is that the buffers are grouped together, consecutively,
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thus enabling situations where one buffer could overflow into another without
the canary even being reached and corrupted. This imperfection might seem
somewhat harmless in the context where buffers are only used to hold data in
transit (even in this case, the data is corrupted when a buffer is overflown into),
but it poses a great security risk once the importance of that data increases
(i.e. this data is passed to other functions). Take for example the registration
of an user account for a fictive application, the password string will be kept
in a buffer and if an overflow of other array into that buffer takes place, it
will result in storing the corrupted password for that user. A small overflow
of only a few bytes (such that the canary is not reached) will pass unnoticed
by the current SSP protections, so scenarios like the one described earlier are
possible, and they should not be overlooked.

Our second improvement to SSP implies using a different canary for pro-
tecting every individual local buffer of a function. In this approach, a canary
space (i.e. 4 bytes) is reserved on the stack in front (i.e. higher address) of
every local buffer (see Figure 5). Individual canaries for buffers will extend
the functionality of SSP from guarding sensitive, controlling data (%EBP and
Return Address) to guarding every vulnerable buffer of the program. This
way the task of an exploiter will be even further hardened.

But this added security comes with an important overhead cost. The
added overhead cost (i.e. canary generation, storing and verification) of having
individual canaries for every buffer is proportional to the number of local buffer
variables used in a function and is not negligible for applications dealing with
large amounts of data (e.g. network applications, multimedia applications
etc.).

Figure 5. A different canary protects every buffer, not just
the Return Address and %EBP

To be noted here that in our 2nd improvement each buffer is protected by
its own canary, but still this approach shares the vulnerabilities that a regular
canary check has (e.g. the byte-by-byte technique of canary discovery), just
that it makes it more difficult to discover the canary value, because now we
have several canaries.

Because using unique canaries for individual buffers incurs important ad-
ditional overhead, this technique can be adapted to offer a good compromise
between overhead and protection. For example, the compiler can decide at
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compile time, based on its own estimations or based on user input through
compiler options, how many canaries to use and in this approach, one canary
could be used to protect several local buffers; thus, the protection achieved
is less than when using unique canaries for individual buffers, but it has a
smaller performance cost.

3.3. Improvement #3 - Probabilistic canary protection. The next de-
fense suggestion aims at significantly hardening the process of uncovering the
canary value. It does this by two distinct methods, methods which are sup-
posed to be used in conjunction:

• canary position randomization
• probabilistic failure in case of canary corruption detection

The most important protection is given by the second method, the first
being just a complementary protection for the second method. Prior to in-
troducing these two methods, we must first briefly discuss the byte-by-byte
technique of canary disclosure. This is done in the following paragraph.

The byte-by-byte canary value disclosure technique [8]

This method uses the fact that if child programs are spawned using fork(),
then the terminator canary will be shared among the parent process and ev-
ery child that it creates. fork()-ing is a crucial feature supported by the
operating system, and it is used by an important set of applications that are
essential for any Unix distribution. Network deamons usually create handling
processes for each connection in this way, and the presence of this flaw in this
kind of applications poses a great security risk for a computer exposed to the
Internet. The technique is based on the fact that it is easier to guess the value
of each single byte of the canary individually (0..255 possible values) rather
the value for the whole 32-bit canary at once (0..4294967295 possible values).
Consequently, the byte-by-byte technique first overflows the buffer with only
1 byte, thus overwriting the first byte of the canary. When the SSP detects
canary corruption it causes the application to crash fast. If on the other hand,
the first byte of the canary is overflowed with the correct value, the applica-
tion will continue its execution (i.e. will not crash). since there are only 256
possible values for a byte, the attacker can try successive values for that byte
until the value is found and in the worst case scenario, it needs 256 succes-
sive trials until the value of the canary byte is discovered (i.e. the overflowed
byte for which the application does not crash). After the first canary byte is
discovered the next byte is overflowed in order to discover its value and so on
until all 4 bytes of the canary are discovered.
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So the whole technique consists of successively trying values for every byte
of the canary until the value is found [8], first only one byte is overflowed,
then two bytes, and so on. The maximum number of trials an exploiter has
to do is 256 · 4 = 1024, which, in fact, is not even that much for a networking
daemon such as httpd for example, each individual try taking place in one
child of the daemon process. Once the whole canary value was compromised,
the protection itself for that process can be considered as nonexistent, the
same canary being used for any function and for any child process. The whole
process is depicted in Figure 6.

Figure 6. Multiple overflows of 1 byte will result in finding
the first byte of the canary. Same idea is applied successively
4 times, for each individual byte

Currently, the canary position is fixed, it will reside three stack entries
(remember that a stack entry is the same as a word - 4 bytes, on 32 bit
architectures) above the %EBP, thus leaving 2 empty words, and right next to
the first declared buffer. If that buffer overflows even with only 1 byte, the
canary value will change, this being the reason why the canary and the buffer
are sticked together. But having this specific information at his disposal an
attacker can and will use it. By knowing the exact position on the stack of a
canary the amount of work someone has to do at finding its value is halved.
If the position were to be unknown, he would have to first find that position
and than proceed to searching the value.

The first part of improvement no. 3 is canary position randomization. By
setting up an area of 10 words space between the Saved %EBP and the first
buffer and randomizing the position of the canary in this region, the canary
value search technique is hardened, first having to find the position of the
canary and then proceed to trying the byte-by-byte technique. The overhead
added by this step is insignificant, the position could be established using a
simple random number generator (e.g. kernels /dev/urandom in Linux). Ten
stack positions used for every function in the current stacktrace is, likewise,
not an important penalty from the memory point of view.

However, on a closer look, the same method of overflowing byte-by-byte
can still be applied to finding the position. So, in fact, in this way only a few
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Figure 7. The position of the canary is fixed, lying at an
predictable address relative to the buffers and the stack frame

Figure 8. The position of the canary is randomized in an area
of 10 stack entries

more tries are needed by the attacker, a maximum of 10, added to that of
1024, the results would be unsatisfactory. Therefore, along with randomizing
the position of the canary, another method is required to make the process of
canary value disclosure more difficult. This method is the probabilistic failure
in case of canary corruption.

The basis of the probabilistic failure in case of canary corruption method
is the observation that in the byte-by-byte technique, an attacker relies on a
binary feedback from the SSP code when a byte of the canary is overwritten:
failure/crash of the application meaning the value of the overwritten canary
byte is incorrect and non-failure (i.e. successful execution) meaning the value
for the overwritten canary byte is correct. If we somehow manage to make the
SSP code still give an attacker a feedback in a binary form (i.e. failure/non-
failure of the application), but the interpretation of a specific feedback is
multi-valued and uncertain (i.e. it is not certain that a non-failure means
the value for the overwritten canary byte is correct, it might just as well be
incorrect), then the byte-by-byte technique will have a hard time guessing the
canary. And a good source of uncertainty is randomness. Following this line
of thinking, we want to modify SSPs behavior so that it does not crash the
application every time the canary or a part of the canary gets corrupted. This
is why we call this method probabilistic failure in case of canary corruption.
If the application is crashed by the SSP on a random basis when a part of the
canary is corrupted, the attacker can no longer infer whether he has guessed
that part of the canary or not. The maximum that can be obtained from
any canary disclosure protection method is to force an attacker to make 232

= 4294967295 successive trials before he discovers the canary value. And this
is exactly the goal of our probabilistic failure method - to force an attacker
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to run a number of canary trials close to 232. Of course, if the canary is not
corrupted at all the SSP should not crash the application because something
like this will break the compatibility with almost all the applications which
exist nowadays. Similarly, if the corruption has moved beyond the canary to
the %EBP and Return Address (i.e. the last byte of the canary is corrupted),
the application should necessary crash, because a non-failure will essentially
remove all the protection offered by stack canaries.

Thus, our method of probabilistic failure in case of canary corruption will
be implemented in the epilogue of a function where canary corruption verifica-
tion takes place. If no byte of the canary is corrupted, the execution continues
normally, failure-free. If the last byte of the canary (i.e. the byte closest to
the %EBP and Return address) is corrupted, the execution crashes. In any
other situation (i.e. when a part of the canary is corrupted) our method will
compute a failure probability, Pfail and based on that, it will crash the appli-
cation or execute successfully. The algorithm is described bellow:

if (last byte of the canary is corrupted)
fail();

else if (no byte of the canary is corrupted)
continue;

else
r = random(0,1);
Pfail = 1

en · r;
if (Pfail >= 0.5)

fail();
else

continue;
endif

endif

In the above algorithm n is the number of modified bytes in the canary and
random(0, 1) is a function which generates a random number between 0 and 1.
fail() is a system call that immediately ends the current application returning
an error code and continue continues the execution of the current application.

By multiplying the random number r with 1
en the failure probability for-

mula we want to have a higher probability that the program will not crash
when more bytes from the canary are corrupted. This is because we want more
ambiguity when more bytes of the canary are tried by the attacker. Because
of this probabilistic failure method, when an attacker overflows a new byte of
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the canary and the program does not crash he can not conclude with certainty
that he has discovered that canary byte.

Together with canary position randomization, the probabilistic failure in
case of canary corruption method makes it significantly harder for an attacker
to discover the canary value. In order to assess the overload induced by our
improvement number 3 to the running code, we have implemented this im-
provement in the GCC’s SSP and run 4 tests using 2 test environments. In
the first test environment we have a simple program in which the main() func-
tion calls a simple function, func(), several times, first only one time, than ten
times, then one hundred times and finally one thousand times. In each test,
we have recorded the time (in microseconds) it takes to call function func()

the specified number of times with the improvement patch enabled and with-
out the improvement patch enabled. The measured times are depicted in the
following table.

Without improve-
ment no. 3 patch

With improvement
no. 3 patch

main() calls func() 1 time 2 µs 2 µs
main() calls func() 10 times 3 µs 3 µs
main() calls func() 100 times 4 µs 4 µs
main() calls func() 1000
times

19 µs 23 µs

For the second test environment, we have the same setup as in the first
test environment, but this time, each time is being called, function func()

calls another function func 1(). In each test, we have recorded the time (in
microseconds) it takes to call function func() the specified number of times
with the improvement patch enabled and without the improvement patch en-
abled. The measured times are depicted in the following table.

Without improve-
ment no. 3 patch

With improvement
no. 3 patch

main() calls func() 1 time 2 µs 2 µs
main() calls func() 10 times 3 µs 3 µs
main() calls func() 100 times 5 µs 6 µs
main() calls func() 1000
times

34 µs 38 µs

It can be seen from both tables, that the improvement number 3 does not
pose significant overload cost for the running code.
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4. Conclusions

This paper presented 3 improvements to the Stack Smashing Protector
(SSP) mechanism from the GCC compiler (most recent version being GCC
4.6.2), improvements which would harden the security of applications and
will make an attackers job more complicated. The first improvement relied
on performing the canary verification step as close as possible to the moment
when the actual overflow happened. Improvement number 2 deals with unique
canaries for each local buffer of a function and lastly, the most important
improvement, probabilistic failure in case of canary corruption aims at making
the canary discovering task a difficult one. The GCC patch containing the code
for the probabilistic failure method can be downloaded from [9].
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