
Bandwidth Aggregation over Multihoming Links

Adrian Stercaa,∗, Darius Bufneaa, Virginia Niculescua

aDept. of Computer Science, Babes-Bolyai University, Romania

Abstract

We introduce in this paper a bandwidth aggregation routing solution for multihoming sites. Our routing solution interconnects two
distinct multihomed network sites (i.e. network sites that have two or more uplinks to the Internet) and routes local flows between
these two network sites. It routes local flows dynamically through several outgoing network paths/links depending on the load (i.e.
congestion level) on each path. If a network path/uplink becomes more congested, fewer local flows are routed through it. We
detail two path load estimation strategies: one based on RTT measurements and the other based on throughput measurements, both
implying passive network measurements. We performed a significant number of experiments in order to show that our multihoming
solution performs better than an ECMP-based (i.e. Equal-Cost Multipath) solution in terms of total aggregated throughput and
inter-flow fairness.

Keywords: multihoming, multipath load-balancing, multipath routing, ECMP routing

1. Introduction and Problem Formulation

Nowadays, multihoming network setups have a strong pres-
ence in the industry, but they are beginning to be the status
quo for end users, too. It is quite common for a company to
have two or more network uplinks to different Internet service
providers (ISP). But this is also becoming a typical situation for
the end user too; for example, a mobile phone can be connected
to a 4G/LTE network and at the same time to the local wire-
less network. The multihoming networking setup we consider
in this paper has two network sites which are connected to each
other through the public Internet and each network site is multi-
homed, having at least two uplink connections to different ISPs.
A typical, although simplistic, drawing of our problem setup is
depicted in Fig. 1. In this figure, Site A is a local area network
(LAN) that is connected to the Internet through two different
ISPs, ISP1 and ISP2 and similarly, Site B is a LAN which has
two uplink connections, one to ISP3 and another to ISP4. Let’s
assume there are two physical network paths between Site A
and Site B: one going through ISP1 and ISP3 and the other go-
ing through ISP2 and ISP4. Let’s call the first physical network
path Path1 and the latter Path2 and we assume the paths are in-
dependent (i.e. they do not share any network segment). The
edge router from Site A can send packets coming from the lo-
cal network over Path1 (i.e. through ISP1) and over Path2 (i.e.
through ISP2). Similarly, Site B can send packets coming from
B’s local network over Path1 (i.e. through ISP3) and over Path2
(i.e. through ISP4). We assume there are a number of TCP con-
nections between Site A and Site B. The goal of this paper is to

∗corresponding author
Email addresses: forest@cs.ubbcluj.ro (Adrian Sterca),

bufny@cs.ubbcluj.ro (Darius Bufnea), vniculescu@cs.ubbcluj.ro
(Virginia Niculescu)

1Str. M.Kogalniceanu, No. 1, Cluj-Napoca, Romania

find a routing policy for packets sent from Site A to Site B over
the multipath network (i.e. to route packets either over Path1 or
Path2) such that:

• the total, aggregated throughput from site A to site B is
maximized (aggregated over Path1 and Path2)

• it maintains a high degree of fairness between flows sent
from Site A to Site B over Path1 and Path2

• this routing policy works with existing Internet technology
(i.e. it does not rely on feedback or actions from special
equipment deployed inside the network core)

• routing local flows over Path1 or Path2 is transparent to
local computers from site A and site B.

Because of the last condition, our solution comes in the form
of a virtual tunnel interface between Site A and Site B (this
is depicted in Fig. 1). This tunnel is just a virtual network
path over the two physical networks paths, Path1 and Path2
(between Site A and Site B). The virtual tunnel interface makes
this routing decision transparent to local computers from site
A, and respectively site B, as a local computer from Site A that
sends data to a Site B computer through the tunnel is not aware
of the physical path (either Path1 or Path2) the packets will take
towards Site B.

This routing policy is actually a flow mapping policy mean-
ing that rather than individual packets, whole TCP flows are
mapped on either Path1 or Path2. This is because, by send-
ing packets from the same TCP flow through different network
paths with different capacity/delay properties, it is highly likely
that packets get reordered inside the network and they cause the
transmission rate of the TCP flow to be halved, thus reducing
the throughput [5].

December 21, 2019

Figure 1: The typical network setup of the multihoming problem

The aforementioned goals should be achieved in a context of
changing network conditions, i.e. available bandwidth and de-
lay for both network paths may change in time depending on
the network load. For instance, consider we have N TCP flows
going through the tunnel from Site A to Site B and Path1 and
Path2 have the same capacity of X Mbps. Then it makes sense
to send N/2 flows through Path1 and N/2 flows through Path2.
But at some point, due to an increased number of flows enter-
ing the network through Path1, this path becomes congested
and the available bandwidth drops to X/2 Mbps. In these con-
ditions, it is more efficient to remap flows on the other path so
that Path1 carries N/3 flows and Path2 carries 2N/3 flows. This
way, a larger aggregated throughput should be achieved by the
N flows and also the inter-flow (throughput) fairness of the N
flows should be increased.

As practical examples, you can imagine Site A and Site B
to be two different buildings of the same company located far
apart. The company’s employees from Site A open several
TCP connections to computers from Site B through a VPN tun-
nel: audio-video conferencing, data transfer, remote manage-
ment sessions etc. All employees from Site A want a maximum
throughput for their flows and also want that all flows of all em-
ployees achieve approximately the same throughput - so that
no flow/employee is favored over other flows/employees. In
another example, Site A and Site B can be two data centers be-
longing to the same authority. Site A transfers/replicates data to
site B through a number of TCP connections. The replication
process should not take too much time, so a maximum through-
put is needed for all flows.

We will give in the following sections two such flow map-
ping policies that manage to adapt dynamically the number of
flows on each physical network path to reflect the load of that
path. One policy is based on estimating the network load on a
link based on RTT (i.e. Round-Trip Time) measurements and
the other policy estimates the available bandwidth on the link
using throughput measurements. We will evaluate both poli-
cies extensively in Section 5 in order to identify their individual
strengths and weaknesses. The rest of the paper is structured as
follows. Section 2 discusses some assumptions and introduces
some notations. Section 3 presents related work in the field
of multipath data transfer. The main contribution of the paper,
that is the mechanism for aggregating bandwidth over multi-
homing links is detailed in Section 4. Following, we present

the evaluation experiments in Section 5 and end the paper with
conclusions and future work ideas in Section 6.

2. Assumptions and notations

In this paper we assume that the network paths are set by
an administrator and we do not deal with the problem of ac-
tually selecting network paths between Site A and Site B. For
example, in Fig. 1 there are 4 possible network paths between
Site A and Site B: ISP1-ISP3, ISP1-ISP4, ISP2-ISP3, ISP2-
ISP4 but we consider that an administrator selected two paths
: ISP1-ISP3 and ISP2-ISP4. In the following sections we will
deal with the general problem where we have 2 network sites
(i.e. LANs), Site A and Site B, just like in Fig. 1 and these sites
are connected through m independent or quasi-independent net-
work paths, labeled Path1, Path2, ... Pathm. By ’independent
network paths’ we mean that the network paths do not have net-
work segments in common and by ’quasi-independent network
paths’ we refer to network paths that may share common net-
work segments, but have different bottleneck links (i.e. the net-
work segment with the lowest available bandwidth for a new-
comer flow from that path). If this assumption would not be
true (i.e. network paths are not quasi-independent), our band-
width aggregation mechanism should not perform worse than a
naive routing solution that maps N/m flows on each path (where
N is the total number of flows). We consider that our multi-
homing bandwidth aggregation algorithm runs at Site A’s edge
router and the edge router from Site B is just an ordinary router
with a typical hop-count based routing policy. Although, the
same multihoming problem can be formulated for the reverse
direction, i.e. for multihoming flows originating at Site B and
sending data to destinations from site A LAN; in which case the
bandwidth aggregation mechanism would run also on Site B’s
edge router. We have N flows that originate at Site A and send
data to destinations from Site B network. These flows are dis-
tributed by Site A’s edge router over the network paths Path1..
Pathm. We will refer to these flows as local multihoming flows
in the rest of the paper. We assume the local multihoming flows
are all TCP greedy flows (i.e. they always have data to send).

2

3. Related Work

Our work largely falls in the field of multipath data transfer.
This includes traffic engineering (TE), more specifically multi-
path load-balancing, where the packets from a set of flows need
to be forwarded to the destination through a multipath set (i.e. a
set of multiple network paths). But it also includes Concurrent
Multipath Transfer (CMT) where the packets of a single flow
need to be transported to the destination over multiple network
paths concurrently. We consider a flow to be a stream of data
packets all having the same source and destination endpoints
(where endpoints can be identified by their IP addresses). We
can classify related work in this field according to the level of
the OSI network model the solution functions at. For multipath
load-balancing we can further classify solutions depending on
the granularity level they use when performing the data split
on multiple paths: a) flow-level (a flow is assigned on a spe-
cific network path and it stays on that path throughout its lifes-
pan), but different flows may be assigned to different paths), b)
packet-level (each packet of every flow is assigned to a specific,
possibly different, network path) or c) subflow-level (a part of
a flow, either called flowlet or flow cell is assigned to a specific
network path).

At level 2, the Data Link level, there are several solutions
that split incoming traffic on multiple paths, most of them be-
ing designed for data transfer inside data centers having a Clos
or fat-tree topology [1, 2, 3, 4] 2. Conga [1] is implemented in
the hardware of the switch and splits incoming flowlets (i.e. a
burst of packets from a flow separated from the previous and
following packets from the same flow by a minimum time in-
terval) on switch links depending on the degree of utilization of
the links striving to minimize the maximum utilization on these
links. LetFlow [3] is also implemented in switch hardware and
splits flowlets across switch links randomly. Similarly, Presto
[2] and Clove [4] are implemented in virtual switches of the hy-
pervisor and split flow cells / flowlets on switch links depending
on the utilization of the link. All these solution have in common
the fact that they are designed to work inside data centers hav-
ing a Clos or fat-tree topology, so they would not work (at least
not directly) outside the data center network.

There are many solutions that perform multipath load-
balancing at level 3 of the OSI model, some of them do traffic
engineering inside an AS domain network (i.e. inside an ISP
network) [6, 7, 8, 9, 10, 11, 12] and others perform traffic engi-
neering across AS domains for BGP routing [14, 15]. Inside an
AS domain the traffic splitting over multiple paths is performed
at Ingress routers and the paths span until the Egress router.
The classical way of performing load balancing across multi-
ple paths is using Equal-Cost Multipath routing (ECMP) [5], a
feature supported by the main used intra-domain routing pro-
tocols, OSPF and IS-IS. If there are available several network
paths with the same cost, this feature maps each packet on a net-
work path depending on a hash function applied to the packet

2Actually they can be considered level 2/3 solutions since they also consider
IP addresses when defining flows, but we chose to classify them as level 2
solutions since they are implemented in physical or virtual/hypervisor switches

header fields (usually the IP addresses), thus all the packets be-
longing to the same flow follow the same network path and con-
sequently, ECMP performs load-balancing. This is referred to
as oblivious routing or oblivious traffic engineering because it
does not take into account past traffic patterns. Because of this
it can not easily adapt to changing traffic patterns. Another way
of performing traffic engineering in an ISP network is the so
called predicted-based TE where ISPs use traffic matrices that
represent the traffic demand in the ISP network across a large
time interval (e.g. months, weeks or days) and use this esti-
mation to spread flows on multiple network paths [7, 8, 9, 10].
Because the traffic matrices are evaluated over such long peri-
ods of time, these techniques do not cope with fast changes (i.e.
with timelines shorter than a day) in traffic for example due to
diurnal variations, flash crowds, attacks, BGP re-routes, exter-
nal or internal failures. A third way of doing TE in an ISP net-
work is online traffic engineering exemplified by TeXCP [11].
TeXCP measures the path utilization at each router by actively
probing these routers, so it relies on their support for getting
the path utilization feedback. Based on this feedback, it adapts
the load on each path by sending flows on low-used links, thus
reducing the load on highly used links. As opposed to TeXCP,
our technique does not rely on explicit feedback from routers
in the ISP network. It only uses information available at the
edge of the network, the customer site. All the above solutions
try to minimize the maximum link utilization in the ISP net-
work, while our mechanism strives to improve throughput and
delay metrics, but also inter-flow fairness, only for the flows
sourced at the multihoming site. SmartTunnels [15] are tun-
nels that perform multipath load balancing combined with FEC
coding in order to achieve reliability across ISP networks. The
sender-part and receiver-part of the tunnel do not rely on feed-
back from intermediary router, but have a quite complex archi-
tecture, including buffers for flow splitting at packet level at
the sender and for reordering flow packets at the receiver, FEC
encoder/decoder. The buffers at the sender and receiver will
only add additional delay to traffic. Galton [14] also employs a
tunnel architecture with a complex sender and receiver in or-
der to increase the goodput of real-time, audio-video traffic.
The sender and receiver also have buffers for packet scheduling
and packet reordering. It does not rely on feedback from the
core routers, but uses active probing for monitoring the avail-
able bandwidth on different network paths. Contrary to these
tunnels, our technique does not use buffers at the sender or re-
ceiver in order to schedule or reorder packets, thus eliminating
the transport delay incurred by these buffers.

Concurrent Multipath Transfer was also approached at
transport-level, either by new transport-level protocols like
Multipath TCP [16] or SCTP [17, 20] or by changes to clas-
sical TCP [19, 21, 22]. All these protocols send a flow on sev-
eral network paths concurrently achieving a higher throughput
at flow level. But exactly for this reason they are not fair to
classical TCP which is the most used transport-level protocol
in the Internet today.

Various mechanisms of splitting a data transfer across multi-
ple paths were also tried at the application-level [23, 24, 25].
Also in the context of SDN (Software Defined Networking)

3

for custom network architectures several solutions that perform
multipath traffic engineering were developed [26, 27, 28] 3.

A more complete survey on multipath load balancing tech-
niques can be found in [13].

4. The bandwidth aggregation mechanism for multihoming
links

The goal of our bandwidth aggregation mechanism is to dis-
tribute a set of flows over a number of multihoming links/paths
depending on the links’ properties (i.e. bandwidth capacity and
delay) and on their current network load (i.e. congestion level).
If at some point, the load increases on a particular network path
(due to new flows entering this path), it makes sense to move
a part of the local multihoming flows assigned to this path on
the other multihoming paths. Doing this, would theoretically
increase the inter-flow fairness for the local multihoming flows
and also would increase the aggregated throughput since more
local multihoming flows go through high-capacity links. In or-
der to do this, our mechanism requires two components:

• a component that measures the network load on each up-
link (network load estimation policy)

• a component that manages local multihoming flows and
maps them on outgoing links.

We will first describe the second component, that is the al-
gorithm for mapping flows on the outgoing links. This algo-
rithm is depicted in Fig. 1. The FlowRemapping algorithm
is executed whenever the network load estimation policy de-
cides that the conditions have changed in the network. The
network load is estimated by the estimation policy and con-
verted to weights (i.e. positive numbers normalized to the inter-
val [0, 1]) which are assigned to each network path. A weight
dictates how many local multihoming flows are mapped/sent
on that path. The sum of all the weights equals 1. When
entering the algorithm, Pathi has old weighti · N local mul-
tihoming flows mapped on it and after the algorithm is ex-
ecuted, Pathi will have weighti · N local multihoming flows
mapped on it, where N is the total number of local multihom-
ing flows passing through the gateway. There are two for loops
in the algorithm. The first loop (i.e. lines 2-9) computes all
the flows that need to be moved from their current network
path (due to a drop in the path’s weight) and adds them to
the set R. The function S ortByRemappingTime(Flows(Pathi))
sorts the set of flows currently mapped on Pathi de-
scending by the last remapping time and the function
GetFlowsForRemap(Flows(Pathi), f lows to remap) removes
and returns the set of first f lows to remap flows from the
Flows(Pathi) set (i.e. the first f lows to remap flows that were
most recently remapped from another path to Pathi). Then, in
the second for loop (i.e. lines 10-18), we take each flow from
the set R and assign them to the new, proper path (according to

3We consider SDN to be an application-level solution because the SDN con-
troller and SDN applications are usually implemented at application-level

the new weights). So, while the first for loop considers paths
that lose flows in the next epoch, the second for loop works with
the paths that acquire new flows in the next epoch. We con-
sidered several alternatives for choosing the flows that should
be removed from a network path when that path’s weight de-
creases: 1) random choice of flows, 2) the flows that were most
recently remapped on this path (i.e. youngest flows on this
path) and 3) the oldest flows on the path. After initial tests per-
formed with all three alternatives, we went with 2) the youngest
flows on this path which achieved better results in terms of total
throughput of multihoming flows.

Algorithm 1 The FlowRemapping algorithm is executed when-
ever a path’s weight has changed:
Input:
Pathi : the i-th network path; i ∈ [1,m]
N : the number of local multihoming flows
old weighti : the current weight of Pathi; i ∈ [1,m]
weighti : the new weight for Pathi; i ∈ [1,m]
Flows(Pathi) : the set of local multihoming flows currently
mapped on Pathi

The FlowRemapping algorithm is:
1: R = {}

2: for i = 1 to m do
3: f lows to remap = bold weighti · Nc − bweighti · Nc
4: if f lows to remap > 0 then
5: {Sort descending the set of flows from Pathi by last

remapping time: youngest flow on the path first}
6: SortByRemappingTime (Flows(Pathi))
7: R = R+ GetFlowsForRemap(Flows(Pathi), f lows to remap)
8: end if
9: end for

10: for i = 1 to m do
11: f lows to remap = bweighti · Nc − bold weighti · Nc
12: if f lows to remap > 0 then
13: for all f low in GetFlowsForRemap(R, f lows to remap)

do
14: {assign f low to Pathi}

15: f low.path = i
16: end for
17: end if
18: end for

4.1. The RTT-based policy for estimating the network load
The first network load estimation policy that we introduce

is based on RTT passive measurements. The intuition behind
the RTT-based network load estimation policy is that as the net-
work gets significantly more congested, the average RTT mea-
sured by flows should experience a constant and consistent in-
crease. Figure 2 shows the three typical types of RTT fluctu-
ations encountered by a set of TCP flows passing through the
same network path 4. This figure depicts graphically the evolu-

4In order to ease the understanding of these RTT fluctuation types, we cre-
ated Fig. 2 from artificial data, not from real, measured data, so that the fluctu-

4

tion of RTT samples as measured by returning (i.e. ACK) TCP
packets that pass through a site router. All these TCP packets
belong to TCP flows that share the same network path. There
are 3 types of fluctuations presented in this figure:

• tiny-scale fluctuations - caused by other flows sharing a
segment of the same network path that disrupt the RTT
measurements done by the monitored flows (i.e. pack-
ets of these other flows get interleaved with packets from
the monitored flows in the bottleneck link’s queue causing
tiny, under 10 milliseconds gains or drops of RTT)

• small-scale fluctuations - caused by the typical operation
of TCP flows / router queuing system where TCP flows
probe greedily for more available throughput until they
overshoot the network capacity and the queue in routers
overflows causing TCP flows to drop throughput, then
again TCP flows probe for additional throughput until they
overflow the network capacity and the process continues
indefinitely causing periodic cycles in the measured RTT;
this type of RTT fluctuations are used, for example, by
TCP Vegas [29] and GCC for WebRTC [31] to adjust the
transmission window.

• large-scale fluctuations or fluctuations caused by signifi-
cant network load change - caused by a significant set of
flows entering or leaving the network (a large-scale fluctu-
ation can be seen in Fig. 2 in between the two small scale
fluctuation cycles, containing a period of heavy load when
the RTT is kept at a relatively constant, high value).

We want our RTT-based network load metric to be sensitive
only to the last type of fluctuations and ignore the first two
types. In order to do this, we pass the RTT samples array
through a two-stages smoothing process: 1) we do a mixed
equal+exponential weighted average on windows of 16 RTT
samples in order to remove tiny-scale fluctuations and reduce
the amplitude of the fluctuations and then, 2) we divide the
RTT array into cycles and compute the (classical) average of
RTT values in a cycle to remove the second type of fluctuations
(i.e. small-scale fluctuations).

For the first smoothing stage, each time we receive a new
ACK package, we take the most recent 16 RTT samples window
and apply a weighted average on them. The most recent 8 RTT
samples have the weight 1 and then, the weights start decreasing
exponentially giving less weight on older samples. The value of
the weights are: 1, 1, 1, 1, 1, 1, 1, 1, 0.88, 0.77, 0.66, 0.55, 0.44,
0.33, 0.22, 0.11. This way, the RTT values are smoothed, but
the most recent RTT samples have a larger contribution in this
average. We have tried in our tests various average functions:
equal-weighted average on a 16-values window, exponentially
moving average on a 16-values window (with a weight larger
than 0.8 for the previous average and a weight smaller than 0.2
for the current RTT sample), also various choices for the size
of the window: 8, 16, 32, 64, 128, but the one that achieved the
best results was the mixed equal+exponential weighted average

ation types are better emphasized.

on windows of 16 RTT samples. The size of the window did
not have a big impact, meaning that 32, 64 and 128 were just
as good as 16, but we chose 16 in order to reduce the memory
overhead.

After the first smoothing function is applied, ideally, the RTT
array only contains small-scale fluctuations and possibly large-
scale fluctuations. Because we do not want to perform flow
remapping too often (since moving a flow from one link to an-
other usually implies packet reorderings for this flow and thus,
TCP throughput drop), we filter out small-scale fluctuations by
considering an average value for a RTT cycle. In order to de-
fine what a RTT cycle is, we need to first introduce additional
concepts. We call a subsequence (RTTi,RTT j) made of 2 RTT
samples, quasi-constant if RTTi ∈ [RTT j − thresh,RTT j +

thresh] where thresh is a positive threshold. Similarly, this sub-
sequence is called ascending if RTTi > RTT j + thresh and is
called descending if RTTi < RTT j − thresh. After the first
smoothing function is applied, the resulted RTT sequence will
contain many segments (i.e. subsequences) of the following
types:
1) ascending segment - is the largest continuous subsequence of
RTT samples (RTTm,RTTm+1, ...,RTTn) that has the following
properties:

• ∀i ∈ [m, n), the subsequence (RTTi,RTTi+1) is either
quasi-constant or ascending

• the longest quasi-constant subsequence from this segment
does not have a length larger than stable run thresh

• and the ends of the subsequence are ascending (i.e.
RTTn > RTTm + thresh)

where thresh > 0, stable run thresh > 0 are thresholds, RTTm

is the first sample and RTTn is the last sample of the ascending
segment.
2) descending segment - is the largest continuous subsequence
of RTT samples (RTTm,RTTm+1, ...,RTTn) that has the follow-
ing properties:

• ∀i ∈ [m, n), the subsequence (RTTi,RTTi+1) is either
quasi-constant or descending

• the longest quasi-constant subsequence from this segment
does not have a length larger than stable run thresh

• and the ends of the subsequence are descending (i.e.
RTTn < RTTm − thresh)

where thresh > 0, stable run thresh > 0 are thresholds, RTTm

is the first sample and RTTn is the last sample of the descending
segment.
3) stable-run segment - is a continuous subsequence of
RTT samples with the property that any two samples are
quasi-constant and the length of the segment is larger than
stable run thresh > 0.
Please notice that an ascending and a descending segment can
both contain quasi-constant subsequences, but they are not long
enough to be considered stable-run segments. But when the net-
work is not seriously congested, quasi-constant subsequences

5

do not usually occur, because they are filtered out by the first
smoothing function.

We define two types of RTT cycles and these can be seen in
Fig. 2. First, an RTT cycle is a continuous sequence of RTT
samples that consists of an ascending segment and a descend-
ing segment (not necessarily in this order). Secondly, an RTT
cycle can also be a continuous sequence of RTT samples that
end with a stable-run segment. This second type of cycle can
contain an ascending segment or a descending segment preced-
ing the stable-run or it can contain just the stable-run segment
as you can see in Fig. 2 (i.e. the time interval marked with
‘heavy load‘). If we consider only the first type of RTT cycles,
(i.e. containing one ascending and one descending segment),
when the network becomes heavy loaded as seen in Fig. 2,
the RTT cycle would end only after the heavy load period had
passed and thus, a flow remapping will occur too late (failing to
map fewer flows on the heavy loaded network link) - since flow
remappings happen only at the end of a RTT cycle.

We further smooth out the RTT samples string by averaging
values over an RTT cycle, so that the number of flow remap-
pings will be reduced. The algorithm used for computing the
average value of an RTT cycle is detailed in listing 3 and will
be discussed later in the paper. The effect of the first and the
second smoothing function applied on measured RTT samples
obtained through simulations is visible in Fig. 3. The line la-
beled ’RTT samples’ presents real RTT measurements taken
from a set of flows passing through a network path that has
a low load/congestion level (i.e. a small, constant, number of
flows are sharing the path) between seconds 20-50 and 160-300
and becomes severely congested between seconds 50-160 when
a significant number of new flows enter the network. The line
labeled ’RTT averaged over a 16-window’ is the result of apply-
ing the first smoothing function on the RTT samples string. We
can see that this line is smoother than the line of raw RTT sam-
ples. Finally, the red line labeled ’RTT cycle average’ shows the
average points of each RTT cycle connected by a line. We can
see that this line remains relatively constant in each of the two
periods, low congestion in seconds 20-50 and 160-300 and, re-
spectively, high congestion in seconds 50-160, while the value
of this average remains consistently higher in the period of high
congestion compared to that of the low congestion period.

The UpdateRTTState algorithm depicted in listing 2 is the
RTT-based network load estimation policy. It is executed when-
ever a new return packet (i.e. TCP acknowledgment packet) ar-
rives at the multihoming sender router. The algorithm updates
the RTT state of the respective network path and when the state
changes significantly, it computes new weights for each net-
work path and calls the FlowRemapping algorithm from listing
1 to perform flow remapping. The current RTT sample for this
packet is computed in line 1, by subtracting the TS Echo Re-
ply field of the Timestamps Option in the TCP header 5 from
the current time (i.e. now). After that, it updates the minimum
and maximum RTT in lines 3-8. Line 2 computes the srtt (i.e.
exponentially smoothed RTT) which is used in line 9 for decid-
ing to consider or not this RTT sample in the RTT state. When

5https://tools.ietf.org/html/rfc7323

Time

cycle
(small scale fluctuation)

cycle
(small scale fluctuation)

heavy load tiny scale fluctuation

Figure 2: Typical RTT fluctuations of flows (idealized drawing)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

R
T

T

Time (seconds)

RTT samples
RTT averaged over a 16-window

RTT cycle average

Figure 3: The two-stages smoothing performed on RTT samples

computing the RTT cycles and path weights (i.e. lines 9-24)
we use only one RTT measurement per srtt in order to reduce
computations. The 16 window average (i.e. first smoothing
function) is computed first in line 10. The UpdateRTTWindow
algorithm computes the weighted average of the last 16 RTT
samples recorded. It is a mixed equal and exponential weighted
average. The weights used are the following:

wi = 1 for i = 0, 7

wi = 1 −
i + 1 − mid

mid + 1
for mid = 8 and i = 8, 15

Thus we have weight 1 for the most recent 8 RTT samples
and then, the weights start dropping exponentially giving less
weights to older samples. The value of the weights are:
1,1,1,1,1,1,1,1, 0.88, 0.77, 0.66, 0.55, 0.44, 0.33, 0.22, 0.11.
Then, if the function UpdateRTTCycle, which is described in
Listing 3, detects the start of a new cycle, we compute the new
weights for each network path in lines 14-21 and then call the
FlowRemapping algorithm to perform flow remapping.

The weight of a path is computed as an inverse linear map-
ping of cycle.average rtt from the interval [min cycle avgrtt,

6

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

T
h

ro
u

g
h

p
u

t
(b

y
te

s
/s

e
c
.)

Time (seconds)

1 SRTT Throughput samples
Throughput averaged over a 16-window

Throughput cycle average

Figure 4: The two-stages smoothing performed on Throughput samples

max rtt] to the interval [0, 1], where cycle.average rtt is the av-
erage RTT for the current cycle, min cycle avgrtt is the min-
imum cycle.average rtt recorded out of all RTT cycles and
max rtt is the maximum RTT ever recorded (for that specific
network path). The simplest way of comparing the network
load of two network paths would be to just compare their aver-
age RTT per cycle (i.e. cycle.average rtt). As the network path
gets more congested (i.e. load increases), its average RTT per
cycle would also increase. But this does not work for asymmet-
ric network paths where the transmission delays on these paths
differ significantly. An RTT sample measurement includes two
types of delays: transmission delays (i.e. the amount of time
it takes for a packet to travel from one end to the other end of
the path, assuming it is the only packet on the network path)
and queuing delay (i.e. the delay caused by waiting on a queue
in the bottleneck link’s router). Since the network load influ-
ences only the queuing delay, not the transmission delay, but
an RTT sample encapsulates both, we can not directly compare
the RTT values of two asymmetric network paths in order to
detect their relative network load difference. A better metric is
to take the cycle.average rtt - min rtt difference for each net-
work path (where min rtt is the minimum RTT ever recorded
on the path). Assuming we have enough history log, the min rtt
would be very close to the actual transmission delay on the net-
work path and will include in its value a queuing delay close
to zero. But the difference cycle.average rtt - min rtt estimates
the network load on the path including the network load cre-
ated by the local multihoming flows and we want to estimate
only the network load induced inside the network by external
flows. This is why, we consider the metric cycle.average rtt -
min cycle avgrtt where min cycle avgrtt is the minimum cy-
cle.average rtt recorded out of all RTT cycles on this path.
The min cycle avgrtt would be a good estimator of the average
queuing delay (i.e. network load) generated when only local
multihoming flows pass through the network path. Still, net-
work paths can be so diverse and if the bandwidth-delay prod-
uct on the bottleneck link of a path is very different than the one
from another network path, in order to compare the paths’ net-
work load we need to normalize the metric cycle.average rtt

- min cycle avgrtt to the interval [0,1]. Thus we obtain the
network load metric from line 16 of the algorithm. When cy-
cle.average rtt is equal to min cycle avgrtt which means the
network is not congested, line 16 gives a network load metric
value of 0. But if the network path is severely congested and
cycle.average rtt is close to max rtt, the network load metric
computed by line 16 is 1. Of course, lines 14-21 of the al-
gorithm UpdateRTTState must compute a weight for each net-
work path, i.e. this weight specifies how many flows should be
mapped on each path and is used in the algorithm FlowRemap-
ping. This is why we need to inverse the network load metric
computed in line 16. That is, a network load metric of 0 should
give a maximum weight of 1 (i.e. all local multihoming flows
should be mapped on this path because it has no network load)
and conversely, a network load metric of 1 should give a weight
of 0 (i.e. the path is highly congested and local multihoming
flows should be mapped on other paths). This weight inversion
is performed in lines 19-21 for all network paths.

The UpdateRTTCycle algorithm depicted in listing 3 is
responsible for managing RTT cycles. This algorithm gets
called from the UpdateRTTState algorithm approximately
once per srttk for each network path Pathk, when a new ac-
knowledgment packet arrives at the multihoming sender router
on path Pathk. As we said earlier, a cycle is a sequence of
continuous values containing either an ascending segment and
a descending segment or a stable-run segment or a stable-run
segment preceded by an ascending/descending segment. The
state maintained for a cycle is the following (one cycle state is
maintained for each network path):

cycle.duration: the length in time of the previous, com-
pleted cycle
cycle.average rtt: the average value of the previous, completed
cycle
cycle.start time: the starting time of the current cycle
cycle.current rtt: the current sample value from the current
cycle (it’s actually an average over a window of 16 RTT
samples)
cycle.ascending: state of the ascending phase in the current
cycle: notstarted – started – ended
cycle.descending: state of the descending phase in the current
cycle: notstarted – started – ended
cycle.stableRun starttime: starting time of the last quasi-
constant (possible stable-run) subsequence in the current cycle
cycle.stableRun startvalue: starting value of the last quasi-
constant (possible stable-run) subsequence in the current cycle
cycle.cumulative rtt: sum of all samples from the current cycle
cycle.n: number of samples in the current cycle

Please note that while a cycle is made of a sequence of
samples, each sample value from a cycle is actually an
average over an 16 RTT samples window. The isAscend-
ing condition tests whether the next RTT window average,
avg rtt window and the current sample value of the cycle,
cycle.current rtt, form an ascending subsequence. CTHRESH
is the changing threshold from the definition and we used a
value of 5% in the evaluation tests. Similarly, the isDescending

7

condition is true when avg rtt window and cycle.current rtt
form a descending subsequence. If the avg rtt window and
cycle.current rtt are quasi-constant, we check in lines 3-7
whether we have a stable-run segment and if this is true, we
close the current cycle and initialize a new cycle. In our
evaluation tests, we considered that a quasi-constant sequence
is a stable-run segment if its length in time is larger than
MIN REMAPPING TIME INTERVAL (i.e. stable run thresh
from the definition) and it lasts more than half the length of
the previous cycle. If isAscending is true we do the following
things in lines 13-21: we check if this cycle already contains an
ascending segment (cycle.ascending = ended) which means we
should close this cycle and initialize a new one; we check if we
were previously on a descending segment (cycle.descending =

started) and we end this segment; we set cycle.ascending =

started to signalize we are on an ascending segment. Similar
things happen in lines 22-30 if isDescending is true. In the
end of the algorithm, if we do not have a new cycle, we add
the window average RTT to the cumulative rtt of this cycle
and increase the number of samples in lines 32-33. The initial-
ization of a new cycle is performed in lines 35-44. Note that
while most of the properties of a cycle are initialized in lines
35-44 for the following cycle, the properties cycle.duration
and cycle.average rtt actually hold data for the previous cycle
(i.e. the one that just ended).

4.2. The throughput-based policy for estimating the network
load

The throughput-based policy is very similar to the RTT-based
policy. The throughput-based policy assumes that all multihom-
ing flows are greedy TCP flows (i.e. they can use as much band-
width as available, they are not self-limiting sources) and esti-
mates the current load of a network path by computing the total
throughput of all multihoming flows going through that path.
If the total throughput of multihoming flows traversing a net-
work path increases consistently, it means that more bandwidth
was available on that network path, so the load on that path (i.e.
number of non-multihoming flows sharing the network path)
has reduced.

The total throughput of all multihoming flows going out
a network path is measured once per RTT. This throughput
measure shows, as in the case of RTT measurements for the
RTT-based policy, three types of fluctuations: a)tiny-scale fluc-
tuations due to congestion window - router queue dynamics,
b)small-scale fluctuations caused by the periodicity of TCP
congestion control behavior (i.e. TCP increases the through-
put until it overshoots the network capacity and then halves the
throughput only to start increasing it again, searching for new,
available bandwidth) and c)large-scale fluctuations caused by
large flows crowds entering or leaving the network. There-
fore we use the same methodology as for the RTT-based pol-
icy, in order to reduce tiny-scale and small-scale fluctuations
of the measurements. More specifically, we apply the same
mixed equal+exponential weighted average on windows of 16
throughput measurements in order to reduce tiny-scale fluctua-
tions and then, we compute throughput cycles and use the aver-
age throughput value for a cycle in order to reduce small-scale

Algorithm 2 The RTT-based network load estimation policy is
executed when a new return packet (i.e. TCP acknowledgment
packet) arrives at the multihoming sender router:
Input:
p : an ACK packet received on path Pathk

m : the number of network paths
min rttk : minimum RTT value ever recorded for Pathk

max rttk : maximum RTT value ever recorded for Pathk

srttk : smoothed RTT for Pathk

last rtt updatek : last time the RTT state was updated for
Pathk

now : the current time

The UpdateRTTState algorithm is:
1: curr rtt = now − p.TS ecr
2: srttk = 0.8 · srttk + 0.2 · curr rtt
3: if curr rtt < min rttk then
4: min rttk = curr rtt
5: end if
6: if curr rtt > max rttk then
7: max rttk = curr rtt
8: end if
9: if last rtt updatek < (now − srttk) then

10: avg rtt window = UpdateRTTWindow(Pathk, curr rtt)
11: last rtt updatek = now
12: if (UpdateRTTCycle(Pathk, avg rtt window) = 1) then
13: { compute the weight for each Path }
14: sum = 0
15: for i = 1 to m do
16: weighti =

cycle.average rtti−min cycle avgrtti
max rtti−min cycle avgrtti

17: sum = sum + weighti
18: end for
19: for i = 1 to m do
20: weighti = 1 − weighti / sum
21: end for
22: FlowRemapping()
23: end if
24: end if

fluctuations. Both smoothing stages work in the same way as
their correspondent in the RTT-based load estimation policy,
but with different thresholds when computing throughput cy-
cles. The only thing that is different in the throughput-based
policy is the algorithm used for updating the throughput state,
i.e. the UpdateThroughputState algorithm depicted in listing 4
which will be discussed in the following paragraphs. But before
we do that, we can see in Fig. 4 the effect of applying the two
stage smoothing methodology on the throughput samples mea-
sured once per second. This figure is the correspondent of Fig.
3 for the throughput-based policy. The raw throughput samples
are depicted with the label ’1 SRTT Throughput samples’, the
16 window averages are shown under the label ’Throughput av-
eraged over a 16 window’ and finally, the cycle-average values
are shown under the label ’Throughput cycle average’. We can
see here that the cycle average line is much stable than the other

8

Algorithm 3 The UpdateRTTCycle algorithm checks whether
a new cycle is starting for Pathk

Input:
avg rtt window : the average RTT value over a window of 16
samples for Pathk

cycle : the data structure for the current RTT cycle of Pathk

Returns: True if a new cycle starts or False otherwise

The UpdateRTTCycle algorithm is:
1: isAscending = avg rtt window > cycle.current rtt · (1 +

CT HRES H);
2: isDescending = avg rtt window < cycle.current rtt · (1 −

CT HRES H);
3: if (!isAscending and !isDescending) then
4: {We are in a stable-run phase }
5: if (now−cycle.stableRun starttime > cycle.duration/2)

and (now − cycle.stableRun starttime >
MIN REMAPPING T IME INT ERVAL) then

6: return newcycle init()
7: end if
8: else {This is not a stable-run phase}
9: cycle.current rtt = avg rtt window

10: cycle.stableRun starttime = now
11: cycle.stableRun startvalue = avg rtt window
12: if isAscending=TRUE then
13: {We are in the ascending phase }
14: if cycle.ascending = ended then
15: return newcycle init()
16: end if
17: if cycle.descending = started then
18: cycle.descending = ended
19: end if
20: cycle.ascending = started
21: else if isDescending=TRUE then
22: {We are in the descending phase }
23: if cycle.descending = ended then
24: return newcycle init()
25: end if
26: if cycle.ascending = started then
27: cycle.ascending = ended
28: end if
29: cycle.descending = started
30: end if
31: end if
32: cycle.cumulative rtt+ = avg rtt window
33: cycle.n + +

34: return false { The same cycle }

The newcycle init() function is:
35: cycle.duration = now − cycle.start time
36: cycle.average rtt = cycle.cumulative rtt/cycle.n
37: cycle.start time = now
38: cycle.current rtt = avg rtt window
39: cycle.ascending = notstarted
40: cycle.descending = notstarted
41: cycle.stableRun starttime = now
42: cycle.stableRun startvalue = avg rtt window
43: cycle.cumulative rtt = avg rtt window
44: cycle.n = 1
45: return true { New cycle }

two lines.
The throughput state is maintained by the UpdateThrough-

putState algorithm depicted in listing 4. This algorithm gets ex-
ecuted whenever a data packet coming from the local network
arrives at the multihoming router and will be sent through the
multihoming tunnel over the network path Pathk. The through-
put is computed once per srttk. Therefore, if at least srttk
time has passed since the last throughput update (i.e. condi-
tion checked in line 1) we compute the new throughput value.
Otherwise, the size of the current packet p is added to the
current throughput in line 19. Line 2 of the algorithm com-
putes the current throughput value for Pathk. Following, in line
3 we compute the average of the last 16 measured through-
put values. Function UpdateThroughputWindow() is exactly
the same as the function UpdateRTTWindow() used for the
RTT-based policy, so we omit it in the article. In line 6 we
check whether a throughput cycle has completed. The func-
tion UpdateThroughputCycle() computes throughput cycles in
the same way as the function UpdateRTTCycle() for the RTT-
based policy (depicted in listing 3) using the same CTHRESH
and MIN REMAPPING TIME INTERVAL thresholds, so we
also omit it here. If a new throughput cycle has started, we
compute the new path weights and perform a flow remapping
if the weights changed in lines 8-16. The weight of a net-
work path is equal to the average cycle throughput on that
path cycle average throughputi, divided by the number of local
multihoming flows mapped on that path, n f lowsi. At the end,
we call function FlowRemapping() in line 16 which is the same
function used in the RTT-based policy and was shown in listing
1, but because this function expects path weights to be normal-
ized to the interval [0, 1] we do this normalization in lines 13-
15. The function FlowRemapping() just reassigns flows to the
multihoming paths according to the paths’ new weights.

5. Evaluation

This section details the experiments we have performed in or-
der to validate our bandwidth aggregation mechanism together
with the two network load estimation policies, RTT-based and
Throughput-based. We implemented our bandwidth aggrega-
tion mechanism as a multihoming routing classifier in the ns
network simulator 6. In all our experiments, we considered the
common case where there are 2 independent network paths be-
tween the two multihoming sites (similar to Fig. 1). So, the
whole presentation from this section takes place in this setup.

In our experiments we have used the algorithms described
in Section 4, but we operated some slight changes on them
that should improve their efficiency. These changes are de-
tailed in the following lines. For both estimation policies, RTT-
based and Throughput-based, we enforced that whenever the
FlowRemapping algorithm is executed: (a) maximum 10% of
the total number of multihoming flows can be moved simulta-
neously from one link to another (i.e. for each link, the absolute
difference between the old weight and the new weight can not

6https://www.nsnam.org/

9

Algorithm 4 The Throughput-based network load estimation
policy is executed when a new data packet coming from the
local LAN arrives at the multihoming sender router:
Input:
p : a data packet coming from the local network and waiting to
be sent through the multihoming tunnel over Pathk

m : the number of network paths
srttk : smoothed RTT for Pathk

last throughput updatek : last time the Throughput state was
updated for Pathk

now : the current time
throughputk : the current throughput on Pathk

The UpdateThroughputState algorithm is:
1: if last throughput updatek < (now − srttk) then
2: throughputk = throughputk/(now - srttk)
3: avg window thrput = UpdateThroughputWindow(Pathk,

throughputk)
4: throughputk = 0
5: last throughput updatek = now
6: if (UpdateThroughputCycle(Pathk, avg window thrput)

= 1) then
7: { compute the weight for each Path }
8: sum = 0
9: for i = 1 to m do

10: weighti = cycle average throughputi / n f lowsi

11: sum = sum + weighti
12: end for
13: for i = 1 to m do
14: weighti = weighti / sum
15: end for
16: FlowRemapping()
17: end if
18: end if
19: throughputk+ = p.size

be larger than 0.1) and (b) each link should have at least 10%
of the total number of multihoming flows mapped on it (i.e. the
weight of a link can not be smaller than 0.1). Condition (a)
is meant to give a smooth transition between flow remapping
periods, thus avoiding scenarios when almost all multihoming
flows (e.g. 64 in our experiments) are moved from one uplink
to another, all at once, causing large drops of throughput. Con-
dition (b) ensures that both uplinks are utilized and no uplink
remains with zero flows mapped on it.

The second type of changes we have done to the algo-
rithms listed in Section 4 are some filters that are meant
to reduce weight fluctuations when the two network paths
are uncongested. For the RTT-based policy, when both net-
work paths are uncongested, the difference cycle.average rtti −
min cycle avgrtti in Algorithm 2, line 16, becomes very small
for both network paths, therefore making the weighti metrics
computed by line 16 very similar. But due to the normaliza-
tion process from line 20 in Algorithm 2, the relative difference
between the two final weights increases and produces different-

sized flow sets mapped on each network path (although both
network paths are uncongested and there should be N/2 flows
mapped on each path; i.e. weight1 and weight2 should be both
0.5). Therefore, when (a) the weighti computed by line 16 in
Algorithm 2 is less then 0.2 for all network paths or when (b)
the numerator of line 16 in Algorithm 2 is less then 5 millisec-
onds for all network paths, we set equal final weights for all net-
work paths (e.g. if we have 2 paths, both paths would have the
final weight 0.5 and each path will receive half of the multihom-
ing flows). We have used a similar filter for the Throughput-
based policy: if the absolute difference between the two un-
normalized weights computed by line 10 in Algorithm 4 is less
than 0.05 we set equal final weights for both network paths. We
have come to these values through extensive testing detailed in
the remaining of this section.

5.1. Network setup
The network setup of our experiments is presented in Fig.

5. The multihoming local network is behind router R1 and is
formed by the source nodes: s1 .. sn. The multihoming receiver
network is behind router R4 and is formed by the destination
nodes: d1 .. dn. We have one multihoming TCP flow between
each (si, di) node pair. Router R1 is a multihoming sender router
that splits incoming multihoming flows on the two outgoing
links: R1-R2 and R1-R3. Router R4 is a multihoming receiver
router that maps reverse TCP packets (i.e. ACK packets) on the
same link/path the original data packets came through (e.g. if
data packets of the TCP flow originating from the source node
si arrive at the router R4 through the R3-R4 link, then acknowl-
edgment packets generated by the TCP receiver, di, will be sent
back to the si node by the R4 router through the same link/path,
R4-R3). The capacity of the access links of source and desti-
nation nodes is always 1 Gbps and the transmission delay is
randomly distributed between 1 ms and 10 ms. The transmis-
sion delay of the inter-router links R1-R2, R1-R3 and R3-R4 is
always set to 40 ms, while the transmission delay of link R2-R4
changes across experiments. Similarly, during an experiment,
the network capacities of the inter-router links R1-R2, R1-R3 and
R3-R4 are always equal, but the link R2-R4 can have, depend-
ing on the experiment, a different network capacity. We have
used several network capacities for the inter-router links across
all our experiments, ranging from 20 Mbps to 1 Gbps. The
router queue is always set to the bandwidth-delay product for
that link, for all routers. We have used two queue drop poli-
cies for routers in our experiments: the most common, Drop-
Tail queuing, in order to see how our mechanism works with
the most common queue management policy in the Internet and
an active queue management policy, Random Early Detection
(RED) [30], which is implemented in some commercial routers.
We have set the thresh and maxthresh parameters of a RED
queue to be 40% and respectively 60% of the total queue size.
We have 64 TCP flows originating in the multihoming local
network (i.e. source nodes si, i = 1..64) and going to the des-
tination nodes di, i = 1..64. These flows start in the beginning
of the simulation at random times to remove phase effects and
last until the simulation completes. Each simulation lasts 600
seconds. We have chosen this duration for a simulation so that

10

R
1

R
2

R
3

R
4

S
1

S
2

S
n

D
1

D
2

D
n

.

.

.
.
.
.

Figure 5: The network setup used in the experiments

a simulation lasts long enough for us to observe a steady-state
behavior. Additional 512 TCP flows attached to source nodes
connected to the R2 router and destination nodes connected to
the R4 router (these nodes are not depicted in Fig. 5) add net-
work load on the network path R1 − R2 − R4. 64 of these flows
start in the beginning of the simulation and last until the end
of the simulation creating a steady-state load on the network
path R1 − R2 − R4. The remaining 448 flows start at random
times between seconds 40-50 of the simulation and they finish
at random times between seconds 320 and 400 of the simula-
tion. These additional 448 TCP flows create an increased load
on the path R1−R2−R4 between seconds 40 and 400 of the sim-
ulation, thus forcing our multihoming sender router R1 to send
more flows on the other network path, R1−R3−R4. Similarly, 64
TCP flows attached to source nodes connected to the R3 router
and destination nodes connected to the R4 router (these nodes
are also not depicted in Fig. 5) create a steady-state load on the
other network path, R1 − R3 − R4, for the duration of the entire
simulation. In addition, there are 32 TCP flows on the reverse
link R4 −R2 and other 32 TCP flows on the reverse link R4 −R3
for an increased network dynamics. For the TCP flows used in
our simulation, either the multihoming flows or the load flows,
we used a mixture of TCP Linux Cubic, Sack and NewReno
flows.

5.2. Metrics used
We compared our bandwidth aggregation mechanism that

maps multihoming flows on the two outgoing paths dynam-
ically with a naive routing mechanism that splits multihom-
ing flows equally between the two outgoing network paths -
the ECMP (Equal-Cost Multipath routing [5]) classical rout-
ing scheme (assuming that the two outgoing paths/links have
the same network capacity). We will emphasize the benefits
brought by our bandwidth aggregation mechanism through the
use of the following three metrics:

• Average throughput per flow = the average flow through-
put of the 64 multihoming flows

• Standard deviation of the flow throughput values = the
standard deviation of the 64 throughput values

•
Min throughput
Max throughput = the ratio of the minimum flow throughput
and the maximum flow throughput out of the 64 multihom-
ing flows.

The flow throughput used in the above metrics is the throughput
computed for each multihoming flow during the increase load

period of the simulation (i.e. between seconds 40 and 400 of
the simulation). This throughput is computed for every flow
in the 64 multihoming flows set. The first metric will show
whether the 64 multihoming flows consumed more bandwidth
using our bandwidth aggregation mechanism than when using
ECMP routing. The second metric should be reduced when
using our bandwidth aggregation mechanism, thus increasing
the bandwidth fairness between competing multihoming flows.
A large value for the third metric (i.e. a value close to 1) shows
that the multihoming flows received similar throughputs while
a small value implies increased throughput unfairness between
competing multihoming flows.

5.3. Test results
We start with a common test in which we have a network ca-

pacity of 100 Mbps and a 40 ms transmission delay for each
inter-router link. We first ran a simulation with an ECMP rout-
ing mechanism that splits the 64 multihoming flows equally
between the two outgoing network paths: 32 flows on path
R1 − R2 − R4 and 32 flows on path R1 − R3 − R4. Then we
ran the simulation again with our bandwidth aggregation mech-
anism employed for router R1 using the RTT-based policy for
estimating the network load and finally, we ran the same sim-
ulation, but the bandwidth aggregation mechanism used the
Throughput-based policy. We ran these 3 simulations with
DropTail queuing employed at all routers and then we ran the
simulations again with RED employed at routers. The results
obtained are depicted in Fig. 6 - 13. In Fig. 6 we can see
the evolution of the average RTT per cycle measured for each
network path (Path0: R1 − R2 − R4 and Path1: R1 − R3 − R4)
when the RTT-based mapping policy was used at router R1. It
can be noticed that while cycle average rtt remains relatively
constant on Path1, it increases on Path0 between seconds 50-
360 as the additional 448 TCP flows create an increased load
on link R2 − R4 (remember, the 448 TCP flows start at ran-
dom times between seconds 40-50 and complete at random
times between seconds 320-400). This determines router R1
to map more multihoming flows on Path1 than on Path0 be-
tween seconds 70-380; this is visible in Fig. 8. A similar re-
sult is seen in Fig. 7 for the cycle average throughput metric
used when the Throughput-based mapping policy was used at
router R1: cycle average throughput drops on Path0 between
seconds 60-380 due to the increased load on this path created
by the 448 TCP flows. Consequently, more multihoming flows
are mapped by R1 on Path1 in this time interval (see Fig. 9).

Figures 10 and 12 show the same type of results as in fig-
ures 6 and 8, but this time RED queuing was used at routers
(not DropTail). Similarly, for the Throughput-based map-
ping policy, we see in figures 11 and 13 the evolution of the
cycle average throughput metric and, respectively, the flow
mapping caused by this evolution at router R1 when the RED
queuing policy was employed at all routers.

Next, we considered three diverse network capacities of 100
Mbps, 500Mbps and 1Gbps and a 40 ms transmission delay
for each inter-router link. The queuing policy at routers was
either DropTail or RED. For each (network capacity - queu-
ing policy) combination we ran 3 experiments: one when an

11

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600

R
T

T
 (

s
e
c
o
n
d
s
)

Time (seconds)

Average RTT per cycle on Path 0
minimum Average RTT per cycle on Path 0

maximum RTT on Path 0
Average RTT per cycle on Path 1

minimum Average RTT per cycle on Path 1
maximum RTT on Path 1

Figure 6: The cycle average rtt (i.e. average RTT per cycle) for both paths
when the RTT-based mapping policy is used, DropTail queuing and 100Mbps
capacity; the minimum and maximum values for the cycle average rtt across
the simulation are also depicted

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
p
e
r

c
y
c
le

 (
b
y
te

s
/s

e
c
.)

Time (seconds)

Path 0
Path 1

Figure 7: The cycle average throughput (i.e. average throughput per cycle)
for each path when the Throughput-based mapping policy is used, DropTail
queuing and 100Mbps capacity

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

N
u
m

b
e
r

o
f
fl
o
w

s
 p

e
r

n
e
tw

o
rk

 p
a
th

Time (seconds)

Path 0
Path 1

Figure 8: The number of multihoming flows mapped on each path, when the
RTT-based mapping policy is used, DropTail queuing and 100Mbps capacity

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

N
u
m

b
e
r

o
f
fl
o
w

s
 p

e
r

n
e
tw

o
rk

 p
a
th

Time (seconds)

Path 0
Path 1

Figure 9: The number of multihoming flows mapped on each path, when the
Throughput-based mapping policy is used, DropTail queuing and 100Mbps ca-
pacity

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600

R
T

T
 (

s
e
c
o
n
d
s
)

Time (seconds)

Average RTT per cycle on Path 0
minimum Average RTT per cycle on Path 0

maximum RTT on Path 0
Average RTT per cycle on Path 1

minimum Average RTT per cycle on Path 1
maximum RTT on Path 1

Figure 10: The cycle average rtt (i.e. average RTT per cycle) for both paths
when the RTT-based mapping policy is used, RED queuing and 100Mbps ca-
pacity; the minimum and maximum values for the cycle average rtt across the
simulation are also depicted

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
p
e
r

c
y
c
le

 (
b
y
te

s
/s

e
c
.)

Time (seconds)

Path 0
Path 1

Figure 11: The cycle average throughput (i.e. average throughput per cycle)
for each path when the Throughput-based mapping policy is used, RED queuing
and 100Mbps capacity

12

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

N
u
m

b
e
r

o
f
fl
o
w

s
 p

e
r

n
e
tw

o
rk

 p
a
th

Time (seconds)

Path 0
Path 1

Figure 12: The number of multihoming flows mapped on each path, when the
RTT-based mapping policy is used, RED queuing and 100Mbps capacity

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

N
u
m

b
e
r

o
f
fl
o
w

s
 p

e
r

n
e
tw

o
rk

 p
a
th

Time (seconds)

Path 0
Path 1

Figure 13: The number of multihoming flows mapped on each path, when the
Throughput-based mapping policy is used, RED queuing and 100Mbps capac-
ity

ECMP routing mechanism was used at router R1, other when
our bandwidth aggregation mechanism was used for router R1
with the RTT-based policy and another one when our band-
width aggregation mechanism was used for router R1 with the
Throughput-based policy. Each experiment consisted of a sim-
ulation being run 10 times with different, randomly generated,
flow starting and ending times (for all TCP flows, multihom-
ing and not multihoming) and access links delays. In the end,
we computed for each experiment an average of the aforemen-
tioned metrics across all 10 simulations performed for the same
experiment. The obtained results are depicted in Table 1 for
the DropTail queuing discipline and, respectively, in Table 2
for the RED queuing discipline. For the ECMP routing mech-
anism (i.e. ECMP mapping) we show the absolute values for
the three metrics used: Min throughput

Max throughput (denoted by MMR in the
tables), Standard deviation of the flow throughput values (de-
noted by STD in the tables) and Average throughput per flow
(denoted by AVGT in the tables), but for the bandwidth ag-
gregation mechanism employed (i.e. RTT-based mapping and
Throughput-based mapping) we show percentage improvement
values for the metrics with respect to the corresponding metric
used in ECMP mapping. For example, in Table 1, for a network
capacity of 100Mbps, when the ECMP mapping is used, we ob-
tained the metric values MMR = 0.12, S T D = 44018.7 and
AVGT = 61591. For the same capacity, when the Throughput-
based mapping policy was used, we obtained a MMR metric

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping MMR: 0.12
STD: 44018.7
AVGT: 61591

MMR: 0.06
STD: 371675
AVGT: 435682

MMR: 0.06
STD: 836406
AVGT: 974754

RTT-based map-
ping (%)

MMR: 14.45
STD: 34.02

AVGT: 26.53

MMR: 11.51
STD: 31.73

AVGT: 13.86

MMR: 68.81
STD: 44.07

AVGT: 10.28
Throughput-
based mapping
(%)

MMR: 109.10
STD: 54.36

AVGT: 29.24

MMR: 432.73
STD: 69.10

AVGT: 24.08

MMR: 586.41
STD: 74.79

AVGT: 17.85

Table 1: Results for DropTail queuing, identical bandwidth and delay for both
uplinks

that is 109.10 % better than the MMR obtained by the ECMP
mapping policy for the network capacity of 100Mbps. That is,
the absolute value of the MMR for the Throughput-based map-
ping policy, 100Mbps network capacity, is 0.12 · 100+109.10

100 =

0.25. Similarly, in Table 1 an AVGT = 29.24 value for the
Throughput-based mapping policy when capacity is 100Mbps
is a percentage improvement over ECMP mapping and results
to an absolute value of 61591 · 129.24

100 = 79452.39bps. Things
are a little bit different for the STD metric, because an im-
provement of this metric is actually a decrease of the metric.
So, the S T D : 54.36 value in Table 1, for the Throughput-
based mapping, 100Mbps capacity, results in the absolute value
44018.7 · 100−54.36

100 = 20090.13bps.
Results are very similar for both queuing disciplines Drop-

Tail and RED, as seen in Tables 1 and 2. We can see, as ex-
pected, that our bandwidth aggregation mechanism, either RTT-
based or Throughput-based, improved all three metrics with
respect to ECMP routing, in all tested network capacities and
queuing disciplines. We can see that as the network capacity
increases, generally, the MMR and S T D metric improvements
are consolidated while the improvement in AVGT decreases (in
percentage values as depicted in the tables, but the improve-
ment of AVGT in absolute values is still consolidated). The
throughput gain when using our bandwidth aggregation mecha-
nism is between 5% and 30%, while the MMR and S T D gains
are much higher, sometimes more than 400%. We can also see
in these tables that the throughput obtained for the DropTail
queuing discipline was larger than the one obtained by RED.
Hence the AVGT gains obtained for the bandwidth aggregation
mechanism were larger for DropTail than for RED.

In the next phase, we tried to see whether an asymmetric RTT
on the two network paths would influence our results. We per-
formed the same experiment as before, but this time, in all sim-
ulations, the transmission delay of link R2−R4 was 80ms, while
the transmission delay of all other links remained unchanged to
40ms. This led to a RTT on the path R1 −R2 −R4 that was more
than 1.5 times the RTT on the network path R1 − R3 − R4 (this
is visible in Figure 14). As usual, for each (network capac-
ity - queuing policy) combination we ran 3 experiments: one
where an ECMP routing mechanism was used at router R1,
other when our bandwidth aggregation mechanism was used
for router R1 with the RTT-based policy and another one when

13

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping MMR: 0.12
STD: 45748.9
AVGT: 62136

MMR: 0.08
STD: 348482
AVGT: 430274

MMR: 0.07
STD: 818536
AVGT: 1004900

RTT-based map-
ping (%)

MMR: 22.88
STD: 36.34

AVGT: 21.04

MMR: 27.24
STD: 31.74
AVGT: 9.96

MMR: 47.24
STD: 40.94
AVGT: 5.57

Throughput-
based mapping
(%)

MMR: 151.26
STD: 61.87

AVGT: 24.04

MMR: 258.01
STD: 65.79

AVGT: 15.50

MMR: 434.51
STD: 75.47

AVGT: 11.55

Table 2: Results for RED queuing, identical bandwidth and delay for both up-
links

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping MMR: 0.11
STD: 48457.2
AVGT: 69607

MMR: 0.04
STD: 463800
AVGT: 503196

MMR: 0.02
STD: 1272350
AVGT: 1267670

RTT-based map-
ping (%)

MMR: 27.40
STD: 38.37

AVGT: 22.98

MMR: 29.97
STD: 35.29

AVGT: 15.13

MMR: 48.06
STD: 39.77
AVGT: 7.00

Throughput-
based mapping
(%)

MMR: 147.98
STD: 56.43

AVGT: 22.47

MMR: 469.17
STD: 61.52

AVGT: 17.97

MMR: 428.98
STD: 58.31
AVGT: 9.31

Table 3: Results for DropTail queuing, identical bandwidth for both uplinks, but
asymmetric delays (link R2 − R4 has an 80ms transmission delay; link R3 − R4
has a 40ms transmission delay)

our bandwidth aggregation mechanism was used for router R1
with the Throughput-based policy; one experiment consists of
10 simulations. The obtained results are depicted in Tables 3
and 4 for the DropTail and RED queue policy, respectively. We
can see here the same improvements for all three metrics when
the bandwidth aggregation mechanism was employed at router
R1 (with both RTT-based mapping and Throughput-based map-
ping policies), similar to what we have seen in the symmetri-
cal RTT-bandwidth experiments (i.e. Tables 1 and 2). Al-
though, the AVGT improvements of the bandwidth aggregation
mechanisms are now smaller than the improvements obtained
for the symmetrical RTT-bandwidth experiments; this is espe-
cially true for the 1Gbps network capacity, when RED queu-
ing policy was used. From these tables we can also see that
the Throughput-based mapping was better that the RTT-based
mapping with respect to all three metrics.

Then we tried to see whether our mechanism works on a
setup with asymmetric network capacity paths. We performed
the same experiment as before, but this time, in all simulations,
the network capacity on all links from the path R1 − R2 − R4
were double the network capacity of links from the other net-
work path, path R1 −R3 −R4. The obtained results are depicted
in Tables 5 and 6 for the DropTail and RED queue policy, re-
spectively. We can notice here that the Throughput-based map-
ping is still better than the RTT-based mapping with respect to
all three metrics and the AVGT gains obtained are larger than
the ones obtained in the symmetrical RTT-bandwidth and, re-
spectively, the asymmetrical RTT network setups. Please note

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping MMR: 0.16
STD: 42211.7
AVGT: 64897

MMR: 0.10
STD: 340308
AVGT: 458444

MMR: 0.08
STD: 848286
AVGT: 1092360

RTT-based map-
ping (%)

MMR: 21.36
STD: 33.24

AVGT: 15.56

MMR: 55.35
STD: 37.06
AVGT: 4.79

MMR: 58.68
STD: 39.75
AVGT: 2.61

Throughput-
based mapping
(%)

MMR: 107.95
STD: 57.45

AVGT: 16.65

MMR: 210.98
STD: 64.72
AVGT: 8.51

MMR: 233.09
STD: 64.79
AVGT: 5.01

Table 4: Results for RED queuing, identical bandwidth for both uplinks, but
asymmetric delays (link R2 − R4 has an 80ms transmission delay; link R3 − R4
has a 40ms transmission delay)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600

R
T

T
 (

s
e
c
o
n
d
s
)

Time (seconds)

Average RTT per cycle on Path 0
minimum Average RTT per cycle on Path 0

maximum RTT on Path 0
Average RTT per cycle on Path 1

minimum Average RTT per cycle on Path 1
maximum RTT on Path 1

Figure 14: The cycle average rtt (i.e. average RTT per cycle), minimum and
maximum RTT for both network paths when DropTail queuing is used and
1000Mbps network capacity

that for these asymmetrical network capacity experiments, we
had to slightly modify the RTT-based mapping algorithm (i.e.
the UpdateRTTState algorithm depicted in listing 2) so that af-
ter the weights for both network paths are computed we further
scaled these weights as following: we scaled the weight of path
R1 −R2 −R4 by 66% and scaled the weight of path R1 −R3 −R4
by 33% (because the network capacity of path R1 − R2 − R4 is
double the capacity of R1 −R3 −R4). At the same time, in order
to facilitate fair competition we modified the ECMP mapping
for these experiments so that the ECMP multihoming router R1
always maps 66% of the multihoming flows on the R1−R2−R4
path and 33% of the flows on the R1 − R3 − R4 path.

Next, we chose the identical network capacity and trans-
mission delay setup and ran several tests to see whether small
changes in the network capacity influences significantly the re-
sults obtained with our bandwidth aggregation mechanism em-
ployed. Each inter-router link had a 40ms transmission delay
and the capacity is varied (for all inter-router links) from 40
Mbps to 140 Mbps across tests. Each test is run twice, once
with the DropTail policy used at the routers and another with
RED. We depicted in Figures 15 - 17 the percentage improve-
ment values of the RTT-based and Throughput-based policies
for the three metrics used so far, MMR, STD and AVGT metrics
with respect to the corresponding metric used in ECMP map-
ping. In these figures we can see that the RTT-based policy
and the Throughput-based policy indeed produce better results

14

Network capacity
200Mbps/
100Mbps

250Mbps/
500Mbps

500Mbps/
1Gbps

ECMP mapping MMR: 0.19
STD: 48448.3
AVGT: 69483

MMR: 0.12
STD: 167787
AVGT: 196564

MMR: 0.10
STD: 436776
AVGT: 480950

RTT-based map-
ping (%)

MMR: 7.02
STD: 22.49
AVGT: 23.57

MMR: 24.72
STD: 29.18
AVGT: 20.09

MMR: 34.55
STD: 38.32
AVGT: 11.99

Throughput-
based mapping
(%)

MMR: 82.86
STD: 55.98
AVGT: 33.44

MMR: 169.29
STD: 64.50
AVGT: 36.21

MMR: 257.80
STD: 71.04
AVGT: 22.44

Table 5: Results for DropTail queuing, identical transmission delays for both
uplinks, but asymmetric bandwidth capacities (path R1 − R2 − R4 has the band-
width capacities: 200Mbps/500Mbps/1Gbps which is twice the bandwidth ca-
pacity of the path R1 − R3 − R4: 100Mbps/250Mbps/500Mbps)

Network capacity
200Mbps/
100Mbps

250Mbps/
500Mbps

500Mbps/
1Gbps

ECMP mapping MMR: 0.22
STD: 41387.5
AVGT: 63080

MMR: 0.18
STD: 134089
AVGT: 183640

MMR: 0.15
STD: 327732
AVGT: 425396

RTT-based map-
ping (%)

MMR: 21.74
STD: 24.16

AVGT: 17.33

MMR: 18.91
STD: 24.33

AVGT: 11.82

MMR: 23.27
STD: 29.30
AVGT: 8.93

Throughput-
based mapping
(%)

MMR: 55.40
STD: 54.08

AVGT: 23.43

MMR: 87.20
STD: 58.18

AVGT: 20.12

MMR: 129.38
STD: 65.44

AVGT: 16.44

Table 6: Results for RED queuing, identical transmission delays for both up-
links, but asymmetric bandwidth capacities (path R1−R2−R4 has the bandwidth
capacities: 200Mbps/500Mbps/1Gbps which is twice the bandwidth capacity of
the path R1 − R3 − R4: 100Mbps/250Mbps/500Mbps)

than the ECMP mapping strategy and the results are consistent
with the tables 1 and 2. Also the results obtained for Drop-
Tail queues at the routers were generally better than the results
obtained by RED queues. One additional note is that we have
run the same experiments using asymmetrical delay times and
asymmetrical network capacities for the two network paths and
we obtained similar results.

 0

 50

 100

 150

 200

 250

 300

140 120 100 80 60 40

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Network capacity

RTT-based mapping; RED
Throughput-based mapping; RED

RTT-based mapping; DropTail
Throughput-based mapping; DropTail

Figure 15: The Min throughput
Max throughput (i.e. MMR) metric improvements of the RTT-

based and Throughput-based policies with respect to the corresponding MMR
metric obtained by ECMP mapping for different network capacities and queu-
ing policies

 25

 30

 35

 40

 45

 50

 55

 60

 65

140 120 100 80 60 40

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Network capacity

RTT-based mapping; RED
Throughput-based mapping; RED

RTT-based mapping; DropTail
Throughput-based mapping; DropTail

Figure 16: The Standard deviation of the flow throughput values (i.e. STD)
metric improvements of the RTT-based and Throughput-based policies with re-
spect to the corresponding STD metric obtained by ECMP mapping for different
network capacities and queuing policies

We performed some other set of tests in order to see how a
reduced load on the network path R1 −R2 −R4 would influence
our results. We used the identical network capacity and trans-
mission delay setup (i.e. where all inter-router links have the
same network capacity and queuing delay) and ran several tests
for the network capacity of 500Mbps and a transmission delay
of 40ms. As opposed to the experiments detailed by tables 1
and 2 where we had 512 TCP flows on the link R2 − R4 creat-
ing external load, we now have only 256 TCP flows on the link
R2 − R4. We computed the percent improvements obtained by
the RTT-based mapping and Throughput-based mapping poli-
cies for the three metrics used (i.e. MMR, STD and AVGT) with
respect to the corresponding metric obtained by ECMP map-
ping in the same network setup an we depicted these in Fig-
ures 18 and 19 together with the values obtained by the 512
flows load case (shown in tables 1 and 2). Fig. 18 shows the

15

 5

 10

 15

 20

 25

 30

 35

140 120 100 80 60 40

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Network capacity

RTT-based mapping; RED
Throughput-based mapping; RED

RTT-based mapping; DropTail
Throughput-based mapping; DropTail

Figure 17: The Average throughput per flow (i.e. AVGT) metric improvements
of the RTT-based and Throughput-based policies with respect to the corre-
sponding AVGT metric obtained by ECMP mapping for different network ca-
pacities and queuing policies

metrics observed by the RTT-based mapping policy while Fig.
19 shows the metric obtained by the Throughput-based map-
ping policy. We can see in these figures that as the load on link
R2 − R4 drops to 256 flows, the benefits of RTT-based mapping
and Throughput-based mapping decrease (with the rare excep-
tion of the MMR metric for the RTT-based mapping, DropTail
queuing and 256 flows load), affecting more severely the RTT-
based mapping policy especially when RED queuing is used;
sometimes we even obtain setbacks for MMR and AVGT. This
is because for the 256 flows load test, the load on the network
path R1 −R2 −R4 is not that high to make a RTT difference (the
total number of flows on path R1 −R2 −R4 is approximately 1.5
times the total number of flows on path R1 − R3 − R4) and RED
manages to keep the RTT measured on path R1 − R2 − R4 ap-
proximately equal with the RTT measured on path R1−R3−R4.

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

MMR STD AVGT

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Metric

256 flows load; Droptail
256 flows load; RED

512 flows load; Droptail
512 flows load; RED

Figure 18: A comparison of the MMR, STD and AVGT metrics improvements
for the cases of 256 flows load on the link R2−R4 and 512 flows load on the link
R2 − R4. The RTT-based mapping policy is used at the multihoming router R1.
The values show the improvement in percents of each metric over the metric
obtained by ECMP mapping in the same network setup. Network capacity is
500Mbps.

Next we reduced the number of multihoming flows from 64
to 32 and performed the tests again. We used the identical net-
work capacity and transmission delay setup (i.e. where all inter-
router links have the same network capacity and queuing delay)
and ran several tests for the network capacity of 500Mbps and
a transmission delay of 40ms. Results are shown in Fig. 20 for
the RTT-based mapping policy and, respectively, in Fig. 21 for

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

MMR STD AVGT

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Metric

256 flows load; Droptail
256 flows load; RED

512 flows load; Droptail
512 flows load; RED

Figure 19: A comparison of the MMR, STD and AVGT metrics improvements
for the cases of 256 flows load on the link R2 − R4 and 512 flows load on the
link R2−R4. The Throughput-based mapping policy is used at the multihoming
router R1. The values show the improvement in percents of each metric over
the metric obtained by ECMP mapping in the same network setup. Network
capacity is 500Mbps.

the Throughput-based mapping policy. We can see that gener-
ally the metrics are improved better when the number of mul-
tihoming flows is lower (i.e. 32 multihoming flows). We have
also tried increasing the number of multihoming flows to 128
and we have obtained similar results.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

MMR STD AVGT

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Metric

32 multihoming flows; Droptail
32 multihoming flows; RED

64 multihoming flows; Droptail
64 multihoming flows; RED

Figure 20: A comparison of the MMR, STD and AVGT metrics improvements
for different numbers of multihoming flows: 32 and 64. The RTT-based map-
ping policy is used at the multihoming router R1. The values show the improve-
ment in percents of each metric over the metric obtained by ECMP mapping in
the same network setup. Network capacity is 500Mbps.

The modified source code of the ns simulator we have used
in our tests, together with the scripts necessary for plotting the
figures from the paper (and many more) are available in [?].

6. Conclusions and Future Work

We have presented in the previous sections a multihom-
ing routing solution for bandwidth aggregation. Our solu-
tion comes in the form of a virtual tunnel that connects two
sites through multiple independent or quasi-independent net-
work paths. Our routing solution maps local multihoming flows
on the possible outgoing network paths so that these flows use
a larger aggregated available bandwidth in changing network
conditions. The routing solution dynamically adapts the flow
mappings on the outgoing network paths so that a path with a

16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

MMR STD AVGT

Im
p
ro

v
e
m

e
n
t
p
e
rc

e
n
t

Metric

32 multihoming flows; Droptail
32 multihoming flows; RED

64 multihoming flows; Droptail
64 multihoming flows; RED

Figure 21: A comparison of the MMR, STD and AVGT metrics improvements
for different numbers of multihoming flows: 32 and 64. The Throughput-based
mapping policy is used at the multihoming router R1. The values show the
improvement in percents of each metric over the metric obtained by ECMP
mapping in the same network setup. Network capacity is 500Mbps.

higher load receives fewer local multihoming flows than a net-
work path with a light load. We used two different strategies in
order to evaluate the load/congestion level on a network path:
one is based on RTT sampling the return TCP ACK packets and
the other one is based on measuring the effective aggregated
throughput of all multihoming flows on that path. Both strate-
gies involve only passive measurements and they require main-
taining a fairly low amount of state per flow at the edge router.
We have tested both strategies in a simulated network and we
have compared them with a classical ECMP-based solution and
showed that our bandwidth aggregation routing using either of
the two strategies performs better than the ECMP routing so-
lution in terms of total aggregated throughput and fairness be-
tween multihoming flows. Even though the Throughput-based
mapping proved superior to the RTT-based mapping in almost
all test scenarios, the RTT-based mapping strategy should have
an important advantage in that in opposition to the Throughput-
based mapping strategy, it does not rely on the fact that all or
most local multihoming flows are greedy flows (i.e. they always
have data to send).

As future plans, we would like to evaluate the performance
of both mapping strategies not only with greedy TCP flows, but
also with self-limiting flows. Also we would like to study how
two such multihoming routing solutions would interact with
each other. More specifically, in our test setup we had a mul-
tihoming sender router at site A that maps local multihoming
flows on the two outgoing network paths and on site B we had
a simple router that maps outgoing packets on the same path it
received packets from the same flow; so we can say that site B’s
router is inactive as it does not change the flow mappings set by
site A’s router. But we can consider a setup in which site B also
has a multihoming sender router that maps flows on outgoing
paths based on the load it measures on the two outgoing paths
(just like site A’s router does). Although in theory, both routers,
from site A and site B, should map the same number of flows
on a network path, they still need to negotiate when a flow is
moved from one path to the other. This negotiation may come
in the form of a state freeze for some flows, e.g. when a router
detects that the other router has just moved a flow from one path

to the other, it can not remap this flow on some other path for
a fixed time interval. Another future direction would be to test
the multihoming routing solution with more than two outgoing
network links. In the paper we performed tests using the most
common network setup with two outgoing multihoming links.

References

References

[1] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A.
Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese.
CONGA: Distributed Congestion-aware Load Balancing for Datacenters.
In Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 503514,
New York, NY, USA, 2014.

[2] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto:
Edge-based Load Balancing for Fast Datacenter Networks. In Proceed-
ings of the 2015 ACM Conference on SIGCOMM, New York, NY, USA,
pp. 465-478. 2015.

[3] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it flow: re-
silient asymmetric load balancing with flowlet switching. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Im-
plementation (NSDI’17). Berkeley, CA, USA, pp.407-420, 2017.

[4] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J. Rex-
ford. Clove: Congestion-Aware Load Balancing at the Virtual Edge. In
Proceedings of the 13th International Conference on emerging Network-
ing EXperiments and Technologies (CoNEXT ’17). New York, NY, USA,
pp.323-335, 2017.

[5] D. Thaler, C. Hopps, Multipath Issues in Unicast and Multicast Next-Hop
Selection, RFC 2991, IETF, 2000.

[6] P. Merindol, J.J. Pansiot, S. Cateloin, Improving Load Balancing with
Multipath Routing. In Proceedings of 17th International Conference on
Computer Communications and Networks, USA, August 2008.

[7] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. COPE:
traffic engineering in dynamic networks. In Proceedings of the 2006 con-
ference on SIGCOMM, New York, NY, USA, pp.99-110, 2006.

[8] D. Applegate and E. Cohen. Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs, In Proceedings of the 2003 conference on SIGCOMM, New
York, NY, USA, pp.313-324, 2003.

[9] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional
IP routing protocols, IEEE Communications Magazine, Vol. 40, Issue 10,
pp.118-124, 2002.

[10] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF
Weights, In Proceedings of IEEE Infocomm, Israel, 2000.

[11] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
responsive yet stable traffic engineering. In Proceedings of the 2005 Con-
ference on SIGCOMM. New York, NY, USA, pp.253-264, 2005.

[12] E. Keller, M. Schapira, and J. Rexford. Rehoming edge links for better
traffic engineering. In SIGCOMM Computer Communications Review,
Vol. 42, Issue 2 (March 2012), 65-71, 2012.

[13] J. Domzal, Z. Dulinski, M. Kantor, J. Rzasa, R. Stankiewicz, K. Wajda,
and R. Wojcik. A survey on methods to provide multipath transmission
in wired packet networks, In Computer Networks, Volume 77, pp.18-41,
2015.

[14] J. Wu, C. Yuen, B. Cheng, Y. Shang, and J. Chen. Goodput-Aware
Load Distribution for Real-time Traffic over Multipath Networks, In IEEE
Transactions on Parallel and Distributed Systems, Vol. 26 , Issue 8, pp.
2286-2299, 2015.

[15] Y. Li, Y. Zhang, L. L. Qiu, and S. Lam. SmartTunnel: Achieving Re-
liability in the Internet. In Proceedings of the IEEE INFOCOM 2007,
Washington, DC, USA, 830-838, 2007.

[16] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Han-
dley. Improving datacenter performance and robustness with multipath
TCP, In Proceedings of the ACM SIGCOMM 2011 conference. ACM,
New York, NY, USA, pp. 266-277, 2011.

[17] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent multipath transfer
using SCTP multihoming over independent end-to-end paths. IEEE/ACM
Transactions on Networking, Vol. 14, Issue 5 , pp.951-964, 2006.

17

[18] L. Budzisz, J. Garcia, A. Brunstrom, and R. Ferrus. A taxonomy and sur-
vey of SCTP research. In ACM Computing Surveys Vol. 44, Issue 4, 2012.

[19] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka. A new TCP
for persistent packet reordering. In IEEE/ACM Transactions on Network-
ing, Vol. 14, Issue 2, pp.369-382, 2006.

[20] W. Yang, H. Li, F. Li, Q. Wu, and J. Wu. RPS: range-based path selection
method for concurrent multipath transfer. In Proceedings of the 6th Inter-
national Wireless Communications and Mobile Computing Conference,
New York, NY, USA, pp.944-948, 2010.

[21] H.-Y. Hsieh, R. Sivakumar. A Transport Layer Approach for Achieving
Aggregate Bandwidths on Multi-Homed Mobile Hosts. In Wireless Net-
works, No. 11, pp.99114, 2005.

[22] J. Wang, J. Liao, and T. Li. OSIA: Out-of-order Scheduling for In-order
Arriving in concurrent multi-path transfer. In Journal of Network and
Computer Applications, Vol. 35, Issue 2, pp.633-643, 2012.

[23] E. Arslan, B. Ross, and T. Kosar. Dynamic Protocol Tuning Algorithms
for High Performance Data Transfers. In Proceedings of the European
Conference on Parallel Processing, Springer, pp.725-736, 2013.

[24] E. Arslan, K. Guner, and T. Kosar. HARP: Predictive Transfer Optimiza-
tion Based on Historical Analysis and Real-time Probing. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, USA, 2016.

[25] T. Kosar, E. Arslan, B. Ross, and B. Zhang. StorkCloud: data transfer
scheduling and optimization as a service. In Proceedings of the 4th ACM
workshop on Scientific cloud computing. New York, NY, USA, pp.29-36.
2013.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vah-
dat. B4: experience with a globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013 conference. New York, NY,
USA, pp. 3-14, 2013.

[27] N. Gvozdiev, B. Karp, and M. Handley. FUBAR: Flow Utility Based Rout-
ing. In Proceedings of the 13th ACM Workshop on Hot Topics in Net-
works (HotNets-XIII). New York, NY, USA, pp. 12-18, 2014.

[28] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou. Flexible Traffic
Splitting in OpenFlow Networks. In IEEE Transactions on Network and
Service Management, Vol. 13, Issue 3, pp.407-420, 2016.

[29] L. Brakmo, S. OMalley, and L. Peterson. TCP Vegas: New techniques
forcongestion detection and avoidance. In Proceedings of the ACM SIG-
COMM conference, 1994.

[30] S. Floyd , and V. Jacobson. Random Early Detection (RED) gateways for
Congestion Avoidance. In IEEE/ACM Transactions on Networking, Vol.
1, No. 4, pp. 397413, 1993.

[31] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Analysis and De-
sign of the Google Congestion Controlfor Web Real-time Communica-
tion (WebRTC). In Proceedings of the ACM Multimedia Systems Confer-
ence,Klagenfurt, Austria, May 2016.

18

