
Removal of Unwanted Objects from Still
Photographs

Rosana Bălănescu
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania
brie1861@scs.ubbcluj.ro

Adrian Sterca
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

forest@cs.ubbcluj.ro

Ioan Bădărı̂nză
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

ionutb@cs.ubbcluj.ro

Abstract—In this paper we present a method for removing
unwanted objects from still photographs. The method is based
on taking several shoots of the same picture by either moving
the camera or holding the camera fixed if the unwanted object
is moving, so that afterwards, by careful comparisons between
macroblocks from different shoots of the same picture, we are
able to reconstruct the original picture without the unwanted
object in it. The method operates in two scenarios, one when the
unwanted object is moving in front of the camera (e.g. like a
passing car) and another when the unwanted object is fixed (e.g.
like electrical or communication wires). In the evaluation section
we perform several tests that show our method is viable.

Index Terms—image reconstruction, image object removal

I. INTRODUCTION

We all know that moment when we are visiting a touristic
site and we want to take a photo of a building with a beautiful
architecture or of a monument, but unfortunately there are a lot
of street cables in front of it. Or, maybe we are with a group
of tourists, the guide tells us to hurry up and we are trying
to snap a photo of some interesting view that we see, but a
car passes between the camera and the object of our photo
exactly in that moment. We will present an algorithm which
takes as input a short video consisting of consecutive shoots
of the same picture and from this video, we will re-construct
the initial image without the intruder object.

There are two possible scenarios we consider for our
method. The first one is when the unwanted object is in
movement and the camera is (more or less) static. As more
concrete examples, think about cars, birds, or people that
accidentally enter in the field of view of the camera. In this
approach, we need to analyze which macroblocks of pixels
remain unchanged (or with a small relative error - the threshold
for this error will be determined experimentally) from one
frame to the next one, and keep them as they are in the resulted
image. When this error is large, we try to find another pair of
frames that satisfy the condition.

The other scenario is when the camera is moving and the
unwanted object is static (electric cables, pillars, etc). In this
case, we use the relative movement of the object with respect
to the camera. The image in the background also appears to
be moving with respect to the camera, but the displacement
is way smaller in comparison with the displacement of the
object which is closer to the camera. The processing of the

images is similar as in the previous case, but we need to take
into consideration the 3-D translation of the camera when
trying to identify correspondent blocks of pixels from two
frames. However, this method has its limitations, since it can
be applied only in the situations when there is a certain ratio
between the distances (camera - occluding object, camera -
background) and only when the movement of the camera does
not happen on parallel planes with the cables’ plane.

The contribution of this paper is two algorithms of removing
unwanted objects from a sequence of continues images by
combining and searching missing information in neighboring
frames. The first algorithm relies on the fact that the video
camera is static and the intruder object is moving in the field
of view and the second algorithm considers the opposite case,
when the intruder object’s position is fixed, but the video
camera is moving.

The rest of the paper is organized as follows. In Section
II we present related work. Following, Section III presents
the main contribution of our paper, namely two algorithms
for removing unwanted objects from photographs based on
continuous shoots of the same picture. Section IV presents our
evaluation experiments and the paper ends with conclusions in
Section V.

II. RELATED WORK

Image recognition has been a very interesting topic for many
years now and it attracted a lot of attention [1], [2], [3]. The
most challenging visual task that we could ask for a computer
to perform is the recognition of all the objects in an image. It
is hard because the real world is a blend of objects that are
obstructing each other, interfering with one another, appearing
in different postures. Moreover, objects of the same class (e.g.
cats) are widely varying depending on their race, so differences
of color and shape are major, making it very improbable for a
computer to perform a perfect and exhaustive match with some
database samples [4]. In [5], the authors present the algorithm
which solves the problem of filling large gaps in an image with
a content that is plausible for the human eye. Previously, there
were two types of algorithms that were solving this: texture
synthesis algorithms [6] and inpainting techniques [7]. The
first one is used for generating large regions with the same
texture as the one in the unhidden area, while the second one



is used for filling small gaps, focusing on linear structures.
The method presented in this paper combines the advantages
of both types, by replicating simultaneously the texture and the
structure. A key element in this process is the way in which
the pixels are synthesized: they get a temporary color value
together with a confidence value, which are both updated as
a new patch of the image is reconstructed. The filling order
is an important factor in achieving a successful result, thus,
at every step, the algorithm computes the priority of every
patch that has to be reconstructed. In comparison with other
algorithms, this one produces better and clearer images. Since
the reconstructed area did not suffer any diffusion to propagate
the color values, as the classical inpainting algorithms were
doing, the resulted pictures are not blurred at all. Another
interesting approach of an algorithm for objects removal can
be found in [8]. This particular algorithm, does not only
complete the scene using just one image, but it also produces
a consistent background content even in the cases of large
foreground objects. This is done by inferring a possible
structure of the hidden region in the image with the help of
curve estimation, which means that pixels in the neighborhood
of the ”gap” are analyzed, looking more carefully at edges
and trying to generate curves that could either traverse the
gap, being continued on the other side of it, or that could
end inside it. Then, an orientated patch matching algorithm
is used to fill the gap, making a texture synthesis around
the already estimated lines. Another important work in this
domain is the one described in [9], image de-fencing. Digital
photographers are using this technique to erase fence-like
patterns from an image, without leaving any hint that a fence
object ever existed. This would be similar to what we are
seeing from a car with a high speed when passing by a fence.
Moreover, image de-fencing is quite similar to one of the goals
of the present paper, which is image ”de-cabling”. The task
is not an easy one, due to factors like the complexity of the
background and the large variety of fences. Based on a data-
driven approach, it detects the fence pattern with the help of
a feature descriptor: a histogram of oriented gradients (HOG),
a technique which counts occurrences of gradient orientation
situated in small areas of an image. However, the authors of
this method modified this HOG to represent every particular
pixel instead of a full patch. This seems a very good idea, since
the evaluation of this algorithm shows that it detects a fence in
an image with an accuracy greater than 98%. In comparison
with this work, our method does not remove only small, line
shaped, objects (like fences, cables) from an image, but also
large objects like cars or persons.

In recent years there are a lot of papers trying to do image
inpainting using convolutional neural networks [10]–[12]. Var-
ious CNNs and GANs (i.e. Generative Adversarial Networks)
are used in order to infer missing pieces from a painting
and generating a substitute from the surrounding pixels. Our
method differs from these works based on neural networks
because our method does not require any training (i.e. it is
efficient) and it does not extract missing information from
surrounding pixel patches in the same image, but instead it

extracts missing pixel information from surrounding temporal
frames in a video stream.

III. ALGORITHMS

Unlike the methods presented in the previous section, we re-
construct the scene with the help of multiple frames extracted
from a video. The process of shooting this small video does
not need to be more elaborated than the process of shooting the
initial image itself. For this reason, there is no need to guess or
infer the color value of a pixel based on the information that
we have from the rest of the picture. Instead of this, we try
to find the information about the hidden area (the area behind
the occluding object which has to be removed) in the other
frames. The only issue that remains to be solved is how to
make the correlation between the pixels in the hidden area of
an image and the same ”point” from the real world, which is
visible in other images.

There are two phases that comprise our method:
• matching blocks of pixels from several frames and elim-

inating blocks that contain the intrusive object
• blending the matched blocks of pixels into the final image

A. Scenario 1

We begin the presentation of our method with the case when
the photo camera is static and the object that has to be removed
is moving. We assume each frame contains at least a small part
of that object. After the frames are extracted from the video,
the algorithm proceeds to compose the result image, which
will be called ”clean image”, from now on. The algorithm
is depicted in listing 1. We start with an empty clean image,
CI . The reconstruction process is performed in multiple steps,
one macroblock of pixels at a time (a macroblock is just
a rectangular part of the image pixels). The basic idea of
the algorithm is to compare corresponding macroblocks of
pixels from consecutive frames and determine the pair of two
macroblocks that are most similar - there is a high probability
that these macroblocks do not contain the moving object that
needs to be removed. Since the video camera does not move
between successive frames in scenario 1, it is straightforward
to find the macroblock from the next frame that corresponds
to the current macroblock from the current frame (i.e. both
macroblocks should start at the same (X, Y) coordinates).
By searching for frames in which the macroblock looks very
different than in the other frames, we can recognize the
intrusive object (i.e. the object in movement). In this way, we
can discard these macroblocks from those frames since they do
not contain the whole information about the fixed background.

It is worth mentioning that our algorithm considers that
the frames are in the YUV colorspace, and we only use
the luminance pixel components (i.e. Y) in our computations
(except the color blending part - line 14 of the algorithm).
Lines 1-3 from the algorithm decomposes all the l frames into
macroblocks which are saved in the MBi sets, for i ∈ [1, l];
MBi holds all the macroblocks from frame Ii. Following,
in lines 4-16, for each macroblock of index/rank k, we find
the pair of consecutive frames (Ii, Ii+1) for which the k-th



macroblocks are most similar. We compute this macroblock
similarity using the MSE (Mean Square Error) formula [13].
The MSE of two macroblocks, MBi[k] and MBi+1[k], is
computed in line 8. MBi[k] is the k-th macroblock from frame
Ii and MBi+1[k] is the k-th macroblock from frame Ii+1.
The minimum MSE score of the k-th macroblocks from two
consecutive frames is computed in lines 7-13 and is saved in
the min MSE variable. At the same time min idx stored
the index of the frames that contain these minimum MSE
macroblocks (actually, min idx is the index of the first frame
in the pair, the index of the second frame in the pair will be
min idx+ 1).

Next, after the minimum MSE pair for the k-th macroblock
has been found across all l images, in line 14 we blend the
pixel colors of this minimum MSE macroblock pair. Every
pixel from macroblock Mk in line 14 will be obtained as
the mean pixel of the corresponding pixels from the two
macroblocks, MBmin idx[k] and MBmin idx+1[k]. To deter-
mine a mean pixel, each RGB component is calculated as
the arithmetic mean between the same component of P1 and
P2 (P1 being the pixel on the same position from the first
macroblock and similarly P2 as the pixel from the second
macroblock). At an intermediary point in the execution of the
program, the clean image will look like the one from Fig. 1
where P1, P6 are pixels from the macroblock MBmin idx[k]
and Q1, Q6 are the corresponding (i.e. situated on the same
positions) pixels from the macroblock MBmin idx+1[k].

Finally, in line 15, the k-th color blended macroblock, Mk

which should not contain moving pixels, is added to the clean
image, CI .

Algorithm 1 The object removal algorithm for static camera
scenario
Input:
Ii: the i-th frame; i ∈ [1, l]
Ii has m x n pixels having only Y components in the YUV
colorspace
Output:
CI: the clean image reconstructed (without unwanted objects)

The Unwanted Object Removal algorithm is:
1: for i = 1 to l do
2: MBi = GenerateMacroblocks(Ii)
3: end for
4: for k = 1 to size(MB1) do
5: min MSE =∞
6: min idx = 1
7: for i = 1 to l − 1 do
8: mseval = MSE(MBi[k],MBi+1[k])
9: if mseval < min MSE then

10: min MSE = mseval
11: min idx = i
12: end if
13: end for
14: Mk = BlendColors(MBmin idx[k],MBmin idx+1[k])
15: AddMacroblockToCleanImage(Mk, CI)
16: end for

The steps described above will be applied for every mac-
roblock, thus obtaining the whole image, the background, as a

Fig. 1. Clean Image (in progress)

combination of smaller local backgrounds. The choice of the
size of the macroblock is very important, since it can influence
decisively the quality and the accuracy of the clean image. In
this paper, the optimal size of the macroblock is determined
experimentally.

B. Scenario 2

The second scenario adds more complications to the
method. The pixels that correspond to the same ”point” of the
reality are not anymore on the same positions in all the frames.
It is not feasible and not even accurate to compare every
pair of points from two images to find the matches between
them. We extract ORB keypoints (Oriented FAST and Rotated
BRIEF) [14] [15] from both frames and then find matching
keypoints in both frames using the Euclidean distance. After
we have found a set of matching ORB keypoints, we compute
the homography matrix between the two frames (i.e. the
transformation between two planes). Having this information,
it is possible to calculate the new coordinates of a translated
and rotated block of pixels. Basically, this method is just
a generalization of the first one, in which we consider as
movement the cables and the pillars that ”do not move in
the same rhythm” as the building (relative to the camera). The
process of reconstruction begins with choosing a reference
image RI , the one that will be cleaned. The best choice for
this is the frame in the middle, since we have the highest
chances of finding its macroblocks in the other frames. Then
we compute the homography matrix between it and every other
frame. We will note with Hi the homography matrix needed
to transform the plane of the RI image into the plane of the
i-th image (Ii). Thus, we will obtain a list of homographies,
[H1, ...,Hn], where n is the number of frames in the video.
As in the first scenario, now the reference image is split in
macroblocks of pixels, and for each of them we apply the
following operations:

1) Apply a perspective transformation with the matrix Hi

on the coordinates of that macroblock to find the new
coordinates of the transposed macroblock of pixels in
the image Ii (for every i from 1 to n).

2) If, for an image, the transposed macroblock is not
entirely included in that image (its coordinates are less
than 0 or greater than the width or height of the image,



respectively), it means that this image does not contain
the entire information about that macroblock, therefore
it can be discarded (in practice, when transforming the
coordinates of the macroblock, if there exist pixels that
are out of the boundaries of the accepted range only with
some units, that image is not discarded and we use the
color value of the closest pixel instead).

3) From the remaining images, we find the pair with the
minimum MSE between their transposed macroblocks,
M1 and M2. In the ideal case, the minimum MSE
is obtained from two images that do not contain the
occluding object in that macroblock.

4) For each pixel from the macroblock of the RI image,
its new color value is computed as the mean between
the values of its corresponding pixels in M1 and M2.

In the end, the RI image is reconstructed with small parts
from the other images. However, it is possible that for some
macroblocks, the algorithm discards all the other images at
step 2. Then, for those blocks, the algorithm will keep the
values of the original pixels (the one from the RI image).
This is a limitation of the algorithm, which does not remove
any bits of objects that exist in those areas, since it can not find
any information of what is behind them in the other images.

The detailed algorithm used for scenario 2 is depicted in
listing 2. It is similar to the first algorithm, but now before
we start comparing macroblocks, in lines 1-7 we translate each
frame Ii, i ∈ [1, l] to real world coordinates relative to the
reference image, RI . We first extract ORB keypoints from the
reference frame, RI , then we extract ORB keypoints from the
remaining frames. We match keypoints for each pair (RI, Ii)
and compute the homography matrix Hi for translating the
coordinates of image Ii to the coordinates of RI . Then we ap-
ply the homography matrix Hi to the frame Ii. The rest of the
algorithm (i.e. lines 8-28) is very similar to the first algorithm,
with (min MB1,min MB2) being the minimum MSE mac-
roblock pair. FindCorrespMacroblock(MBi[k], Ii+1) re-
turns the macroblock from frame Ii+1 that corresponds to (i.e.
is placed at approximately the same real-world coordinates as)
macroblock MBi[k].

IV. EXPERIMENTS

In this section we present some of the experiments we have
performed in order to validate our method. Unfortunately it is
very hard to evaluate quantitatively an algorithm that performs
artistic object removal in a picture [10]–[12]. This is because
the object to be removed can be replaced with many artistic
textured pixels, each having its own value in the eye of the
viewer. Furthermore, for our specific technique is is even
harder to assess it quantitatively because we could not find any
available dataset with short video streams of continuous shoots
of the same photograph and also to include in it the ground
truth picture (i.e. the picture without the intruder object).
Instead we performed a qualitative evaluation by showing the
visual result of our algorithms.

Algorithm 2 The object removal algorithm for camera dis-
placement scenario
Input:
I1, ..., Il; the set of all frames of the video stream not including RI
RI: the reference image (i.e. the frame from the middle of the video
stream)
Output:
CI: the clean image reconstructed (without unwanted objects)

The Unwanted Object Removal algorithm is:
1: FRI = ExtractORBKeypoints(RI)
2: for i = 1 to l do
3: Fi = ExtractORBKeypoints(Ii)
4: MatchSet = MatchKeypoints(FRI , Fi)
5: Hi = ComputeHomography(MatchSet)
6: Ii = Ii ·Hi

7: end for
8: for i = 1 to l do
9: MBi = GenerateMacroblocks(Ii)

10: end for
11: MBRF = GenerateMacroblocks(RI)
12: for k = 1 to size(MBRF ) do
13: min MSE =∞
14: min MB1 = null
15: min MB2 = null
16: for i = 1 to l − 1 do
17: mb1 = MBi[k]
18: mb2 = FindCorrespMacroblock(MBi[k], Ii+1)
19: mseval = MSE(mb1,mb2)
20: if mseval < min MSE then
21: min MSE = mseval
22: min MB1 = mb1
23: min MB2 = mb2
24: end if
25: end for
26: Mk = BlendColors(min MB1,min MB2)
27: AddMacroblockToCleanImage(Mk, CI)
28: end for

A. Scenario 1 (Still camera and moving object)

Case 1 Moving object behind still object

First, we tried to assess our method in the first scenario. We
took a shoot of a video of approximately 4 seconds containing
images of the same physical coordinates, but a person is
moving in front of the camera (behind the object of interest
which is another person, in this case). The parameters of our
algorithm were:

• Number of frames: 2 frame/sec => 9 frames;
• Macroblock size: 32x32 pixels; 64x64 pixels; 128x128

pixels;
• Comparison step: 3.
Some of the frames extracted by the algorithm can be seen

in Fig. 2. First we tried with less then 9 frames per video, but
the results were unsatisfactory. Then we took approximately
4 seconds of video, 2 frames per second, hence the algorithm
extracted 9 frames, which seems to be enough for this case,
since it managed to recreate a completely clean image. The
clean image can be seen in Fig. 3. In fact, it worked very good
even with very large block sizes (such as 128). Therefore,



Fig. 2. Frames used for Case 1 (moving object behind still object)

Fig. 3. The reconstructed, clean image for Case 1

increasing the number of frames is a better way of refinement
that decreasing the size of the block.

Case 2 Moving object is in front of still object

Next, we applied our method to the same scenario, but this
time the intrusive object moves in front of the still object (i.e.
a person). The video shoot has approximately 3 seconds, 2
frames per second. The parameters of our algorithm were:

• Number of frames: 2 frame/sec => 7 frames;
• Macroblock size: 32x32 pixels ; 16x16 pixels ;
• Comparison step: 3.
The frames extracted by the algorithm can be seen in Fig. 4.

As seen in Fig. 5, the person in orange is removed completely.
This result was obtained taking the block size of 16x16. In
another try, with a block of 32x32, the result was very similar.
Thus, without much effort, in just 3 seconds of staying still
we obtained a beautiful touristic picture.

B. Scenario 2 (Moving camera and still object)

In the second scenario, we tried to apply our method in order
to remove cables in front of a building. In our first attempt, the
input video has approximately 4 seconds, depicting a building
with street cables in front of it. The frames used are depicted
in Fig. 6 and the parameters of our algorithm were:

• Number of frames: 2 frame/sec => 9 frames;
• Macroblock size: 8x8 pixels ;
• Comparison step: 8 (so the comparison was an exhaustive

one)
In Fig. 7 we can see that the street cables were removed

in proportion of 95% (we can still see parts of them in the

Fig. 4. Frames used for Case 2 (moving object in front of still object)

Fig. 5. The reconstructed, clean image for Case 2

low-left corner). The building seems to be well reconstructed,
with just some small deviations noticeable at the windows.
However, the left-most part, the sky and the upper edge look
quite pixelated. This is a sign that the choice of the block size
was too small.

In a second attempt we have used the same video stream
as previously, approximately 4 seconds long, depicting a
building with street cables in front of it. The parameters of
our algorithm were this time the following:

• Number of frames: 2 frame/sec => 9 frames;

Fig. 6. Frames used for the 2nd scenario



Fig. 7. The reconstructed, clean image for the 2nd scenario; first attempt

Fig. 8. The reconstructed, clean image for the 2nd scenario; second attempt

• Macroblock size: 32x32 pixels;
• Comparison step: 8.
The percentage of cables removed dropped to around 90%.

After testing it with different scenarios, we can draw the
conclusion that it manages to provide a successful outcome in
95% of the situations that fall under the first case (static camera
and moving object), which is quite satisfactory. Meanwhile,
for the second case (static object and moving camera), many
constraints should be imposed on the input video in order to
obtain a good result, and even then, the image does not look
completely natural. Concretely, the conducted experiments
showed that when street cables are parallel to the movement
of the camera, it is impossible for the algorithm to remove
them. Moreover, for the algorithm to be able to detect the
cables, the distance between the camera and the cables should
be significantly smaller than the distance between the camera
and the building/monument/view in the background. Another
weak point of the algorithm is that, even when it manages to
completely eliminate the occluding objects, the view behind
them contains some misplaced blocks of pixels (parts of the
straight lines appear deviated).

V. CONCLUSIONS

In this paper we detailed a mechanism of correcting a
still photograph by removing unwanted objects from it like
passing cars or persons or electrical/networking cables. Such

a mechanism is very useful in tourism when visiting foreign
places and taking photo shoots of various monuments. Our
method operates in two scenarios. In the first scenario, the
unwanted object is moving in front of the camera, like a
moving car or a passing person. In the second scenario,
the unwanted object is fixed like electrical cables. In both
scenarios, our method relies on taking several photo shoots of
the same picture, dividing all pictures into macroblocks and
matching corresponding macroblocks from different pictures
and blending them together in a single, corrected, photo. We
performed some specific experiments, applying our method to
real-life photographs and we showed that our method is viable.
As future work, we plan to apply our method on more real-
life photographs, especially in different illuminating conditions
and also to see if our method works on commercial movies.
Also, we want to update our algorithms so that they take
advantage of recent parallel processing techniques [16].

REFERENCES

[1] P. Arbelaez, “Boundary extraction in natural images using ultrametric
contour maps,” in 2006 Conference on Computer Vision and Pattern
Recognition Workshop (CVPRW’06), 2006, pp. 182–182.

[2] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, 2001, pp. 341–346.

[3] Y. Li, Y. Wang, and Y. Piao, “Extraction of thin occlusions from
digital images,” in Selected Papers of the Chinese Society for Optical
Engineering Conferences held October and November 2016, vol. 10255.
International Society for Optics and Photonics, 2017, p. 1025540.

[4] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[5] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Transactions on
Image Processing, vol. 13, no. 9, pp. 1200–1212, 2004.

[6] H. Igehy and L. Pereira, “Image replacement through texture synthesis,”
in Proceedings of International Conference on Image Processing, vol. 3,
1997, pp. 186–189 vol.3.

[7] S. Ravi, P. Pasupathi, S. Muthukumar., and N. Krishnan, “Image in-
painting techniques - a survey and analysis,” in 2013 9th International
Conference on Innovations in Information Technology (IIT), 2013, pp.
36–41.

[8] J. Yang, K. Hua, Y. Wang, W. Wang, H. Wang, and J. Shen, “Automatic
objects removal for scene completion,” in 2014 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2014,
pp. 553–558.

[9] M. Khalid, M. M. Yousaf, K. Murtaza, and S. M. Sarwar, “Image de-
fencing using histograms of oriented gradients,” Signal, Image and Video
Processing, vol. 12, no. 6, pp. 1173–1180, 2018.

[10] Y. Jiahui, L. Zhe, Y. Jimei, S. Xiaohui, L. Xin, and S. H. Thomas, “Gen-
erative image inpainting with contextual attention,” in 2018 Conference
on Computer Vision and Pattern Recognition, 2018.

[11] A. Y. Raymond, C. Chen, Y. L. Teck, G. S. Alexander, H.-J. Mark, and
N. D. Minh, “Semantic image inpainting with deep generative models,”
in 2017 Conference on Computer Vision and Pattern Recognition, 2017.

[12] S. Yuhang, Y. Chao, L. Zhe, L. Xiaofeng, H. Qin, L. Hao, and K. C.-
C. Jay, “Contextual-based image inpainting: Infer, match, and translate,”
in 2018 European Conference on Computer Vision, 2018.

[13] Zhou Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Processing Letters, vol. 9, no. 3, pp. 81–84, 2002.

[14] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking,” vol. 2, 11 2005, pp. 1508 – 1515 Vol. 2.

[15] “Opencv documentation - orb (oriented fast and rotated brief),”
accessed: 09-June-2020. [Online]. Available: ttps://docs.opencv.org/3.0-
beta/doc/py tutorials/py feature2d/py orb/py orb.html?highlight=orb

[16] N. Virginia, B. Darius, and S. Adrian, “Mpi scaling up for powerlist
based parallel programs,” in Euromicro International Conference on
Parallel, Distributed and Network-based Processing, 2019.


