
Using the user’s recent browsing history for
personalized query suggestions

1st Ioan Bădărı̂nză
Dept. of Computer Science

Babes-Bolyai University of Cluj-Napoca
Cluj-Napoca, Romania

ionutb@cs.ubbcluj.ro

2nd Adrian Sterca
Dept. of Computer Science

Babes-Bolyai University of Cluj-Napoca
Cluj-Napoca, Romania

forest@cs.ubbcluj.ro

3rd Florian Mircea Boian
Dept. of Computer Science

Babes-Bolyai University of Cluj-Napoca
Cluj-Napoca, Romania

florin@cs.ubbcluj.ro

Abstract—In this paper we use the user’s recent web browsing
history in order to provide better query suggestions in an
information retrieval system. We have built a Chrome browser
plugin that collects each web page visited by a user and submits
it to our query suggestion server for indexing, thus building a
personal history profile for each user. The contribution of this
paper is a method of using this personal history profile for
reordering the query suggestions offered by Google when the
user searches information on Google, moving query suggestions
more relevant to the user’s information need to the front positions
in the Google provided query suggestions list. We have collected
browsing history log data for over 4 months from several users
who installed our Chrome plugin on their local computers and
then we performed an offline evaluation test that shows that
our personalized query suggestion system improves the MRR
(i.e. Mean Reciprocal Rank) score of Google query suggestions
by approximately 0.04 (i.e. improves Google’s MRR score by 12
percents).

Index Terms—information retrieval, query suggestion, query
auto-completion, personalized query history

I. INTRODUCTION

Searching for information on the web can be very difficult
sometimes. There are a lot of users that do not know what
terms to enter in a search input of a search system to better
describe their information need. In [8], [15] we can see that
most of the search queries are very short, one or two words
on average and in [9], [16] we can see that these words are
ambiguous. In order to help the user when performing a search,
most search engines like Google, Yahoo!, Bing and others,
provide query auto-completion and query suggestions. In order
to better explain how search suggestions are generated, we
will first describe how query auto-completion works. In almost
all modern browsers, search engines and text editors we can
see how, after we start typing words, it automatically tries
to predict what we actually want to type. These are called
‘predictive auto-completion systems‘ where the candidates
are matched against the prefix using information retrieval
techniques and also natural language processing techniques.
This auto-completion is actually the highest ranked suggestion
from a suggestions list. The query suggestions list is a list that
contains from eight to ten words (or group of words), which
are usually prefixed with the subquery that the user is typing,
items that are extracted from a huge log of queries submitted
by all users. A very well known technique of extracting

suggestions from a common query log is called Most Popular
Completion, which is detailed in the next section of this paper.

The main focus of this paper is to use the user’s personal
browsing history in order to reorder the query suggestion list
provided by Google search engine so that query suggestions
that are more relevant to the user’s information need are
moved to front positions in the final, reordered list. In order to
determine which suggestions from the list of query suggestions
returned by Google are more relevant to the user’s information
need, we use the user’s recent web browsing history and give
higher ranks to Google query suggestions which contain terms
that occur frequently in web pages recently visited by that user.
The remaining of this paper is structured as follows. Section
II outlines work related to ours. The main contribution of the
paper, our method for query personalization, is described in
section III, followed by the evaluations performed in Section
IV. Finally, the paper ends with conclusions in Section V.

II. RELATED WORK

Query auto-completion. Auto-completion is used almost in
all information retrieval engines. We have all seen how, in
the search boxes of search engines, after we start typing the
first character of our query, we immediately receive a possible
auto-completion which will save us keystrokes when trying
to fulfill an information need. What stands at the base of
all these auto-completions is mostly the query logs of those
particular search engines individually. We can see this kind
of research in [2], [7], [5], [11], [10]. These approaches, do
return good suggestion lists, but they lack a very particular
thing, which is ‘context‘. This context is composed by the
immediately preceding queries that a user submitted. In [3],
Bar-Yossef and Kraus demonstrated how recently submitted
user queries, i.e. the query context, can significantly improve
query auto-completion. They compare their results with the
Most Popular Completion (MPC) algorithm which is one of
the popular techniques for query suggestion. In [3], the authors
mention that the basic principle of MPC is users wisdom.
This means that, if a particular query was used by a lot of
users in the past, it is more likely that, that particular query
will be the first candidate as an auto-completion. Bar-Yossef
and Kraus named their approach NearCompletion and they
demonstrated using the MRR (i.e. Mean Reciprocal Rank)

metric, that the context of a query is very important when
trying to generate suggestions. However, the aforementioned
papers only consider the query history of the user and not
the personal browsing history of the user which is what we
analyze in this paper.

Query Suggestion. Query suggestion and query auto-
completion are very similar. The main scope of both of them is
to save user keystrokes when performing a search. Query sug-
gestion is an enhanced, proposed query that the user might be
looking for, whereas an auto-completion is the possible query
term that the user might want to type immediately after he
started typing the first letter. Usually, auto-completion happens
in the same search input where the user is writing his query,
whereas query suggestion, usually appears as a drop-down
list from where the user can choose the desired suggestion.
Basically, we can say that auto-completion is the first item
from the query suggestions list. In [4], authors proposed a
context aware query suggestion approach by mining click-
through data and session data. First, they grouped similar
queries into concepts and represented them on a bipartite
graph. After this offline step, in an online step they take the
user query and find the concept for it in the graph and return
the queries from that concept as suggestions. Another paper
where click-through data was analyzed and used for generating
query suggestions is [14], where authors demonstrate that
the higher a suggestion is present in a suggestions list, the
more it tends to attract more clicks. In [6] Jiang et al. are
reformulating the query by analyzing how users previously
reformulate their queries then adding words in the query
and defining a set of features which were applied using the
LambdaMart [12] learning algorithm. Other researchers have
tried to apply probabilistic models like Markov Processes to
predict what the user’s query will be immediately after he
starts typing [13]. All these studies take into consideration
data that is available at the search engine (i.e. in the server
logs), while our paper uses data only available at the client
side, namely web pages previously visited by the user.

Personalized search. All the above papers do not consider
the recent browsing history of the user when offering query
suggestions to the user. Our focus is to analyze the usefulness
of the user’s recent browsing history for query suggestions
which will allow us to create a personal profile for each
user and use that profile when ranking query suggestions.
Personalized search, in general attracted attention of a lot
of researchers, [18]–[22]. Each and every study showed that
the user’s personal query history is very important in search
systems. Let’s take for example the very well known query
example ”ajax”. This query has three meanings that we are
aware of: one would be the Dutch football team ”Ajax”,
another one would be the cleaning product ”Ajax” and the
last one would be ”Asynchronous JavaScript and XML” used
in web development. In [1], [24], [25] we can see that these
kinds of queries are used by users pretty often. If we do
not know anything about the user’s previous searches and
interests, we can not know which result represents best the
user’s information need. In general, the way personalized

search applies in auto-completion and query suggestion is by
saving each query that a user used at a particular point in
time, then use all this history in ranking query suggestions.
In [17], we can see how Bennett et al. demonstrated that the
long term query history is very useful when the user starts his
search session and the short term query history is more relevant
when the search session evolves. Matthijs and Radlinski [18]
used a browser plugin to collect a browsing history and used
that history to re-rank search results and demonstrated that the
returned results are more relevant to the user. This is similar to
our paper, but we use the personal browsing history to reorder
query suggestions already provided by Google, not reorder
search results. Others, like Shokouhi in [23], went even further
with penalization and divided users into categories based on
their age, gender and region and demonstrated that all these
features have an impact on the suggestion that a user is waiting
for when trying to search. For example, after typing letter ’i’
in a search input, the most selected suggestion by male users
is ’imdb’ whilst female users were choosing ’indeed.com’.

All the above papers either consider the global or personal
query history (measured at the search engine) or they use a
form of browsing history, but for re-ranking search results
returned by the search engine. In contrast, we consider the
personal browsing history of the user in order to provide better
query suggestions.

III. PROPOSED METHOD FOR QUERY PERSONALIZATION

Our method is based on the assumption that while a user
is browsing web pages, at some point, he will develop an
information need for which he will go to a search engine
(mostly Google search) and will seek to satisfy this need. In
[26] we have shown that around 30% of the queries that a
user is submitting to Google search can be predicted from
a very short and recent browsing history. We assume that
a query session takes place in the following way: as the
user starts typing characters in the search input of the search
engine, the search engine returns a list of query suggestions,
Qs(i), i = 1..10, ordered by their relevancy to the user’s
information need (relevancy is computed by the search engine
using a Most Popular Completion technique, Qs(1) being
the most relevant suggestion according to the search engine).
The user might continue typing characters and ignore the
suggestions offered or he may choose a suggestion to be the
final query. This final query Q is submitted to the server. We
call such a sequence of steps of the user a search session:
starting from the first character typed by the user in the
search input until he finally chooses a query suggested by
the search engine. In a search session we can define several
search contexts, i.e. (SQ,Qs(1), ..., Qs(10)) tuples that are
made of the subquery SQ (i.e. the string typed by the user in
the search input) together with 10 suggestions offered by the
search engine for the subquery SQ.

Our query personalization approach reorders query sugges-
tions offered by the search engine (e.g. Google) by considering
personal context metadata for each user, so that query sugges-
tions more relevant to the user’s information need are moved in

front, to a higher rank, in the ordered list of query suggestions
provided by the search engine. This personal metadata is
extracted from the short browsing history of the user (i.e. the
web pages visited by the user before the time he started typing
subqueries in the Google search input). We have developed
a Chrome plugin that captures all web pages visited by the
user and also all queries and subqueries submitted to Google
together with the list of query suggestions returned by Google.
Our Chrome plugin is written in javascript which makes REST
calls to a remote server that persists all user information in a
MySQL database for later offline analysis. Whenever a new
page is loaded, our plugin does the following (all webpages
that are email pages, facebook pages and other pages that may
contain personal information will not be analyzed):
• If the URL of the page does not start with ”www.google.”,

it will interpret it as a new webpage that was viewed and
will extract the actual text from the HTML document
and, alongside with page URL and page title, it will split
the text into terms, eliminate stop words and calculate
the term frequency for each unique word. All this history
data is then passed to the remote server using Ajax HTTP
requests.

• If the URL of the page matches ”www.google.”, it means
the user performs a Google search. In this case, for
each key pressed in Google’s search input, the plugin
will extract the value of the search input and the list of
suggestions provided by Google for the written subquery.
This information is passed to the server. When the user
finishes typing the desired query and submits it to Google,
this final query is also submitted to the remote server.

For all information that is passed by the plugin to the remote
server, the plugin will associate a unique identifier for the user.

In our system, we start by associating a relevancy score to a
query suggestion Qs with respect to each web page visited by
the user in the past. This score is made of a temporal weight
of the page (i.e. if the web page is visited more recently, it
will have a higher weight) and a tf − idf factor measuring
the relevance of the web page for the query suggestion Qs.
We then compute a cumulative history score for a query
suggestion Qs by summing all these relevancy scores of Qs

with respect to each web page visited by the user in the past.
This cumulative history score is PTQS (Personal Temporal
Query Suggestion) and is defined as:

PTQS(Qs) =
∑

p∈HPage

weight(p) · qtfreq(Qs, p) (1)

where:
• Qs is the suggestion we want to compute the score for

(which can contain multiple terms);
• HPage represents the web pages that a user has visited

(the page history of that particular user);
• weight(p) is a temporal weight factor for the score of
Qs with respect to page p.

The PTQS score is a personal metric (i.e. dependent on
the specific user) that evaluates the dependency of the query

suggestion Qs to the recent browsing history of the user,
HPage. In other words, it specifies numerically the correlation
of Qs to a part (or all) of the user’s recent browsing history.

For each subquery SQ from a search session, we consider
the (browsing) page history HPage to be the web pages
visited by the user in the time interval [tref , tcurrent]. tcurrent
is the end of the search session (i.e. the time when the final
query, Q, of this search session is submitted) and tref is a
reference time in the past, for example 30 minutes before
tcurrent. The difference tcurrent − tref describes the length
of the browsing history that is considered by PTQS. The
temporal weight of a web page p ∈ HPage used in the
PTQS(Qs) score is thus:

weight(p) = exp

(
minutes(t(p)− tref)

minutes(tcurrent − tref)

)
(2)

where t(p) is the time when page p was visited by the
user (t(p) ∈ [tref , tcurrent]) and minutes(t) is a function
that returns the length in minutes of the time interval t.

minutes(t(p)−tref)
minutes(tcurrent−tref) is a linear mapping of t(p) from the
time interval [tref , tcurrent] to the interval [0,1]. On top of this,
we apply the exponential mapping exp(.) from equation (3),
which maps exponentially the values from the interval [0, 1] to
the final interval [0, 0.9]. In this way, the weight difference of
two pages, weight(p1)−weight(p2), is an exponential of their
timestamp difference, t(p1)−t(p2). weight(p) gives benefit to
the most recent pages and lets them have a significantly higher
weight than the other pages that are closer to tref , because
we consider the more recent the page is, the more it might be
relevant to what the user will try to type next.

exp(x) =
10x − 1

10
(3)

The second member of (1), qtfreq(Qs, p), is a metric that
expresses how relevant page p is for the query suggestion Qs:

qtfreq(Qs, p) =
1

|{qt|qt ∈ Qs}|
·
∑

qt∈Qs

(freq(qt, p) · idf(qt))

(4)
where:
• |{qt|qt ∈ Qs}| is the number of query suggestion terms;
• freq(qt, p) is the frequency of query term qt in page p;
• idf(qt) is the inverse document frequency of qt in the

entire user page history:

idf(qt) =
|EntirePageHistory|

1 + |p ∈ EntirePageHistory; qt ∈ p|
(5)

where the denominator is the total number of web pages
from the entire user page history, EntirePageHistory,
that query term qt appears in.

Because our query personalization method must rerank a list
of 10 query suggestions provided by the Google search engine,
if we would reorder them solely based on our PTQS score, it
is quite probable that we will decrease the rank of the final
query Q in the reordered list of suggestions (this is especially
true if the search engine is good and places the final query

Q on the first position/rank in the list of suggestions returned
by the search engine - a situation that can not be improved
by our algorithm; we can not move the final query Q from
the original, 1st rank, to a better rank in the reordered list of
suggestions because there is no better rank than the 1st rank).
For this reason, for reranking the query suggestions provided
by Google, we use a hybrid score that takes in consideration
the original ranking offered by Google and our ranking based
on the PTQS score:

HybridPageScore(Qs) =

OrigScore(Qs) · β + (1− β) · PTQS(Qs) (6)

where:
• OrigScore(Qs) represents a weight assigned to the sug-

gestion Qs based on it’s position in the original order of
the suggestions as provided by Google.

• β ∈ [0, 1] defines the relative weight of the OrigScore
and PTQS score.

An easy example of how to set the values for the OrigScore
would be to take the suggestion position index in reverse
order, meaning that, if the list of suggestions contains 10
suggestions, the suggestion from the first position will have
OrigScore = 10, the suggestion from the second position
will have OrigScore = 9 and so on. The β parameter will
determine how important is OrigScore and PTQS, so for
example if β = 0, then HybridPageScore will be the same
as PTQS, and if β = 1, then HybridPageScore will be
the same as OrigScore. We performed several tests detailed
in the following section in order to find the values for β and
the length of the page history HPage that achieve the best
results.

IV. EVALUATIONS

We performed an offline evaluation of our method, by col-
lecting browsing history and Google query history data from
14 users who installed our Chrome plugin on their computers.
In Fig. 1 we can see the amount of data that was collected by
our Chrome plugin in the evaluation time frame of 4 months.
Out of all this query history data, we used in our experiments
only the search contexts, (SQ,Qs(1), ..., Qs(10)), that contain
the final submitted query of the search session, Q, among the
list of query suggestions Qs(1)..Qs(10).

Time period Total number of clients Total number of visited pages Total number of Google queries

4 Months 14 43121 4339

Fig. 1. Collected data

In Fig. 2 we can see the database diagrams for the tables
where we store page history data and the tables where we
store query, subquery and suggestions data.

The server stores a timestamp associated to each page,
representing the time when that page was visited, a timestamp
for each subquery for when it was typed in the Google search
input and also a timestamp for each query that the user actually
performed a Google search.

Fig. 2. Page history and Query related tables diagram

In the table from Fig. 3 we present the experiments that
we have done in order to find the best values for tref and β
parameters from equation (6). In the first column of the table
are listed the values for tref parameter and on the second
column we have the values for β parameter. We randomly
chose 423 subqueries that had suggestion lists which contained
the final query that the user ended up selecting. In order to
easily determine whether the newly reordered suggestions list,
resulted after applying the HybridPageScore, is better than
the original Google order, we computed the difference between
originalPosition, which is the original position of the final
query, Q, in the list of suggestions provided by Google, and
the newPosition, which is the new position of the final
query, Q, after applying the HybridPageScore. The more
positive values we have for this difference, the more improved
results we get after applying the HybridPageScore, but at
the same time we also have to be careful at the number of
negative values, which means that these results were broken
after applying the HybridPageScore (broken results are
considered those query suggestion lists for which the initial
(original) position of the final query that the user selected at
the end, Q, had a higher rank than the position obtained after
applying the hybrid score). In order to be able to properly
analyze this, in the third column of the table we listed the
number of values for this difference which were greater than
or equal to 0, meaning that these results were either improved
or remained the same as in the Google suggestions list. In
the forth column we listed the number of values greater than
0, meaning that these results were improved and in the fifth
column we listed the number of values that are less than
0, which represents the number of broken results. Based on
this simple analysis, we determined that the best values for
tref = 30 minutes and for β = 0.9.

In order to confirm this, we also computed the Mean
Reciprocal Rank (MRR) [3] for the original Google order-
ing of query suggestions and also for the ordering given

tref offset

(in hours)

ᵦ value # of suggestions where
(originalPosition - newPosition)

>= 0

of suggestions where
(originalPosition - newPosition)

> 0

of suggestions where
(originalPosition - newPosition)

< 0

4 0 197 76 226

2 0 204 72 219

1 0 233 65 190

24 0.95 327 38 96

24 0.90 291 49 132

24 0.85 278 58 145

24 0.80 271 63 152

2 0.95 390 25 33

2 0.90 350 27 73

2 0.85 338 40 85

2 0.80 332 43 91

1 0.95 407 21 16

1 0.90 377 27 46

1 0.85 361 33 62

1 0.80 352 40 71

0.5 0.95 410 18 13

0.5 0.90 406 24 17

0.5 0.85 381 28 42

0.5 0.80 368 31 55

0.25 0.995 423 1 0

Fig. 3. Tuning HybridPageScore parameters

tref offset

(in hours)

ᵦ value Google MRR HybridPageScore MRR

2 0.9 0,683835916 0,653943863

1 0.9 0,683835916 0,681600623

0.5 0.85 0,683835916 0,675903411

0.5 0.9 0,683835916 0,690289945

Fig. 4. MRR for different HybridPageScore parameters

tref offset

(in hours)

ᵦ value Google MRR HybridPageScore MRR

2 0.9 0,338041933 0,388896786

1 0.9 0,338041933 0,392788044

0.5 0.85 0,338041933 0,390630182

0.5 0.9 0,338041933 0,377775804

0.5 0.95 0,338041933 0,37603451

Fig. 5. MRR for Google and HybridPageScore when considering only
improvable Google suggestions

by our own score, the HybridPageScore. Please remem-
ber that the formula for computing MRR is: MRR =

1
|SC|

∑
sc∈SC

1
ranksc

, where SC is the set of all search contexts

sc = (SQ,Qs(1), ..., Qs(10)) considered, sc is a search

context and ranksc is the rank/position of the final submitted
query of that search session, Q, in the query suggestion list of
the search context sc = (SQ,Qs(1), ..., Qs(10)). Remember
that |SC| = 423. Giving the fact that the query suggestion
lists that we used for these tests, had the final query present
among the suggestions, RR (reciprocal rank) will never have
0 (zero) values. In Fig. 4 we show MRR values computed for
different parameters that are used in the HybridPageScore,
and we can see that for β = 0.9 and tref = 0.5 we obtained a
better MRR than the one obtained by Google and for β = 0.9
and tref = 1 we obtained a similar MRR value as Google.
For the test case with tref = 0.5 and β = 0.9, we have 423
queries in total and out of these, 222 (i.e. more than half)
were already placed on the 1st position/rank by the Google
search engine. So these 222 lists of query suggestions can
not be improved anymore. Out of the remaining 201 queries,
we have 17 queries for which the original Google position is
smaller than the new position computed by our Hybrid Page
Score; please remember that a lower position actually means
a higher rank and position 1 is actually the first suggestion
in the suggestion list (having the highest rank/importance).
There were 17 queries that had their rankings reduced by our
HybridPageScore algorithm (a total cumulative reduction
of 20 ranks), but 21 queries had their rankings improved by
our algorithm (a total cumulative improvement of 33 ranks).
So, our algorithm improved more Google rankings than the

number of rankings that were broken. And also, out of those
17 queries that had their original Google ranking reduced by
our algorithm, 14 were reduced by only 1 position and 3 of
them were reduced by 2 positions, so the overall reduction is
rather small.

If we ignore the 222 queries that were already placed on
the 1st position/rank by the Google search engine (i.e. the
queries whose ranks can not be improved because they are
already on the first position in the Google suggestions list)
and compute the Google and HybridPageScore MRR scores
on the remaining 201 queries, we get the values from Fig. 5.
We see here for the case with tref = 0.5 and β = 0.9, that
the HybridPageScore MRR score has a 0.04 improvement
over Google’s MRR score (i.e. HybridPageScore has an
improvement of 12% over Google MRR).

V. CONCLUSION

In this paper, we detailed a method for personalizing query
suggestions at the client-side, using a browser plugin, so that
the ranking of the query suggestions offered by the Google
search engine for a specific subquery is improved, meaning
that more relevant query suggestions have higher ranks (e.g.
lower positions) in the suggestion lists. We have shown using
tests that span over a 4 months period that our algorithm
obtains a better MRR score than Google.

REFERENCES

[1] Ryen W. White and Steven M. Drucker. Investigating behavioral variabil-
ity in web search. In Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, pages 21-30, New York, NY, USA,
2007. ACM.

[2] Holger Bast and Ingmar Weber. Type less, find more: Fast autocomple-
tion search with a succinct index. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’06, pages 364-371, New York, NY, USA,
2006. ACM.

[3] Ziv Bar-Yossef and Naama Kraus. Context- sensitive query auto-
completion. In Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 107-116, New York, NY, USA,
2011. ACM..

[4] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, and Hang Li. Context-aware query suggestion by mining click-
through and session data. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 875-883, New York, NY, USA, 2008. ACM.

[5] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient inter-
active fuzzy keyword search. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 371-380, New York,
NY, USA, 2009. ACM.

[6] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. Learning
user reformulation behavior for query auto-completion. In Proceedings
of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, pages 445-454, New
York, NY, USA, 2014. ACM.

[7] Mario Arias, Jose Manuel Cantera, Jesus Vegas, Pablo de la Fuente,
Jorge Cabrero Alonso, Guido Garcia Bernardo, Cesar Llamas, and Al-
varo Zubizarreta. Context-based personalization for mobile web search.
In PersDB, pages 33-39, Auckland, New Zealand, 2008.

[8] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages 162-168, New York,
NY, USA, 2001. ACM

[9] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. Probabilistic
query expansion using query logs. In Proceedings of the 11th Interna-
tional Conference on World Wide Web, WWW ’02, pages 325-332, New
York, NY, USA, 2002. ACM

[10] Holger Bast, Debapriyo Majumdar, and Ingmar Weber. Efficient in-
teractive query expansion with complete search. In Proceedings of
the Sixteenth ACM Conference on Conference on Information and
Knowledge Management, CIKM ’07, pages 857-860, New York, NY,
USA, 2007. ACM.

[11] Ryen W White and Gary Marchionini. Examining the effectiveness of
real-time query expansion. Information Processing and Management,
43(3):685-704, 2007.

[12] Christopher J. C. Burges, Krysta M. Svore, Paul N. Bennett, Andrzej
Pastusiak, and Qiang Wu. Learning to rank using an ensemble of
lambda-gradient models. In Proceedings of the 2010 International Con-
ference on Yahoo! Learning to Rank Challenge - Volume 14, YLRC’10,
pages 25-35. JMLR.org, 2010.

[13] Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, Hongyuan Zha, and
Ricardo Baeza-Yates. Analyzing user’s sequential behavior in query
auto-completion via markov processes. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’15, pages 123-132, New York, NY,
USA, 2015. ACM.

[14] Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi Chang,
and ChengXiang Zhai. A two-dimensional click model for query auto-
completion. In Proceedings of the 37th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’14, pages 455-464, New York, NY, USA, 2014. ACM.

[15] Bernard J Jansen, Amanda Spink, and Tefko Saracevic. Real life, real
users, and real needs: a study and analysis of user queries on the web.
Information processing and management, 36(2):207-227, 2000.

[16] Mark Sanderson. Ambiguous queries: Test collections need more sense.
In Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’08,
pages 499-506, New York, NY, USA, 2008. ACM.

[17] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter
Bailey, Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of
short and long-term behavior on search personalization. In Proceedings
of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’12, pages 185-194, New
York, NY, USA, 2012. ACM.

[18] Nicolaas Matthijs and Filip Radlinski. Personalizing web search using
long term browsing history. In Proceedings of the Fourth ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’11, pages
25-34, New York, NY, USA, 2011. ACM.

[19] Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal
Chebaro. A session based personalized search using an ontological
user profile. In Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC ’09, pages 1732-1736, New York, NY, USA, 2009.
ACM.

[20] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation
and analysis of personalized search strategies. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, pages 581-
590, New York, NY, USA, 2007. ACM.

[21] Ahu Sieg, Bamshad Mobasher, and Robin Burke. Web search person-
alization with ontological user profiles. In Proceedings of the Sixteenth
ACM Conference on Conference on Information and Knowledge Man-
agement, CIKM ’07, pages 525-534, New York, NY, USA, 2007. ACM.

[22] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search
via automated analysis of interests and activities. In Proceedings of the
28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’05, pages 449-456, New
York, NY, USA, 2005. ACM.

[23] Milad Shokouhi. Learning to personalize query auto-completion. In
Proceedings of the 36th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’13, pages
103-112, New York, NY, USA, 2013. ACM.

[24] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Potential for per-
sonalization. ACM Trans. Comput.-Hum. Interact., 17(1):4:1-4:31, New
York, NY, USA, 2010.

[25] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling
for personalized search. In Proceedings of the 14th ACM International
Conference on Information and Knowledge Management, CIKM ’05,
pages 824-831, New York, NY, USA, 2005. ACM.

[26] Ioan Bădărı̂nză. Analyzing the usefulness of the users browser history for
generating query suggestions. Studia Universitatis Babe-Bolyai Series
Informatica, 62(2):5768, 2017.

