Primal Congestion Control Algorithms for Multimedia Streams

Adrian Sterca
Babes-Bolyai University
Department of Computer Science
Cluj-Napoca, M. Kogalniceanu No.1, Romania
forest@cs.ubbcluj.ro

Abstract

We investigate in this paper congestion control algo-
rithms that are TCP-friendly and media-friendly at the same
time, so they are more suitable for multimedia streaming
than TCP’s AIMD. We use in this investigation the optimiza-
tion framework developed by Kelly et al. in [3]. Kelly et al.
derived two gradient-like algorithms, a primal algorithm
and a dual one, to control the congestion in a computer
network in an end-to-end way and to obtain optimal band-
width allocation among competing sources. Starting with
Kelly et. al’s paper, several other papers proposed differ-
ent variants of the original primal and dual algorithms, but
none of these considers the specific characteristics of mul-
timedia streams. The aim of this paper is to build window-
based, primal congestion control algorithms for optimizing
the perceived quality of multimedia streams in best-effort
networks. We build these media-friendly primal conges-
tion control algorithms using the following recipe: 1) first
we construct a window-based congestion control algorithm
that is TCP-friendly, but has a much more stable through-
put and then 2) we shape this stable throughput according
to media characteristics (e.g. bitrate). We present two such
primal congestion control algorithms and prove their sta-
bility around the equilibrium.

1. Introduction

New multimedia capable equipment and improved codec
specifications make multimedia presentations most wanted
on a wide range of devices from ordinary home comput-
ers to different types of cell phones and hand held devices.
Due to many practical and economical reasons (great stor-
age demands, costs etc.) the multimedia data will not al-
ways be available on the local hard disk, but instead it is
stored on dedicated network servers or on the nodes of a
peer-to-peer system and is streamed on demand or broad-
casted to interested users. Fighting for a large audience,

these services are deployed on the biggest net available, the
Internet. Consequently, multimedia data make for a high
percentage of the data transferred over the Internet lately.
However, the heterogeneity and the best-effort nature of the
Internet pose great challenges to multimedia streaming ap-
plications. This is because no QoS guarantees can be estab-
lished on the Internet. Due to the time constraints related to
multimedia data, multimedia streaming applications need
almost isochronous communication and a guaranteed high
bandwidth over time and, ideally, they should never suffer
from lacking bandwidth. But these can not be achieved due
to the best-effort nature of the Internet, so streaming servers
must continuously adapt to changing network conditions.

TCP deals with these inconsistencies of the network by
implementing congestion control and guaranteed retrans-
mission. But it does this on the expense of bandwidth (i.e.,
bandwidth is sacrificed for retransmissions) and the time-
liness of the transferred data (i.e., it trades timeliness over
reliability: it is more important that data arrives safely and
in-order than it is to arrive in time). This philosophy is
counterproductive for multimedia streams, for which time-
liness is more important than reliability. A multimedia data
packet that arrives safely at the receiver past its presenta-
tion time is useless. To arrive at the destination with a small
delay is more important than to arrive at all. Further more,
TCP’s congestion control algorithm [1] incurs a steep vari-
ation in the sending bitrate, a variation that is not well sup-
ported by current codecs. Steep degradations in the sending
bitrate of a multimedia stream has very bad consequences
on the quality perceived by the receiver. Because it does
not have a byte-stream semantics and guaranteed retrans-
missions, UDP is faster than TCP. This is why, multimedia
streaming applications often choose to use UDP, instead of
TCP, as the transport-level protocol. But applications that
do not rely on TCP’s congestion control must perform con-
gestion control themselves. If applications fail to do so
or choose not to do so, the perceived quality of service at
the end user is decreased and it also might lead to conges-
tion collapse, damaging the work of other network flows.

A congestion-unresponsive application also manifests un-
fairness to other flows competing for the same network re-
sources.

With increasing multimedia traffic on the Internet comes
the need for new congestion control mechanisms different
than TCP’s AIMD (Additive Increase Multiplicative De-
crease) and more suitable for bandwidth-demanding real-
time data. These congestion control mechanisms must be
TCP-friendly [12], but they also must consider multimedia
streams’ characteristics in establishing the sending bitrate
(i.e. they must be media-friendly).

The rest of the paper is organized as follows. In sec-
tion 2 we review related work. Then section 3 provides a
description of the methodology we are using for building
TCP-friendly and media-friendly primal congestion con-
trols. Section 4 presents two such congestion control al-
gorithms: a log-based one and a sgrt-based one, and proves
they are stable around the equilibrium using a Lyapunov ar-
gument. The paper continues with section 5 which deals
with packet-level details of the implementation of mLOG
and mSQRT congestion controls and, finally, section 6
which presents simulations of the performance of both con-
gestion control algorithms. The paper ends with conclu-
sions and future work of the author in section 7.

2. Background and Related Work

Kelly et al.’s seminal paper [3] generated in latest years
a significant amount of active research on Internet conges-
tion control derived from optimization theory (see [14] for
a survey). Kelly et al. derived two gradient-like algorithms,
a primal algorithm and a dual one, to control the conges-
tion in the Internet in an end-to-end way and to obtain op-
timal bandwidth allocation among competing sources. A
primal congestion control algorithm is an algorithm which
uses a dynamic law (i.e. differential equation) to con-
trol the throughput at the source and a static function for
computing the price of using the network (i.e. congestion
price/measure incurred on the network by bandwidth de-
mands of flows using the network) at the links. A dual algo-
rithm does the opposite. Starting with Kelly et. al’s paper,
several other papers proposed different variants of the orig-
inal primal and dual algorithms [4, 5, 6, 7, 8,9, 10, 11] and
proved their stability and speed of convergence properties,
but none of these considers the specific characteristics of
multimedia streams.

Authors develop in [13] a media- and TCP-friendly con-
gestion control based on TFRC (TCP-Friendly Rate Con-
trol) [12] using a two-timescale approach: they compute
the long term average of throughput according to TFRC, but
they modify this throughput on a smaller timescale accord-
ing to the rate of increase/decrease of a utility function ob-
tained from the rate-distortion characteristics of the stream.

We have two observations related to this paper. First, the
utility function that is used was developed for MPEG FGS
(Fine Granularity Scalable) video streams, so the algorithm
does not seem to work for other types of streams. Second,
since the rate-distortion utility function is not scaled with
TFRC’s throughput we are not sure that the derivative of the
utility function will have significant influence on TFRC’s
throughput (even on small timescales) in all network sce-
narios.

3. Two-step Methodology for Building TCP-
friendly and Media-friendly Congestion
Controls

TCP’s AIMD congestion control is not well suited
for multimedia streams [1] due to its highly fluctuating
throughput. Consequently, other congestion control algo-
rithms which offer smoother throughput were developed,
perhaps the most well known being TFRC [12]. All these
smooth congestion controls have more stable throughput
than TCP’s AIMD because they are less aggressive than
TCP in using new available bandwidth, but they are also
slower responsive to congestion than TCP. Because they
offer a more stable throughput, multimedia streams, espe-
cially CBR (Constant Bit Rate) ones, but also VBR (Vari-
able Bit Rate) ones, can be better adapted to predictable
bandwidths by the streaming servers. However, although
smooth congestion controls improve the delivery of multi-
media streams, they are not the optimal solution, because
they do not take into consideration media characteristics of
the stream (i.e. they are not media-friendly).

On the other hand, VBR codecs compliant to MPEG
video coding standards can vary a lot the output bitrate of a
video stream between scene changes in order to preserve a
relatively constant quality throughout the video (e.g. the bi-
trate can vary 20 times from one stream second to the next
one) [15]. In other words, the bitrate of such a stream is
certainly not smooth.

If the bitrate of a stream is not smooth and, generally,
if media characteristics are not smooth (relatively constant)
across the stream, then perhaps the best send rate a conges-
tion control can give is not necessarily a smooth one, but a
send rate that tracks the evolution of media characteristics
(e.g. bitrate) across the stream. Of course, this send rate
must also obey network-related characteristics (i.e. must
have a TCP-friendly shape).

In this paper we use the following technique to obtain
a TCP-friendly and media-friendly primal congestion con-
trol:

e first we construct a window-based congestion control
algorithm that is TCP-friendly, but has a much more
stable throughput;

e we shape this stable throughput according to media
characteristics (e.g. bitrate).

Using this methodology we will develop in the next sec-
tion two such congestion control algorithms: mSQRT and
mLOG.

4. Primal Congestion Control for Multimedia
Streams

We are using the network model developed in [3] where
the network is seen as a set of resources or links which are
shared by a set of sources or users. The goal is to split band-
width among sources in such a way that a social optimum
is attained for all users sharing the network.

The problem of bandwidth allocation among flows re-
duces to finding the solution to the following concave opti-
mization problem:

, &= (T1,.0ey Tpy)

S ={s1,...,8n}

maxy>o Y _,egUs(Ts)
(1)

subject to: > 0 Ts S VieL

ses

In this model the network is abstracted as a set of links
I € L and each link [has the capacity ¢;. The network is
shared by sources s € S and each source s transmits data
at rate x5. When the source s sends data at rate z, it gets
a utility U, (x5) which is assumed to be a non-decreasing
concave function twice differentiable. Also, let S(I) denote
the set of sources which use link ! € L and L(s) the set of
links that source s uses.

In order to build a TCP-friendly and media-friendly con-
gestion control, we need first, according to the methodol-
ogy outlined in section 3, a primal congestion control which
is TCP-friendly and achieves a smoother throughput than
TCP’s AIMD. We start with TCP’s AIMD algorithm which
can be expressed as [2]:

I Wiprr =W+«
D : Wt+5 :Wt—ﬁWt

,a=1

where W, is the congestion window at time ¢, RT'T is the
round-trip time for that connection and ¢ is the length of a
small time interval containing a congestion event. I stands
for increase operation and D for decrease operation. The
evolution of TCP’s congestion window can also roughly be
described by the following equation which combines the
above two operations:

o
Wips = Wi+ W(l —qt) — Wi ()
t

assuming ¢ is much smaller than RT'T and g; is the proba-
bility that a packet is dropped in time interval [¢,¢ + d]. If

we multiply this equation by 1/RTT and we consider the
throughput at time ¢ to be z; ~ W;/RTT we get:

(1-q)— Briqe

8]
Tted =Tt prr,

Then by taking J to be small and dividing both sides of
equation by it, we obtain the differential (rate) evolution of
the throughput:

H1) = S (L~ 40) = Be(0alt)

After considering § equal to a time unit and dropping the
RTT? term as we consider it a constant and it can be incor-
porated into the « constant, we interpret g(t) as the price
charged by the network for using x(t) of its resources [3]
(when there is no congestion ¢(t) = 0) and we obtain the
final form for the AIMD throughput evolution:

i(t) = —= — Ba(t)q(t) 3)

(1)
Next, we need to smooth out the TCP’s throughput evolu-
tion given in equation (3), but at the same time to keep it
TCP-friendly. Generally, we are looking for a primal con-
gestion control of the following form:

() = 7
€T =

1(x(t))
where I(z) is the increase factor and D(x) is the decrease
factor and which has a smoother throughput evolution than
the one of the control given in (3).

— BD(x(t))q(t) @

The mSQRT Control
The mSQRT control is a smooth TCP-friendly congestion
control introduced in [2] which has the following form:

#6) = s = V/o0a(0)

The mSQRT control is smoother than TCP as it increases
throughput less aggressively than TCP (i.e. \/:(T))’ but also
it decreases it less drastically than TCP (i.e. 84/x(t)).

Next, we need to make mSQRT’s throughput track the
media characteristics of the stream. We will use here only
bitrate and client prefetch buffer values, but other media
characteristics can be used too: bitrate averaged over a
scene, quality measures, PSNR values etc. So, the final ver-
sion of our mSQRT which is smooth TCP-friendly, but also
media friendly, formulated as a primal congestion control
is:

(6)

:ZPZ

leL(s)

> a(t)

rireS(l)

where x4 (t) is the throughput of source s, b(t) is the bitrate
measured in bytes for the current second of stream, b4 is
the average bitrate over the whole stream and g, (t) is given
in the form from [3] as the total price for using network
resources from L(s); p;(y) is a continuous, non-negative
increasing function of y, the price for using only resource .
If y < ¢ then p;(y) = 0. This way, mSQRT increases its
throughput when there is no congestion according to the bi-
trate needs of the stream and also it increases more when the
buffer A(t) is small to avoid an empty buffer at the client.
Function m(t) quantifies the utility or the need for band-
width of the streaming application.

It can be proved that the control given in (5) is stable and
the next proposition establishes this.

Proposition 1. The strictly concave function

Vi(r) = 2lses ams (tZ)Z log(s (t)())
B e Jo '

pi(y)dy

is a Lyapunov function for the dynamical system (5)-(6),
hence the system is stable around the equilibrium.

The stability proof follows the one given in [3].

Proof: We first observe that V; () is strictly concave on
x > 0 (note that m4(t) > 0V¢) and also V4 (z) — —oo for
|||| — 0. Next, all we have to do is verify that V; () > 0.
We have

ovi,
8.TS (I‘) -

-8 m

leL(s)

Yo)

rireS(l)

P (@0) = e 2 52() =

>ses Vs(t) (a;nft(t) B2 rens) P (Zr:rGS(l) xr(t)))z

Because V;(x) is strictly concave on & > 0, it has a unique
maximum and since Vl(x) > 0 with equality only for the
unique = maximizing Vi (z), Vi(z) is strictly increasing
with time up to its maximum and once it reaches this
maximum, it stays there as ¢ goes to co. We can conclude
the system (5)-(6) is asymptotically stable in the sense
of Lyapunov. The unique value maximizing Vi(x) is a
stable point of the system (5)-(6) to which all trajectories
converge.

The mLOG Control
The mLOG control is the following smooth TCP-friendly
congestion control:

(t) — Blog(x(t))q(t)

~ log(x(t))

The mLOG control is smoother than TCP as it increases
throughput less aggressively than TCP (i.e. W),
but also it decreases it less drastically than TCP (i.e.
Blog(x(t))). Taking into account media characteristics like
we did for mSQRT we obtain the primal form of the mLOG
congestion control:

Ls(t) = ms(t) * o5y — Blog(ws(t))gs(t) .
where m(t) = ;’Q(Z 1+ %)
= > m| D z() ®)

leL(s) rireS(l)

Proposition 2. The strictly concave function

Va(z) = D ,cgams(t) (li(xs(t)) lo;(b (t()t)))

Z’V"T Ir()
—B ZleL fo resm pi(y)dy

where li(z4(t)) is the logarithmic integral ! is a Lyapunov
function for the dynamical system (7)-(8), hence the system
is stable around the equilibrium.

Proof: The proof is similar to the one for mSQRT, the
only differences being the derivatives of Vao(x) and z4(¢):

0)% OzmS

9@ = o 8 > m| Y @)
5 g leL(s) rireS(l)

Be(2(1)) = Yoes G2 G (1) =

S es loglas (1) (it
5. Implementation Details and Fairness Issues

The first step in getting a practical implementation of
mLOG and mSQRT is the discretization of differential
equations (5) and (7). We get the following discrete ver-
sions (we drop the ’s” subscript for convenience):

— B/ x(t)q(t)
— Blog(x(t))q(t)

mSQRT : z[t + 1] = z[t] + m(t)
mLOG : z[t + 1] = z[t] + m(t) =
where m(t) = b(t) (1+ A(t))

\/ (t)
log(w(t))

After considering ¢(t) as the probability of a lost event in
time interval [¢,t + 1], we get the following window-based
characterizations of mLOG and mSQRT which are more
useful for a packet-level implementation:

mSQORT:
{ I Weprrr = Wi +m(t) * sty
D : W5 =W, — Bsqrt(Wy)
Hi(z) = 01 logzt)

-8 ZlEL(s) b (Zr:res(l) xr(t)))2

mLOG:

{ I: Wipgrr = Wi +m(t) * log(ﬁ
D : Wyys = Wy — Blog(Wy)

Using the above window-based characterizations we can
specify the increment and decrement rules for mSQRT and
mLOG which are similar to TCP’s AIMD ones. For every
acknowledged packet mSQRT increments it’s congestion
window by m(t) * Wrsqricwyy and after a congestion indi-
cation it decrements the congestion window by Bsqrt(W).
For mLOG, every acknowledged packet increments the con-
gestion window by m(t) * W(Wt) and a congestion indi-
cation decrements it by Slog(W;). In the next section, dur-
ing simulations, we have used for « and (3 the same values
as TCP’s AIMD uses for these factors (« = 1,8 = 1/2).

Although we have proved in the previous section that
both controls are stable around the equilibrium, it remains
to be tested whether mLOG and mSQRT are fair to TCP and
are fair to themselves (i.e. a mSQRT/mLOG flow uses the
same amount of bandwidth as another mSQRT/mLOG flow
sharing the same network conditions). Because we encoun-
tered some unfairness issues during our simulations, which
will be further detailed, we suggest for a practical imple-
mentation of mLOG and mSQRT, the following scaled ver-
sion of the media-friendly function m(t):

e (03)

m(t) =k x

where £ is a scaling factor. During our simulations we have
come to the following rules for assuring fairness of mSQRT
and mLOG:

e the media-friendly function, m(t), should participate
at the increment of the congestion window at most
once per RTT, otherwise the control tends to use more
bandwidth or less bandwidth than TCP;

e the value of m(t) should be “very close to 1” in or-
der to achieve fairness, especially if m(¢) > 1 and the
congestion window is large; we have obtained good
results when the media characteristics are scaled with
the inverse of the congestion window (i.e. k = 1/W}).

6. Simulations

In this section, we present some simulations we have
conducted using ns-2 [16] in order to prove mSQRT’s and
mLOG’s usefulness for multimedia streaming applications.
We have used a network topology consisting of a single
9.5Mbps congested link with one-way delay of 50ms and
which uses RED (Random Early Detection) queue manage-
ment with default parameter settings. This link is shared by

bitrate (bytes/sec)

11 long-run TCP-Reno flows and 2 multimedia streaming
flows. These 2 multimedia streaming flows will use, dur-
ing a simulation, either mSQRT or SQRT (mSQRT without
the media-friendly, m(t), factor) or mLog or LOG (mLOG
without the media-friendly, m(t), factor) for controlling
congestion. We have also deployed 4 TCP-Reno flows in
the reverse direction sharing the bottleneck link to eliminate
any synchronization between flows.

The bitrate values (b(t) and b, 4) we have used for com-
puting m(t) are taken from a real MPEG-4 video stream
and are depicted in Fig. 1. Also, in the case of mSQRT
and mLOG we used m(t) to increment/decrement the con-
gestion window once per 5 RTTs. An average RTT for our
setting was 110 ms. The value of m(t) was scaled, as spec-
ified in the previous section, in order to achieve fairness to
1/W; for mSQRT and 1/50 for mLOG.

First, we have tested the variations in congestion window
of a TCP flow against the variations obtained when using
SQRT and LOG. As we can see in Fig. 2 and Fig. 3, as
expected, SQRT and LOG have smoother variations of con-
gestion window, thus, they get more stable throughput than
TCP which makes them more suitable for streaming appli-
cations because a smooth throughput is better supported by
codecs than a highly fluctuating one. Also we can see that
both LOG and SQRT are fair to TCP (i.e. they get approxi-
mately the same bandwidth as TCP) with a slight unfairness
manifested by LOG.

T T T
bitrate for one second

100000

80000

60000

40000 -

20000

0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
playout second

Figure 1. The 1 second bitrates of the stream

In the next simulations, we wanted to see how much does
the media-friendly factor, m(t), influences the throughput
of SQRT and LOG. Therefore, we ran the simulation again
and we used first mSQRT for the two multimedia flows and
then on a second simulation we used mLOG. We compared

cwnd

50 T T T T

TCFI’ cwnd
SQRT cwnd =++++=-

40

30

20

10

0 50 100 150 200 250 300

time (seconds)

Figure 2. Congestion window evolution for
TCP and SQRT

the evolution of congestion window of mLOG and mSQRT,
respectively, to the evolution of congestion window of LOG
and SQRT, respectively, obtained in the previous simula-
tions. These comparisons are depicted in Fig. 4 and Fig.
5.

The final simulations tries to prove that mSQRT and
mLOG are better for multimedia streaming applications
than TCP. This is especially true for live broadcasting or
videoconferencing applications where we have to maintain
a low buffer, so when the throughput of the application fol-
lows its bitrate demand, we get a higher chance to avoid an
empty buffer at the client. We have implemented the buffer
consumption of the stream from Fig. 1 into the ns-2 simu-
lator and the size of buffer obtained when TCP is used for
streaming is compared to the size of buffer when mSQRT
is used for streaming. As we can see in Fig. 6, TCP gets
an empty buffer several times as opposed to mSQRT, thus
causing the stream to freeze at the client in a real world sce-
nario.

7. Conclusions and Future Work

We have presented in this paper a methodology for build-
ing TCP-friendly congestion control algorithms suitable for
multimedia streaming applications and derived two such al-
gorithms: a log-based one and a sgrt-based one. We also
proved that these two congestion control algorithms are
stable around the optimal bandwidth allocation. Detailed
simulations showed they are more suitable for multimedia
streaming than TCP. However, to fully assess their value

50 T T T T

TCF!' cwnd
LOG cwnd «=++===

40

30

0 50 100 150 200 250 300
time (seconds)

Figure 3. Congestion window evolution for
TCP and LOG

and limitations they must be implemented and tested in real
streaming scenarios. As future work, we plan to test mLOG
and mSQRT in real streaming scenarios and to devise a gen-
eral rule for choosing the value of the scaling factor k£ which
should fit all possible network topologies and bandwidths.

8. Acknowledgments

This work was partially supported by CNCSIS’s Na-
tional Program II grants no. TD-371/2007 and P4 11-
052/2007.

References

[1] V. Jacobson, Congestion avoidance and control, ACM
Comput. Commun. Rev., vol. 18, pp. 314-329, 1988.

[2] D. Bansal, H. Balakrishnan, Binomial Congestion Con-
trol Algorithms, IEEE Infocom 2001.

[3] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate con-
trol for communication networks: Shadow prices, pro-

portional fairness and stability, J. Oper. Res. Soc., vol.
49, no. 3, pp. 237-252, Mar. 1998.

[4] S. H. Low and D. E. Lapsley, Optimization flow control
I: Basic algorithm and convergence, IEEE/ACM Trans-
actions on Networking, vol. 7, pp. 861-874, Dec. 1999.

[5] K. Kar, S. Sarkar, and L. Tassiulas, A simple rate con-
trol algorithm for maximizing total user utility, in Proc.
IEEE INFOCOM, Apr. 2001, pp. 133-141.

cwnd

50 T T T

mSQR1I' cwnd eeeeee
SQRT cwnd

Wk

30 ¢

20

10

150
time (seconds)

Figure 4. Congestion window evolution for
SQRT and mSQRT

[6] R.Johari and D. K. H. Tan, End-to-End congestion con-
trol for the Internet: Delays and stability, IEEE/ACM
Transactions on Networking, vol. 9, no. 6, pp. 818-832,
Dec. 2001.

[7] S. Kunniyur and R. Srikant, End-to-End congestion
control schemes: Utility functions, random losses and
ECN marks, IEEE/ACM Transactions on Networking,

vol. 11, no. 5, pp. 689-702, Oct. 2003.

[8] G. Vinnicombe, On the stability of end-to-end conges-
tion control for the Internet, Cambridge Univ., Cam-
bridge, U.K., Tech. Rep. CUED/F-INFENG/TR.398,

Dec. 2000.

[9] G. Vinnicombe, On the stability of networks operating

TCP-like protocols , in Proc. IFAC, Aug. 2002.

[10] Y. Zhang, S. R. Kang, and D. Loguinov, Delay-
Independent Stability and Performance of Distributed
Congestion Control, IEEE/ACM Transactions on Net-
working, vol. 15, no. 5, pp. 838-851, Oct. 2007.

[11] L. Ying, G. E. Dullerud, and R. Srikant, Global Sta-
bility of Internet Congestion Controllers With Hetero-
geneous Delays, IEEE/ACM Transactions on Network-
ing, vol. 14, no. 3, pp.579-591, Jun. 2006.

[12] S.Floyd, M. Handley, J. Padhye, J. Widmer, Equation-
Based Congestion Control for Unicast Applications,
ACM SIGCOMM 2000.

[13] J. Yan, K. Katrinis, M. May, B. Plattner, Media- and
TCP-Friendly Congestion Control for Scalable Video

300

cwnd

bytes buffered at client

50 T T T T

mLOé cwnd e
LOG cwnd

Wk

30 ¢

P

10 ¢

150
time (seconds)

200 250 300

Figure 5. Congestion window evolution for
LOG and mLOG

3e+06 T T

2.5e+06 [

2e+06

1.5e+06 |

1let+06

500000

P

.ﬁ.
% : .
PV wu/"" WY LW s
100 150
time (seconds)

200

Figure 6. Buffer size for a TCP flow and a
mSQRT flow

Streams, IEEE Transactions on Multimedia, Vol. 8, No.
2, April, 2006.

[14] R. Srikant, The Mathematics of Internet Congestion
Control, Cambridge, MA: Birkhauser, 2004.

[15] F. Pereira, T. Ebrahimi, The MPEG-4 Book, Prentice
Hall PTR, ISBN 0130616214, 9780130616210, 2002.

[16] The Network
http://www.isi.edu/nsnam/ns.

Simulator ns-2,

