
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 1

Media-friendly and TCP-friendly Rate Control
Protocols for Multimedia Streaming

Adrian Sterca, Hermann Hellwagner, Senior Member, IEEE, Florian Boian, Alexandru Vancea

Abstract—This paper describes a design framework for TCP-
friendly and media-friendly rate control algorithms for multi-
media streaming applications. The idea of this framework is to
start from TFRC’s (TCP-Friendly Rate Control) transmission rate
and then alter this transmission rate so that it tracks the media
characteristics of the stream (e.g., bitrate) or other application
characteristics like the client buffer fill level. In this way, the
media-friendly property of the algorithm is achieved. We give
three rules that guide how the TFRC throughput should track the
evolution of the stream’s media characteristics and remain TCP-
friendly in the long term. We also present, as proof of concept,
four simple media-friendly and TCP-friendly congestion control
algorithms built using the aforementioned framework. These
congestion control algorithms are better suited for multimedia
streaming applications than traditional TCP congestion control
or smooth congestion control algorithms like TFRC. We have
performed evaluations of two of the four proposed media-friendly
and TCP-friendly congestion control algorithms under various
network conditions and validated that they represent viable
transport solutions, better than TFRC, for variable bitrate video
streams. More specifically, our two media-friendly and TCP-
friendly congestion control algorithms maintained a TCP-friendly
throughput in the long term in all experiments and avoided an
empty buffer at the client side in situations when TFRC could
not achieve this.

Index Terms—TCP-friendly congestion control, media-friendly,
multimedia streaming

I. INTRODUCTION

Streaming multimedia data has very strict network demands.
It requires a stable large bandwidth and almost isochronous
communication. These requirements are not met by best-
effort networks like the Internet, where network characteristics
like available bandwidth and delay are constantly fluctuating.
Forced to exist in such unhealthy environments, multime-
dia streaming applications need to continuously adapt their
demands to these varying network conditions. This usually
implies some form of controlled degradation of the multimedia
stream’s quality.

End-to-end congestion control algorithms like TCP’s AIMD
(Additive Increase Multiplicative Decrease) adapt the trans-
mission rate of applications to the available bandwidth in the
network. However, TCP’s AIMD produces high fluctuations
in the transmission rate which does not go well with modern
audio-video codecs which expect predictive, stable bandwidth.

A. Sterca, F. Boian and A. Vancea are with the Department
of Computer Science, Babes-Bolyai University, Romania; email:
{forest,florin,vancea}@cs.ubbcluj.ro.

H. Hellwagner is with the Institute of Information Technology, Alpen-
Adria-Universität Klagenfurt, Austria; email: hellwagn@itec.uni-klu.ac.at.

With the help of buffers at the client side which prefetch in ad-
vance multimedia data from the server, multimedia streaming
applications can, in general, cope with transient fluctuations in
the transmission rate (i.e., avoid player freezes at the client).
However, when using TCP, transmission rate fluctuations tend
to exist for the whole duration of the streaming session. In
addition, an initial data prefetch time of more than a few
seconds before the client’s player starts playing the stream is
not easily tolerated by the end user. Also, even if the available
bandwidth in the network allows it, some multimedia stream-
ing applications do not support large enough prefetch buffers
(e.g., live broadcasting, video conferencing, etc.). Roughly
speaking, the QoS conditions provided by TCP are acceptable
for multimedia streaming (i.e., avoid player freezes) if the
average transmission rate is twice as much as the average
bitrate (i.e., bandwidth demand) of the stream [2].

Targeting more stable transmission rates, smooth TCP-
friendly congestion control algorithms were developed, per-
haps the most well known being TFRC (TCP-Friendly Rate
Control) [3]. These smooth TCP-friendly congestion control
algorithms react less drastically to congestion, so that they
achieve a smoother transmission rate than TCP, but on average,
their long-term transmission rate stays equal to TCP’s rate
under the same network conditions. Smooth TCP-friendly
congestion control is more suitable than TCP’s AIMD for mul-
timedia streaming because it gives a predictable transmission
rate and even if this transmission rate is less than the bitrate
demands of the stream, the stream can be more easily adapted
to a predictive transmission rate.

However, smooth TCP-friendly congestion control like
TFRC is not the best solution for multimedia streaming.
A multimedia streaming application following blindly the
transmission rate given by TFRC is good from a network
perspective and good but not optimal from the application’s
perspective. In other words, TFRC is too much “network-
friendly”, but not sufficiently “media-friendly.” Several pa-
pers [4], [5], [22] outline some of the problems multimedia
streaming applications face when using TFRC. One problem
of TFRC is that in some situations its throughput can overshoot
or undershoot the throughput of TCP under the same network
conditions. This can be caused by approximations/imperfec-
tions of the TCP Reno equation [20] or by wrong estimations
of the RTO (Retransmission Timeout) or the loss-event rate
[4]. Also, the authors of [5] claim that TFRC is not smooth
enough to be termed “media-friendly.”

Another problem emerges when the average available band-
width is close to the average bitrate of the stream. VBR

c© 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for
any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 2

(Variable Bit Rate) codecs compliant to MPEG video coding
standards can vary a lot the output bitrate of a video stream
between scene changes in order to preserve a relative constant
quality throughout the video (e.g., the bitrate can vary 20
times from one stream second to the next one) [6]. In other
words, the bitrate of such a stream is certainly not smooth.
For these kinds of streams and also for real-time encoding
applications which do not afford a large buffer, it is better
if the transmission rate is not necessarily smooth, but rather
that it tracks the evolution of media characteristics like bitrate
across the stream. Besides the bitrate of the stream, other
media or application characteristics could be relevant for (i.e.,
could influence) the evolution of the transmission rate: bitrate
averaged over a scene, burstiness, PSNR values or other
quality indicators, client buffer fill levels, etc. For example,
if the client prefetch buffer is well filled, the transmission
rate could be decreased, but when the client prefetch buffer
fill level gets low, the transmission rate should get higher
than average. Of course, the transmission rate must also obey
network-related characteristics (i.e., must have a TCP-friendly
behavior). Such a congestion control algorithm that has a
transmission rate which tracks the media characteristics of the
stream is termed media-friendly.

Generally speaking, if we refer to the average available
bandwidth in the network throughout the streaming session
by AAB and to the average bitrate of the stream by ABS, we
have the following scenarios:

• If AAB is much higher than ABS and the available
bandwidth in the network does not fluctuate consistently,
typically no congestion control is required during stream-
ing.

• If AAB is at least 2×ABS, typically TCP’s AIMD con-
gestion control is acceptable for obtaining good quality
at the receiver [2].

• If AAB is only a little higher than ABS, TFRC is good
for multimedia streaming [7].

• If AAB is around (more or less) ABS, Media-friendly
and TCP-friendly Rate Control is optimal for multimedia
streaming [22].

Our goal in this paper is to build TCP-friendly and media-
friendly congestion control algorithms that are better suited
for multimedia streaming than traditional congestion control.
As congestion control is done by controlling the transmission
rate of the sender, we will use the terms “rate control” and
“congestion control” interchangeably throughout the paper.

The remainder of the paper is organized as follows. In Sec-
tion II we review related work. Section III presents the main
results of the paper which are three theorems that help us make
TFRC media-friendly for multimedia streaming applications.
Following this, we outline in Section IV four simple, proof-of-
concept, media-friendly and TCP-friendly congestion control
algorithms built using the theorems from Section III. Section
V describes some practical considerations which are important
for a full implementation of the congestion control algorithms
proposed in Section IV and Section VI presents simulation
results using two of the four algorithms presented in Section
IV. The paper ends with conclusions in Section VII.

II. RELATED WORK

TCP-Friendly Rate Control [3], [7] is an equation-based
congestion control that has two main components: the through-
put function and the WALI (Weighted Average Loss Intervals)
mechanism for computing the loss rate. The throughput func-
tion is the throughput equation of a TCP-Reno source [8]:

X(p) =
1

R
√

2p
3 + tRTO(3

√
3p
8)p(1 + 32p2)

(1)

where X is the sending rate in packets/sec, R is the round-trip
time (RTT), p is the steady-state loss event rate and tRTO =
4 ∗ R is the TCP retransmit timeout value. This throughput
function is the basis of TCP-friendliness of TFRC. WALI, the
mechanism for computing the loss rate as a weighted average
of the last 8 loss intervals, is responsible for the smoothness
of throughput. Studies reveal that indeed TFRC’s throughput
is smoother than the throughput of TCP [9]–[11], but it also
has some limitations [4], [5].

Binomial congestion control [12] is a window-based conges-
tion control that offers smoother throughput than TCP. It does
that by increasing the congestion window less aggressively
upon a packet acknowledgment and decreasing it less drasti-
cally upon a loss event. There are also several other proposals
for smooth TCP-friendly congestion control [13]–[15].

The work presented in [16] is the closest to our work. The
authors develop a media-friendly and TCP-friendly congestion
control based on TFRC using a two-timescale approach: they
compute the long-term average of the throughput according to
TFRC, but they modify this throughput on a smaller timescale
according to the rate of increase/decrease of a utility function
obtained from the rate-distortion characteristics of the stream.
There are several differences between their approach and ours.
First, the utility function used in [16] was developed for
MPEG FGS (Fine Granular Scalable) video streams, while
our approach targets general layered scalable video streams.
Our framework can very well be used for MPEG FGS streams,
just that the application needs to decide on a proper streaming
bitrate (and our framework does not help the application in
this manner), but once this is done, our media-friendly and
TCP-friendly congestion control framework does its best to
successfully deliver that bitrate. Second, since in [16] the
rate-distortion utility function is not scaled with the TFRC
throughput function (i.e., they can have different value ranges),
we are not sure that this utility function (actually the derivative
of the rate-distortion utility function is used in the text) will
have significant influence on TFRC’s throughput (even on
small timescales) in all network scenarios. In other words, we
expect the influence of the rate-distortion utility function on
TFRC’s throughput to be rather small in many network setups.

A totally different approach in congestion control derived
from optimization theory is taken in [17], [18]. The authors
of these papers formulate the problem of sharing bandwidth
in a best-effort network as an optimization problem and
derive gradient-like algorithms for solving this problem. These
congestion control algorithms obtain optimal bandwidth al-
location among competing sources; the allocation is optimal
related to the utility functions of all participants. However,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 3

these papers use general utility functions and they do not
consider the specific characteristics of multimedia streaming
applications. Also, there is no experimental evidence that these
primal and dual congestion control algorithms are fair to real
TCP implementations. Another possible solution to making
congestion control more media-friendly is MulTFRC [1] and
n-TCP-friendly congestion control which try to emulate the
throughput of n concurrent TCP flows. But these solutions
depart from a pure TCP-friendliness and generally do not
support a dynamic value for the n parameter.

III. MAKING TFRC MEDIA-FRIENDLY

Ideally, multimedia streaming applications should never
lack bandwidth. However, in best-effort networks this is not
always possible as the available network bandwidth changes
frequently during the lifetime of the streaming session. TCP
and smooth congestion control algorithms like TFRC allevi-
ate to some degree the problem of ever changing network
conditions. However, when the average available bandwidth
is close to the average bitrate of the stream, a congestion
control algorithm with a transmission rate that follows the
media characteristics of the stream, e.g., the instant (one-
second) bitrate, should be more beneficial for multimedia
streaming. Ideally, the transmission rate of a media-friendly
congestion control algorithm should track the bitrate of the
stream strictly, but this will most probably lead to a TCP-
unfriendly behavior. This is why our strategy is to start with
a TCP-friendly transmission rate like the one given by TFRC
and add media-friendly properties to it. But care must be taken
when adding these media-friendly properties so that the final
transmission rate remains TCP-friendly in the long term.

An intuitive example of what our framework for building
TCP-friendly and media-friendly rate control algorithms is
based on, is depicted in Figures 1 and 2. Fig. 1 shows the
bitrate evolution of a typical video stream (Elephants Dream1).
This video stream is also used in the simulations section,
later in the paper. In Fig. 2, the TFRC line represents a
typical evolution of the transmission rate (throughput) of a
TFRC flow and the UTFRC line depicts the same throughput
modified to track the evolution of the bitrate of the stream from
Fig. 1. For readability reasons, only the bitrate of the first 300
stream seconds is used in Fig. 2. We call this modified TFRC
behavior UTFRC (Utility-driven TCP-Friendly Rate Control).
We can see that UTFRC increases TFRC’s throughput between
seconds 100 and 150 because the video stream bitrates in
this time interval are higher than average in Fig. 1, but the
throughput is decreased in seconds 170 through 300, because
the bitrates in this interval are low in Fig. 1.

Mathematically formulated, we seek a TCP-friendly and
media-friendly congestion control algorithm with a transmis-
sion rate of the following form:

X(t) = M(q(t)) ∗XTFRC(t) (2)

where t is time, XTFRC(t) is the transmission rate computed
by TFRC at time t using Eq. 1, M(q(t)) is a media-friendly

1http://www.elephantsdream.org, resolution 1280x720, 24 fps, average bi-
trate 1923.6 kbps, encoded using VideoLAN’s libx264 H.264 video encoder

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600 700

B
itr

at
e

(k
bp

s)

Time (sec.)

one-second bitrate
average bitrate

Fig. 1. The bitrate per second of the Elephants Dream video stream

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350

T
ra

ns
m

is
si

on
 r

at
e

(k
bp

s)
Time (sec.)

UTFRC
TFRC

Fig. 2. TFRC throughput modified according to the stream bitrate (only
the first 300 seconds of the stream are used). The TFRC line depicts
the transmission rate computed by TFRC at each update step (i.e., when
a feedback packet is received). The UTFRC line is the transmission rate
computed by TFRC multiplied with b(t)/bavg where b(t) is the bitrate for
second t of the stream from Fig. 1 and bavg is the average bitrate over the
whole stream.

function and q(t) is an n-dimensional function giving the
values of various media or application characteristics over
time:

q(t) = (m1,m2, ..,mn)(t)

where each of m1(t),m2(t), ..,mn(t) is a function that mea-
sures one media/application characteristic like bitrate, PSNR
value, client buffer fill level, etc. The function M(q(t)) em-
bodies the usefulness of increasing TFRC’s throughput (Eq. 1)
according to the requirements of the streaming application.
Typically, function M(q(t)) is increasing with respect to q(t),
as an increase in a media characteristic like bitrate means
higher bandwidth requirements of the streaming application.

Before giving the rules which should be followed when
choosing the media-friendly function, M(q), in order for the
transmission rate to remain TCP-friendly, we give two formal
definitions.

Definition 1: A flow is termed TCP-friendly if its long-term
average transmission rate does not exceed the transmission rate
of a TCP flow under the same network conditions [19], [20]:

lim
t→∞

1

t

∫ t

0

X(s)ds ≤ XTCP

where XTCP is given by Eq. 1 and in this equation R and p
are taken as average values across the interval [0, t].

Definition 2: A flow with a transmission rate X(t) =
X(t, q(t)) where q(t) represents media/application parameters

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 4

(as defined above) is termed media-friendly if the increase/de-
crease rate of its transmission rate with respect to q(t) follows
the shape of a media/application characteristics function:

∂X

∂q(t)
(t, q(t)) = k(t)

∂M

∂q(t)
(q(t)) + o(t)

where k(t) > 0 is a scaling factor, M(q(t)) is a function of
media/application characteristics and o(t) is a residual term
much smaller than k(t)∂M(q(t))

∂q(t) . We consider the function
q(t) to be very general and it can include one or several
media/application characteristics like the evolution of the
bitrate of the stream, of its PSNR values, of the client buffer
fill level, etc. The simplest and media-friendliest transmission
rate would be X(t) = X(t, q(t)) = M(q(t)) = b(t) where t
has a 1 second granularity and b(t) is the bitrate of the stream
in second t. That transmission rate would indeed be media-
friendly, yet not TCP-friendly.

We will now state three theorems that provide guidelines
for choosing the media-friendly function, M(q(t)), so that the
resulting congestion control remains TCP-friendly in the long
term.

Theorem 1: If the values of M(q(t)) and XTFRC(t) are
stochastically independent and E[M(q(t))] = 12, then the
control given in Eq. 2 is TCP-friendly and media-friendly.

Proof: Proving media-friendliness is straight forward if
we consider the definition of media-friendliness. In order to
prove the TCP-friendliness, we just have to take the expecta-
tion of both factors of Eq. 2:

E[X(t)] = E[M(q(t)) ∗XTFRC(t)]
= E[M(q(t))] ∗ E[XTFRC(t)] = E[XTFRC(t)]

where the second equality comes from the fact that values of
M(q(t)) and XTFRC(t) are stochastically independent and
the third equality comes from E[M(q(t))] = 1.

Basically, the theorem states that if the values of the media-
friendly function fluctuate around 1, having the average value
of 1, then the long term average transmission rate of the media-
friendly congestion control will equal the average transmission
rate of TFRC.

Theorem 2: If the values of M(q(t)) and XTFRC(t) are
positively or negatively correlated and E[M(q(t))] = 1, then
the following hold:
a) If M(q(t)) and XTFRC(t) are negatively correlated, then
the control given in Eq. 2 is TCP-friendly.
b) If M(q(t)) and XTFRC(t) are positively correlated, then
the control given in Eq. 2 is not TCP-friendly (i.e., its
throughput is larger than the throughput of a TCP-friendly
protocol).

Proof: The proof is similar to the proof of Theorem 1 and
is based on the fact that cov[M(q(t)), XTFRC(t)]3 is positive
when variables are positively correlated and negative when
variables are negatively correlated.

Before we state the third theorem of TCP- and media-
friendliness, we need to present some notations. The notations

2E[X] is the expectation of random/continuous variable X .
3cov[X,Y] is the covariance between variables X and Y.

are taken from [20]. Let us first consider the following
function:

g(θ) = RTT

√
2

3θ
+ 4RTT (3

√
3

8θ
)
1

θ
(1 +

32

θ2
)

where θ is the length (in packets) of a loss interval and RTT
is the round-trip time. Note that g(θ) is just the inverse of the
TFRC throughput equation (Eq. 1) considering p = 1

θ . In the
following lines, we consider RTT to be relatively constant
across a connection; this is consistent with the Internet ex-
perience where RTT is relatively constant across an Internet
path and a connection’s path changes rarely. The loss event
rate, p, is considered the fraction of loss events observed in
the number of packets sent over a long time interval [3]:

p =
1

E[θ]

where θ is the length of the current loss interval (in packets).
θ̂ is an estimator of 1/p used by TFRC:

θ̂ =

8∑
l=1

wlθ−l

θ−l is the length of the l-th most recent loss interval (in
packets), wl = 1 for l ∈ [1, 4] and wl = 1− l−4

4+1 for l ∈ [5, 8].
Using the above notation it can be noted that:

XTFRC(θ̂) =
1

g(θ̂)

where XTFRC is the transmission rate of TFRC and θ̂ is the
loss interval estimator used by TFRC. Now the expected long-
term transmission rate of X from Eq. 2 can be written as:

E[X] =
E[θ]

E
[
θ g(θ̂)
M(q)

] (3)

The numerator from that equation denotes the expected length
in packets of a loss event interval, while the denominator is
the expected duration (in time) of a loss event interval.

Theorem 3: Assuming that cov[θ, θ̂] ≤ 0, for any media-
friendly function M(q) : Rn → R, where functions q measure
media, application and network characteristics, satisfying the
following:
a) E[M(q)] = 1

b) cov
[
θ g(θ̂), 1

M(q)

]
≥ 0 (i.e., θ g(θ̂), the time between

two loss events, and 1
M(q) are stochastically independent or

positively correlated),
the control M(q(t)) ∗ XTFRC(t) is TCP-friendly, where
XTFRC(t) is the basic TFRC control [20].

Proof: The proof is based on the fact that function g is
convex on [0,∞), just like the proof of Theorem 1 in [20].
All we need to show is that:

E[θ]

E
[
θ g(θ̂)
M(q(t))

] ≤ 1

g(E[θ̂])
(4)

We start by observing that function g is convex on [0,∞).
Based on this, we can write:

g(θ̂) ≥ (θ̂ −m)g
′
(m) + g(m) for all m ≥ 0

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 5

We then multiply both sides of the above inequation by θ:

θ g(θ̂) ≥ (θθ̂ − θm)g
′
(m) + θ g(m)

Taking expectation of both sides yields:

E[θ g(θ̂)] ≥ E[θθ̂ − θm]g
′
(m) + E[θ]g(m)

Let m = E[θ] = E[θ̂]. By multiplying both sides by
1

E[M(q(t))] = 1, we get:

E[θ g(θ̂)]
1

E[M(q(t))]
≥ cov[θ, θ̂]g

′
(m) +mg(m)

By observing that E
[

1
M(q(t))

]
≥ 1

E[M(q(t))] since function 1
x

is convex for x > 0, applying Jensen’s inequality, and using
hypothesis b), we obtain:

E
[
θ g(θ̂)
M(q(t))

]
≥ E[θ g(θ̂)]E

[
1

M(q(t))

]
≥ E[θ g(θ̂)] 1

E[M(q(t))] ≥
cov[θ, θ̂]g

′
(m) +mg(m)

Then we divide m by the left-hand and the right-hand sides
of the above inequation and we obtain:

m

E
[
θ g(θ̂)
M(q(t))

] ≤ m

mg(m) + cov[θ, θ̂]g′(m)

Written differently, the above inequation looks like:

E[θ]

E
[
θ g(θ̂)
M(q(t))

] ≤ 1

g(m)

1

1 + cov[θ, θ̂] g
′ (m)

mg(m)

Knowing that m = E[θ] = E[θ̂], g(m) is a decreasing function
of m, cov[θ, θ̂] ≤ 0 and XTFRC(E[θ̂]) = 1

g(E[θ̂])
, we can

conclude that Eq. 4 is satisfied which is just what we need to
prove.

There is practical evidence in [20] that cov[θ, θ̂] ≤ 0 (i.e.,
loss events are stochastically independent).

IV. UTFRC ALGORITHMS

In this section we present four variants of media-friendly
and TCP-friendly algorithms constructed using the above
framework. All four algorithms have the form given in Eq. 2,
the only difference being the form of the media-friendly func-
tion, M(q). The algorithms are presented here as examples
and proof of concept for our UTFRC framework; the first and
the third algorithm are thoroughly considered and evaluated
in Section VI.

The first congestion control algorithm includes only the
bitrate of the stream as media/application characteristic and
has the following media-friendly function:

M(q(t)) : M1(q(t)) =
b(t)

bavg
(5)

where b(t) is the bitrate measured in bits/s (bps) for second
t of the stream and bavg is the average bitrate over the
whole stream (in bits/s). Based on the definition of media-
friendliness, it can be easily shown using Theorem 1 that the
following proposition holds:

Proposition 1: The long-term average transmission rate of
the simple UTFRC control given by Equations 2 and 5 is TCP-
friendly and media-friendly.

The media-friendliness is straightforward to prove and the
TCP-friendliness can be proved once we observe that
E[M(q(t))] = 1.

Among the advantages of this simple UTFRC we mention:
it is very simple to implement and not time consuming during
streaming, especially if the bitrate for each second is computed
off-line (the average bitrate has to be computed off-line).
However it has some disadvantages: it does not consider other
media or application characteristics besides bitrate, like client
buffer fill level, or PSNR values.

The second congestion control algorithm includes also the
client buffer fill level (which is stochastically dependent on
network parameters, i.e., XTFRC), besides the bitrate of the
stream. Its media-friendly function has the following form:

M(q(t)) : M2(q(t)) =
b(t)

bavg
+

1

c
(E[∆]−∆) (6)

where b(t) and bavg have the same meaning as in the previous
congestion control algorithm, ∆ is the current fill level (in
seconds) of the client prefetch buffer and E[∆] is an estimator
of the average fill level of the client prefetch buffer across
the whole streaming session. For this media-friendly function,
its value is decreased when the buffer is well filled (i.e.,
E[∆] < ∆) and is increased when the buffer is sparsely filled
(i.e., E[∆] > ∆). The term 1

c , c ≥ 1 is a scaling factor for the
term E[∆]−∆ so that the value of the media-friendly function,
M(q(t)), always stays positive. c must be a number such that
bmin

bavg
+ 1
c (E[∆]−∆max) > 0 (i.e., c ≥ bavg

bmin
·(∆max−E[∆]))

where bmin is the minimum one second bitrate value of the
stream and ∆max is the maximum buffer fill level across the
streaming session. In addition, the value of M(q(t)) must
be upper bounded by a maximum value, so that it does not
generate a transmission rate significantly higher than TFRC’s
transmission rate. Using Theorem 3, it can be proved that
the second congestion control algorithm is media-friendly and
TCP-friendly in the long term:
Proposition 2: The long-term average transmission rate of the
simple UTFRC control given by Equations 2 and 6 is TCP-
friendly and media-friendly.
The media-friendliness is straightforward to prove and the
TCP-friendliness can be proved using Theorem 3, once we
observe that E[M(q(t))] = 1 if E[∆] is a good estimator
of the average fill level of the client prefetch buffer across
the whole streaming session and we note that the time passed
between two loss events is stochastically independent with the
inverse of the media-friendly function from Equation 6 (i.e.,
condition b) of Theorem 3).

We can build a more advanced media-friendly TFRC by
considering the following guidelines:

• If the client prefetch buffer is sparsely filled (e.g., the fill
level is smaller than a threshold), the utility (i.e., media-
friendly value) should be high. The rationale is that if
there were not a large enough throughput, the buffer at
the client might run empty and stream playout might stall.

• If the buffer is well filled, then the utility (i.e., media-
friendly value) should be small, but still it should follow
the slope of the bitrate.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 6

The goal is to keep the buffer fill level at a reasonable safe
value. The media-friendly function of this congestion control
algorithm is:

M(q(t)) : M3(q(t)) = M(b,∆) = Ub(b) + U∆(∆) (7)

where b is the bitrate for the current stream second and ∆
is the number of stream seconds saved in the client’s buffer.
Similar to all the other media-friendly functions presented in
this section, the values of M(b,∆) should oscillate around 1.
Let minM be the minimum value of M(b,∆) and maxM
be the maximum value of M(b,∆) so that M(b,∆) ∈
[minM,maxM]. Also, let W1 be a number in the interval
(minM,maxM). Function Ub(b) is a linear mapping of the
current second’s bitrate b from the interval [bmin, bmax] of
all possible one-second bitrates of the stream to the interval
[minM,W1] (bmin refers to the minimum and bmax to the
maximum one-second bitrate of the entire streaming process):

Ub(b) = minM + (W1 −minM) · b− bmin
bmax − bmin

(8)

The higher the bitrate of the current stream second, b, the
higher the utility value of Ub(b) will be. Because function
Ub(b) is a linear mapping on the interval [minM,W1] and,
as we will see, function U∆(∆) is a linear mapping on the
interval [0,maxM − W1], we can say that W1 defines the
relative weights of the Ub(b) and U∆(∆) terms in the end value
of the media-friendly function M(b,∆). The higher the value
of W1 is, the higher the contribution of the Ub(b) term will be
to the value of M(b,∆) and the smaller the contribution of
U∆(∆) will be. For example, if minM = 0.5, maxM = 2.1
and W1 = 1.7, then function Ub(b) would be responsible for
approximately 3/4 of the M(b,∆) value and function U∆(∆)
would be responsible for approximately 1/4 of its value.

Function U∆(∆) takes values in the interval [W2,maxM−
W1] when ∆ is smaller than a threshold value and in the
interval [0,W2] when ∆ is greater than the threshold value;
W2 is a number such that 0 < W2 < maxM − W1. The
expression of the function is as follows:

U∆(∆) =

(maxM −W1) ·

(
1− (maxM−W1)−W2

maxM−W1
· ∆
thresh

−max
(

0, thresh−E[∆]
2thresh

))
,∆ ≤ thresh

W2 ·
(

1− ∆−thresh
∆max−thresh

)
,∆ > thresh

(9)
where E[∆] is the average buffer value from the beginning
of the streaming session up to now and ∆max is a reasonable
maximum buffer value. The term max

(
0, thresh−E[∆]

2thresh

)
is a

penalty term and was introduced as an incentive for applica-
tions which maintain a lower buffer in order to get a higher
utility and, thus, a larger throughput; for those applications,
the value E[∆] is small and because of this term, U∆(∆) gets
smaller over time. The first branch of the function U∆(∆)
is, ignoring the penalty term, an inverse linear mapping of
the current buffer value, ∆, from the interval [0, thresh]
to the interval [W2,maxM − W1] and the second branch
is also an inverse linear mapping of ∆ from the interval
[thresh,∆max] to the interval [0,W2]. The parameter W2 is,

like the parameter W1, a weight parameter that defines the
relative weight between the two branches of function U∆(∆).
The smaller the value of ∆ is, the higher the value of U∆(∆)
will be. The threshold value thresh in the above equation has
to be an estimator of the average buffer fill level across the
entire streaming session. More information on computing the
value of thresh is given in Section V-D.

Equations 7–9 describe a family of media-friendly functions
characterized by parameters: minM , maxM , W1, W2 and
thresh. We used in our simulations specific values for these
parameters which are detailed in Section V-D. In order to prove
that the congestion control algorithm described in Equations 2
and 7–9 is TCP-friendly in the long term, we cannot directly
apply Theorem 3 because E[M(b,∆)] 6= 1. But we can
use a transformation for the bitrate values, b, so that we get
E[M(b,∆)] ≈ 1. Due to the way function U∆(∆) is defined,
we can expect the average value for ∆ to be around thresh
and the expectation E[U∆(∆)] to be around the value W2.
This lets the expectation of M(b,∆) be:

E[M(b,∆)] ≈ E[Ub(b)] +W2

All we need to do is to get E[Ub(b)] to be 1−W2. We do this
by modifying the bitrate distribution of our video stream while
keeping as much as possible the same relative differences
between bitrates. This is presented in Section V-D.

The fourth media-friendly and TCP-friendly rate control
algorithm we present in the following includes the “signal
energy” or “signal power” of each frame from the video
stream in the media-friendly function expression. By the
“signal energy” of a frame we understand the variability (i.e.,
difference) of that frame with respect to the previous one,
that is the non-redundant, original information that this frame
adds to the video stream. In order to quantify the signal energy
contained in each video frame, we compute for each frame the
distortion induced in the perceived stream by not delivering
that specific frame (and thus playing the previous frame once
more). For measuring this distortion we use a simple MSE
(Mean Squared Error) metric. The MSE metric is always
computed between the current frame and the previous one.
Note that also PSNR (Peak Signal to Noise Ratio) could have
been used for measuring the distortion caused by a missing
frame. After having computed the signal energy contained in
each video frame (i.e., the distortion induced by not delivering
that frame), we compute using these values an average signal
energy across the whole video stream. All these computations
are typically done off-line, but can be done on-line also at
computational costs.

During streaming, whenever UTFRC updates its transmis-
sion rate (i.e., once per RTT or when a loss event is detected,
whichever comes first), it uses for the media-friendly function
a value greater than 1 if the signal energy of the current
streaming second is above average (i.e., the distortion in case
of frame loss is above average) or a value smaller than 1 if the
signal energy of the current streaming second is below average
(i.e., the distortion in case of frame loss is below average).
The signal energy of a stream second is the sum of the signal
energy of each frame from that specific stream second and
the signal energy of a frame is, as specified above, the MSE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 7

between that frame and the previous frame in the stream. In
this manner, the transmission rate will also track the signal
energy distribution of the video stream (i.e., the rate control
algorithm is thus, media-friendly). Thus, the media-friendly
function will have high values for video stream seconds which
contain a lot of movement or scene changes and will have low
values for more static video stream seconds.

More specifically, the distortion-based media-friendly con-
gestion control has the following media-friendly function:

M(q(t)) : M4(q(t)) =
SE(t)

SEavg
(10)

where the time t has a one-second granularity, SE(t) is
the signal energy for the t-th second of the video stream
and SEavg is the average of SE(t) computed across all the
seconds of the video stream.

Once we observe that E[SE(t)
SEavg

] = 1 and the fact that the
signal energy distribution across the stream is stochastically
independent of any network parameter, we can easily show
using Theorem 1 that the following proposition holds:

Proposition 3: The long-term average transmission rate of
the simple UTFRC control given by Equations 2 and 10 is
TCP-friendly and media-friendly.

V. IMPLEMENTATION CONSIDERATIONS

Before we present the simulations, it is necessary to prop-
erly define UTFRC as a congestion control protocol, because
Equation 2 just presents the formula for computing the trans-
mission rate and is very laconic, omitting the time-scales of
the protocol, feedback type, feedback times, etc. Such practical
considerations will be worked out in the following subsections.

Since the four variants of UTFRC protocols given in the
previous section are just examples of possible media-friendly
functions suited for the UTFRC protocol and no claim is made
that these functions are the best media-friendly functions that
can be used in UTFRC, we only consider in the remainder
of the paper the first and the third media-friendly function.
However, the next two subsections, V-A and V-B, still apply
to any general UTFRC protocol defined as in Equation 2.

Since UTFRC is based on TFRC, it shares the same
feedback and transmission semantics, but it adds the media-
friendly factor to the transmission rate formula. UTFRC uses
the same type of client feedback as TFRC, i.e., loss-event
based feedback, and has two time-scales (i.e., the time intervals
after which the protocol updates its state): the time-scale
of the media-friendly factor (i.e., M(q(t)) from Equation
2) and the time-scale of the TFRC factor (i.e., XTFRC(t)
from Equation 2). The time-scale of the TFRC factor is
given by the feedback rate of TFRC, i.e., once per round-trip
time interval or immediately after a loss event is detected,
whichever comes first. UTFRC reevaluates its transmission
rate at this time-scale. The media-factor time-scale is discussed
in the following subsection.

A. Time-scale of the Media-friendly Factor
Normally, there should be only one time-scale for the

UTFRC protocol presented in Equation 2, which should be

given by the feedback interval of TFRC (i.e., the time-scale
of the TFRC factor, XTFRC(t)). However, as the feedback
interval of TFRC is one RTT or less, and a variable value that
is only known during the streaming session, it cannot be used
before the beginning of the streaming session when the static
parts of the media-friendly factor (e.g., the bitrate values) are
being constructed. Also, a time value so small for the media-
factor update interval is likely to produce highly variable
values that are not very good at capturing the global utility
trajectory of the video stream. Having highly variable values
for the utility function, especially within small time intervals,
will incur large fluctuations in the overall transmission rate
(computed by Equation 2) which is not desired for a con-
gestion control protocol; such large fluctuations often lead to
increased congestion, unfair utilization of network bandwidth,
and ultimately to under-utilization of the network capacity.
All these reasons suggest that the time-scale of the media-
friendly function, M(q(t)), (i.e., the update time interval of
this function) should be at least one second long. Generally, an
update interval of several seconds is a good time-scale for the
media-friendly function, especially for video streams that have
highly variable media/application characteristics (e.g., highly
variable bitrate).

The media-friendly function can have two types of parame-
ters: static parameters whose values can be determined before
the streaming session starts (e.g., bitrate values, signal power)
and dynamic parameters that have values which can only be
computed during the streaming session (e.g., client buffer fill
levels, packet delay). For example, the first media-friendly
function described in Equation 5 has only a static part, because
it uses only values that can be evaluated before streaming
starts (e.g., bitrate values). In contrast, the third media-friendly
function described by Equation 7 has a static part, Ub(b), and
a dynamic part, U∆(∆).

We have chosen a time-scale of at least one second for the
media-friendly functions used in UTFRC protocols because of
the reasons discussed above, so the media-friendly function
changes its values at the beginning of each streaming second.
In addition, in case of video streams with highly fluctuating
media-friendly function values, these utility values should
be further averaged over several seconds or the function
should be smoothed out for a more media-friendly behavior
of the protocol. This averaging/smoothing should also be done
in order to keep the values of the media-friendly function
approximately between 0.5 and 2.0, because we have seen
in our experiments that if the media-friendly factor is higher
than 2.0 for a long period of time (e.g., one to several tens
of seconds), the network-friendly protocol part (i.e., the TFRC
factor) will see a smaller loss-event rate than the loss-event rate
seen by another normal TFRC flow under the same network
conditions; thus, it would see a TCP-friendly transmission rate
larger than the transmission rate computed by a normal TFRC
flow. This behavior is also documented in several papers, for
example [4] and [1]. On the other hand, if the media-friendly
factor is below 0.5, the XTFRC(t) computed by UTFRC is
smaller than the transmission rate of a TFRC flow under the
same network conditions; this is due to intrinsic restrictions
of TFRC that have the purpose to smooth out the throughput

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 8

(more specifically, the rule XTFRC ≤ 2×Xrecv where Xrecv

is the bandwidth received since the last feedback).
As each value of the media-friendly function, at least its

static part, characterizes a distinct second of the video stream,
the cardinality of the set of media-friendly function values
equals the length of the video stream in seconds. For the rest
of the section, it is useful to consider the values of the media-
friendly function (either the whole function, or just the static
component of the function) as a vector with n utility values,
where n is the length of the video stream in seconds. But
the t parameter in Equation 2 tracks the streaming time, not
the media time. If the streaming session ends early and takes
less than n seconds (for example, if the available bandwidth
in the network is much larger than the average bitrate of
the stream), then not all the media-friendly values from the
utility vector would be used during the streaming session.
Conversely, if the available bandwidth in the network is less
than the average bitrate of the stream, playing might freeze
at the client, additional buffering might be required, and the
duration of the entire streaming session might be larger than
n seconds. This is problematic, since the values of the static
part of the media-friendly function were chosen in such a way
that the average of those values across the n seconds of the
stream has a specific value (i.e., E[b(t)bavg

] = 1 for the first
media-friendly function and E[Ub(b(t))] = 1 − W2 for the
third media-friendly function). This contributes to the TCP-
friendliness of the protocol.

Thus, whenever the streaming time is ahead of playout
time by a significant time interval (i.e., when there is a
significant time distance between the video second that is
currently streamed by the server and the video second that is
currently played out by the client), the utility array (i.e., media-
friendly values) must be adapted, meaning that a number of
media-friendly values from the end of this utility array must
be eliminated and all the media-friendly values that were not
used up to this moment must be proportionally reduced or
increased so that when the streaming is finished, the overall
average utility of the used utility values must be the desired
one (i.e., 1 for the first media-friendly function and 1 −W2

for the third function). Conversely, when the streaming session
takes longer than n seconds (i.e., the length of the video
stream) due to buffering and stalled playing, the utility vector
is supplemented with enough utility values, each of them being
equal to the average utility value across the initial n seconds
of the video (e.g., 1 for the first media-friendly function and
1−W2 for the static part of the third media-friendly function).

B. Enforcing TCP-friendly Behavior

Theorems 1, 2 and 3 prove that under special conditions,
the expected long-term transmission rate of a UTFRC flow
is not more than the expected long-term transmission rate
computed using the TCP throughput equation. The Law of
Large Numbers assures that if the streaming session lasts for a
long time interval (possibly infinite), the expected transmission
rate will equal the long-term average transmission rate. But
this does not happen in the case of an actual real stream-
ing session which has a finite time duration. Although the

expected transmission rate is close to the long-term average
transmission rate, they can be different. To enforce the equality
of the long-term average transmission rate of UTFRC to
the long-term average transmission rate computed using the
TCP throughput equation, we use a mechanism of virtual
bandwidth that is either borrowed from or to other flows in
order to satisfy media constraints. This virtual bandwidth is
the total amount of bandwidth that the UTFRC flow uses
above its fair share rate computed by TFRC. But it is also
the bandwidth that is returned back to the network, when the
utility value (i.e., media-friendly value) of UTFRC is smaller
than 1; in this case the virtual bandwidth is negative. This
virtual bandwidth is maintained at the sender using a variable
called virtual bandwidth bytes (for the sake of brevity
abbreviated as vbb in the following) which does not store
a bandwidth value per se, but the data volume (transmitted
bytes) component of a bandwidth value (without the time
component). This variable is enough to approximate the virtual
bandwidth that is borrowed from the network (above the TCP-
fair rate) and then returned back to the network in a later time
interval. vbb is initialized as 0 in the beginning of the streaming
session and is updated using the following formula whenever
a new feedback is received from the client:

vbb = vbb+ (B −RTFRC ∗D)

where D is the duration of the last feedback interval, the
interval ended by the receipt of the current feedback packet,
B is the number of bytes sent in the last feedback interval
and RTFRC is the transmission rate computed by TFRC
(i.e., without the media-friendly factor) for the last feedback
interval. If the media-friendly factor was less than 1 in the last
feedback interval, virtual bandwidth is decreased, and if the
factor was more than 1, then virtual bandwidth increases.

We want to make sure that, when the streaming session
ends, the virtual bandwidth will ideally be 0 or close to 0
which roughly means that the extra bandwidth (i.e., above
the rate computed by TFRC) that was borrowed from the
network by the media-friendly factor was returned back to
the network. In order to enforce this, we must identify a point
in streaming time after which media-friendly function values
will be ignored and the transmission rate is either decreased
below the transmission rate computed by TFRC (if virtual
bandwidth is positive) or the transmission rate is increased
above the transmission rate computed by TFRC (if virtual
bandwidth is negative) until the end of the streaming session.
Also we must choose the increase/decrease factor for every
transmission rate update. Let this be α; we use a constant
increase/decrease factor because it is simple to implement.
Let also left to stream denote the remaining bytes from
the video stream left to be streamed and X the current TFRC
computed transmission rate.

If vbb is positive, at the current decreased transmission rate
X −X · α, the streaming will end in left to stream

X∗(1−α) seconds.
Due to α, the vbb will also be decreased in each transmission
round (because we give away in each transmission round
X · α from the bandwidth that is rightfully ours), and in
vbb
α∗X seconds vbb will drop to 0. If we equal these two time
values, we get the time point after which we must decrease

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 9

the transmission rate by a factor of α, so that when streaming
ends, vbb will be 0:

left to stream

X ∗ (1− α)
=

vbb

α ∗X
We use a constant decrease factor of α = 0.5 (so the transmis-
sion rate is decreased by a factor of 1−α = 0.5), so we start
the decrease process when vbb ≥ left to stream ∗ α

1−α =
left to stream.

Conversely, when vbb is negative and the transmission rate
is increased by X ·α, the streaming will end in left to stream

X∗(1+α)

seconds and vbb will become 0 after −vbbα∗X seconds. The
corresponding time equality will be:

left to stream

X ∗ (1 + α)
=
−vbb
α ∗X

We also use α = 0.5 for the increase factor (so the trans-
mission rate is increased by a factor of 1 + α = 1.5), so the
increase process starts when −vbb ≥ left to stream∗ α

1+α =

left to stream ∗ 1
3 .

C. Specific Settings for the First UTFRC Variant
This subsection presents specific settings for the first UT-

FRC variant used in the simulations. For the first UTFRC
variant we precompute the media-friendly function values for
each second of the video using Equation 5 and store them
in the utility vector. Because these utility values are highly
fluctuating for our test video stream used in the simulations
(Elephants Dream), we further aggregated the utility values by
computing the average utility across 40 consecutive seconds
and used this average value for each of the 40 consecutive
seconds. Averaging utilities over 40 seconds was enough to
have all utilities between 0.5 and 2.0 for our test video. During
the streaming session, the transmission rate is updated every
time feedback is received from the client using Equation 2
where the media-friendly factor is taken from the precom-
puted utility vector for the current streaming second. During
streaming, if the streaming time is ahead of playout time by
10 seconds and if under the current transmission rate this
difference is estimated to last until the end of streaming, the
utility vector is adjusted by eliminating the last 10 values
from it. Assuming the new length of the utility vector (after
removal of the last 10 utilities) is n and the current streaming
second is denoted by current second, we must scale the
unused utilities (i.e., utilities from the vector that are after the
current second index) so that the average of all used utilities
by the time the streaming is finished is 1. The following scale
factor must be added to every component utility[i] where
i ≥ current second:

scale factor =
n− used utilities− unused utilities

n− current second
where used utilities are utilities up to the current second
and unused utilities are utilities from the current second
to the new end of the utility vector, n. If, on the other hand,
streaming the n seconds of the video stream takes longer
than n seconds due to playing being stalled caused by an
empty client buffer, the utility vector will be supplemented
with enough utility values of 1.

D. Specific Settings for the Third UTFRC Variant

For the third UTFRC variant we used the following param-
eter settings in our simulations: minM = 0.5, maxM = 2.1,
W1 = 1.7 and W2 = 0.15. minM and maxM were set
following the argumentation presented in Section V-A. W1

was chosen so that it gives a larger weight to the evolution
of the stream’s bitrate (i.e., to function Ub(b)) and a smaller
weight to the evolution of the client buffer (i.e., to function
U∆(∆)). W2 gives a slightly larger interval of values to the
first branch of function U∆(∆) (i.e., when ∆ is small). The
values for W1 and W2 worked best for our experiments and
although there is a large set of values for these two parameters
that should work, finding the best values for the parameters
of the third media-friendly function is outside the scope of
this paper. We precomputed the values of the static part of
the media-friendly function, Ub(b), for each second of the
video using Equation 8. But before we used Equation 8,
we transformed the distribution of one-second bitrate values
of the video so that E[Ub(bi)] = Ub(bavg) = 0.85 (i.e.,
1 −W2), where bavg is the average bitrate over all seconds
of the video. This is required by condition a) of Theorem
3 (assuming we can ensure that E[U∆(∆i)] = W2 = 0.15,
which is discussed later in this subsection). One way to do
this transformation while keeping as much as possible the
relative differences between the bitrate values is to keep bmin
and bmax unchanged and to add or subtract a constant from
all other (one-second) bitrate values so that the value of the
function Ub() for the new average will be 0.85. This constant
is (new bavg−bavg)∗ n

n−2 where n is the length in seconds of
the video stream and new bavg is the new average bitrate after
applying the transformation. After applying this transformation
to the one-second bitrate distribution, we may further need to
average the bitrate values over groups of consecutive seconds
and use this average value for each of the seconds from that
group for the same reasons as mentioned for the first UTFRC
variant (i.e., avoid high fluctuations of utility values). In the
simulations in Section VI we average the bitrate values for
groups of 40 consecutive seconds. Then we can compute the
values of the static part of the media-friendly function, Ub(),
for all the seconds in the stream. The dynamic part, U∆(),
will be computed in real time during the streaming session.

During the streaming session, just like for the first UTFRC
variant, the transmission rate is updated every time feedback is
received from the client using Equation 2. The media-friendly
factor is computed using the precomputed Ub() values and
the real-time computed U∆() values. The static utility values,
Ub(bi), are adapted using a mechanism identical to the one
presented for the first UTFRC variant whenever the streaming
time is ahead of playout time by 10 seconds, with the notable
difference that the average of Ub(bi) is now 0.85, not 1. The
dynamic utility values, U∆(∆i), are computed using Equation
9 at the beginning of each second. In order for condition a)
of Theorem 3 to be valid, we need the threshold variable,
thresh, from Equation 9 to be an estimator of the average
buffer fill level across the entire streaming session. If the
instant buffer fill level (i.e., ∆) is around thresh most of
the time, then, although we can not warrant this, there are

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 10

high chances that the average of U∆(∆i) is 0.15. The virtual
bandwidth mechanism described in a previous subsection will
anyway enforce TCP-friendly behavior of the protocol. The
estimator of the average buffer fill level, thresh, is computed
in each second of streaming using the following algorithm:
s t r e a m i n g d u r a t i o n = (n∗b avg) / t f r c r a t e ;
t h r e s h = 0 ;
c u r r e n t b u f f e r = 0 ;
o l d r a t e =(u s e d u t i l i t i e s / (c u r r e n t s e c o n d +1))∗ t f r c r a t e ;
t r a n s m i s s i o n r a t e = o l d r a t e ;
f o r (i =0 ; i<=c u r r e n t s e c o n d ; i ++) {

c u r r e n t b u f f e r += t r a n s m i s s i o n r a t e − b [i] ;
i f (c u r r e n t b u f f e r >0) t h r e s h += c u r r e n t b u f f e r ;

}
f u t u r e r a t e =(u n u s e d u t i l i t i e s / (n−c u r r e n t s e c o n d))∗ t f r c r a t e ;
t r a n s m i s s i o n r a t e = f u t u r e r a t e ;
f o r (i = c u r r e n t s e c o n d +1; i<s t r e a m i n g d u r a t i o n ; i ++) {

c u r r e n t b u f f e r += t r a n s m i s s i o n r a t e − b [i] ;
i f (c u r r e n t b u f f e r >0) t h r e s h += c u r r e n t b u f f e r ;

}
t h r e s h = t h r e s h / (b avg∗ s t r e a m i n g d u r a t i o n) ;

In this algorithm we use the following notations: stream-
ing duration is the estimated duration of the streaming session
at the current constant transmission rate (tfrc rate), n is the
length in seconds of the video stream, current second is the
current transmission second, b[i] is the bitrate of the i-th
second of the video, tfrc rate is the average transmission rate
computed by TFRC (up to current second), used utilities is
the sum of all static utilities (i.e., values of Ub()) used up
to now, unused utilities is the sum of unused static utilities
(i.e., the values Ub(b[i]) for i > current second). We have
used the static utilities when computing transmission rate
because we want to estimate the average client buffer as
produced by the TFRC transmission rate and the static part of
the media-factor (which is normally higher than the average
client buffer produced just by using the TFRC-computed
transmission rate).

The ∆max threshold from the U∆() formula (Equation 9)
is set in our simulations to 10 times the initial buffer (i.e., the
buffer built up in the first 8 seconds of the streaming session).
Also, because the term max

(
0, thresh−E[∆]

2thresh

)
from the U∆()

formula is intended to decrease the long-term utility value for
flows that maintain a small buffer fill level at the client for
a long time, it should not be applied in the beginning of the
streaming when the buffer fill level is small; the same holds
for E[∆] which is computed from the instant client buffer
fill levels measured each second up to the present time. In
our simulations, we apply this penalty term only after a time
interval of at least one third of the video stream’s length in
seconds has passed from the beginning of streaming.

VI. SIMULATIONS

In this section we discuss the results of the simulations we
have performed using the ns-2 simulator in order to assess
the value of the Utility-driven TCP-Friendly Rate Control
(UTFRC) approach. As said in the previous section, we only
consider in these simulations the first and the third media-
friendly function. We show that they are suitable functions
for UTFRC and that UTFRC is beneficial for video streaming
applications.

In order to be of use for transporting video streams over
the Internet, UTFRC must have two properties: it must be

TCP-friendly to other flows and be media-friendly to the
streaming application. So in our tests, we first check whether
the average transmission rate of a UTFRC flow is similar to
the average transmission rate of a TCP-friendly flow (e.g., a
TFRC flow) under the same network conditions; second, we
validate that streaming video data over UTFRC is actually
beneficial for the streaming application, i.e., streaming video
data over UTFRC is better than streaming video data over
existing TCP-friendly congestion control protocols like TFRC.
We assess this improvement by considering the client buffer(s):
a smaller number of empty client buffer events/periods (thus,
fewer/shorter playout stalls) and a smaller variation in client
buffer fill levels for UTFRC are expected to show the superi-
ority of UTFRC as compared to TFRC.

As we will see later in this section it is very difficult for a
UTFRC flow to obtain exactly the same average throughput as
a TFRC flow under the same network conditions. TCP does
not guarantee this equality, nor does TFRC. This is shown for
example in [7], Figure 9, where the difference between average
transmission rates of two TCP or TFRC flows competing in
the same network is between 20% and 40%.

We use in the simulations the bitrate distribution of the
Elephants Dream movie which has an average bitrate of
1923.6 kbps and is 653 seconds long. The bitrate per second of
this movie was depicted in Fig. 1. We use two ns-2 network
setups for our simulations, a simplistic one and a complex
one. In the simplistic setup, the network is shared by 16
TCP flows sending FTP data and 2 TFRC flows, denoted here
by TFRC1 and TFRC2, which were streaming the Elephants
Dream movie. The topology of the network is a typical
dumbbell topology. Each flow has its own independent source
and destination nodes which are linked to the bottleneck link
by independent access links having a one-way delay between
1 and 5 ms. The one-way delay of the bottleneck link is 50
ms, the queue policy is RED with default parameters and the
queue size is twice the bandwidth-delay product. The capacity
of the bottleneck link is varied between experiments from 60
Mbps to 36 Mbps, with 4 Mbps decrements. So, the network
capacity has the following 7 values in the simple network
setup: 60 Mbps, 56 Mbps, 52 Mbps, 48 Mbps, 44 Mbps, 40
Mbps, and 36 Mbps. We have chosen these network capacity
values so that a regular TFRC flow will be able to stream the
test video with no empty buffer times (in our network setup)
when the 60 Mbps value is used, and then starts experiencing
an increasing number of empty buffer times, as the network
capacity gradually decreases to 36 Mbps. We want to see
how UTFRC behaves in situations in which TFRC is not able
to avoid empty client buffers. For each of these 7 network
capacities, we run 3 simulations:
• No media-friendly - a simulation in which TFRC1 and

TFRC2 are regular TFRC flows;
• 1st media-friendly function - a simulation in which

TFRC1 is modified to be a UTFRC flow using the
first media-friendly function (called UTFRC1(M1) in the
following text) and TFRC2 is a regular TFRC flow;

• 3rd media-friendly function - a simulation in which
TFRC1 is modified to be a UTFRC flow using the
third media-friendly function (called UTFRC1(M3) in the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 11

following text) and TFRC2 is a regular TFRC flow.
The TCP versions we use are TCP Reno and NewReno. The
TCP flows start at random times distributed between seconds
1 and 2 of the simulation. The TFRC/UTFRC flows always
start at second 0 of the simulation. We implemented the
player buffer in ns-2 at the server-side, not the client-side, so
that its values are readily available to the congestion control
algorithm. The buffer is filled by packets as soon as they are
sent by the server and it is drained at the end of each playout
second by the amount of bytes of that specific video second.
If the buffer does not have enough video data at the end of
a playout second, then playing is stalled until the buffer is
filled with enough video data so that the playout can move
to the next second. In this manner, the buffer does not take
into account the propagation delay from the server to the
client. Although it had been more realistic for the buffer to
be implemented at the client side, because RTT is relatively
constant in our simulations and because, as we have seen in
the simulations, empty buffer times tend to be clustered in
consecutive seconds, we do not expect significant changes if
the buffer had been simulated at the client side. Also, this way
of simulating the playout buffer affects in the same manner the
TFRC flows and the UTFRC flows we are comparing.

A final observation related to the media-friendly factor is
that in our simulations, at the beginning of the streaming
process, there is an initial buffer ramp up period of 8 seconds
in which playing has not yet started and the transmission rate
used by the flow is the one computed by TFRC. Playing of
the video and consequently, the draining of the client buffer,
is only started after these 8 seconds initial buffering period.
We do not apply the media-friendly factor in these 8 seconds
period because the TFRC-computed transmission rate is just
reaching a steady-state level and fluctuates a lot.

The simulation lasts for 657 seconds, which is a little
more than the length of our video stream. In all cases, we
measure the playout buffer fill level, the average throughput,
the transmission rates, and the loss event rate. Due to space
limitation we only summarize in Table I our findings. In
Table I, the columns represent the network capacity for the
bottleneck link used in the simulations (60 Mbps, 56 Mbps,
etc.) and the rows present measurements for flows TFRC1 and
TFRC2 in each of the three types of simulations: the no media-
friendly simulation, the 1st media-friendly function simulation,
and the 3rd media-friendly function simulation. For each of
the two flows, the number (count) of independent seconds
when the playout buffer was empty, the average throughput at
the end of the streaming session, and the time the streaming
session ended are recorded. For example, in the no media-
friendly simulation scenario with a network capacity of 60
Mbps, flow TFRC1 had 0 times an empty playout buffer,
had an average throughput of 3.139 Mbps at the end of the
streaming session and finished streaming the whole video to
the client at time 400.18 seconds of the simulation. In each
simulation, the average throughput attained by TCP flows is
also displayed in order to outline the TCP-friendliness of
UTFRC. We highlight in bold font the situations when the
number of empty buffer seconds is greater than zero. We can
see here that UTFRC gives fewer empty buffer events for

flow TFRC1, either when the first or the third media-friendly
function is being used, while maintaining TCP-friendliness.

Because we cannot present in detail the measurements of
each cell of this table (due to the large number of figures
this would yield), we take a typical simulation, for example
the one when the network capacity is 44 Mbps, and present
for this capacity the detailed evolution of flows UTFRC1
(using the M1 and M3 media-friendly functions) and TFRC2
in Figures 3 to 9. Figure 3 presents the average throughput
of flows UTFRC1(M1) and TFRC2 and we can see here
that at the end of the streaming, the average throughput for
flow UTFRC1(M1) is very close to the average throughput of
TFRC2. The same can be seen in Figure 4 for the case when
the third media-friendly function is used for the UTFRC flow.
There are two lines drawn for the UTFRC flow, in each of
Figures 3 and 4. The red line plots the average throughput
obtained by the UTFRC flow and the green line plots the
average throughput of the UTFRC flow but considering only
the TFRC component from Equation 2 without the media-
friendly factor. Figures 5 and 6 present the buffer fill levels
of flows UTFRC1 and TFRC2 when the first media-friendly
function is used (in Figure 5) and when the third media-
friendly function is used (in Figure 6). Although both flows
stream the same video and, as we have seen in Figures 3 and 4,
they have the same average throughput at the end, we can see
that the buffer fill level is much higher for the UTFRC flow.
Figure 7 presents the transmission rate evolution for flows
UTFRC1(M1) and TFRC2. The transmission rate obtained
when the third media-friendly function is used is similar to
the transmission rate obtained by flow UTFRC1(M1) and we
omit this figure. Finally, Figures 8 and 9 show that UTFRC
does not modify significantly the loss-event rate seen by the
flow in comparison to the loss-event rate seen by a TFRC flow.
The first media-friendly function (M1) is being used in Figure
8, while the third media-friendly function (M3) is being used
in Figure 9 for the UTFRC flow.

In the complex network setup, the network topology is
identical to the one used in the simple setup, but the number
of flows sharing the network has been increased. This time,
the network is shared by 16 TCP flows sending FTP data
and 8 TFRC flows (denoted here by TFRC1, TFRC2, TFRC3,
TFRC4, TFRC5, TFRC6, TFRC7, TFRC8) which are stream-
ing versions of the Elephants Dream movie. These versions of
the Elephants Dream movie were obtained from the original
Elephants Dream movie (whose bitrate distribution is depicted
in Figure 1) by shifting around groups of consecutive sec-
onds from the video (i.e., changing the order in the stream

 0

 0.005

 0.01

 0.015

 0.02

 0 100 200 300 400 500 600

L
o

s
s
 e

v
e
n
t

ra
te

Time (seconds)

UTFRC1(M3) loss event rate
TFRC2 loss event rate

Fig. 9. Loss-event rates of flows UTFRC1(M3) (a 3rd UTFRC variant flow)
and TFRC2 (regular TFRC flow)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 12

Network capacity
60 Mbps 56 Mbps 52 Mbps 48 Mbps 44 Mbps 40 Mbps 36 Mbps

No media-friendly TFRC1 0 (3.139)
400.18

37 (2.614)
480.56

65 (2.503)
501.84

77 (2.322)
541.01

211 (2.145)
585.72

526 (1.973)
636.69

609 (1.754)
-

TFRC2 0 (3.059)
410.57

41 (2.653)
473.47

75 (2.480)
506.55

83 (2.431)
516.78

124 (2.280)
550.94

536 (2.005)
626.50

565 (1.780)
-

Avg. TCP 2.786 2.682 2.485 2.316 2.129 1.966 1.817
1st media-friendly
function

TFRC1
(UTFRC1(M1))

0 (2.736)
459.12

0 (2.719)
462.00

0 (2.917)
430.59

0 (2.432)
516.58

0 (2.241)
560.57

129 (1.926)
652.20

152 (1.910)
-

TFRC2 0 (3.017)
416.28

4 (2.787)
450.72

82 (2.529)
496.69

94 (2.294)
547.56

254 (2.188)
574.10

546 (1.978)
634.96

607 (1.745)
-

Avg. TCP 2.810 2.663 2.462 2.332 2.137 1.980 1.816
3rd media-friendly
function

TFRC1
(UTFRC1(M3))

0 (2.845)
441.59

0 (2.587)
485.46

0 (2.565)
489.68

0 (2.318)
541.88

0 (2.136)
588.10

53 (1.954)
642.89

243 (1.927)
651.90

TFRC2 0 (3.180)
395.02

24 (2.831)
443.74

58 (2.595)
484.05

103 (2.409)
521.52

123 (2.209)
568.52

477 (2.015)
623.30

586 (1.838)
-

Avg. TCP 2.794 2.647 2.481 2.306 2.152 1.983 1.806

TABLE I
RESULTS FOR THE SIMPLE NETWORK SETUP SIMULATION. A CELL CONTAINS: THE NUMBER OF SECONDS WHEN THE PLAYOUT BUFFER WAS EMPTY, THE
AVERAGE THROUGHPUT OF THE FLOW (IN MBPS; INSIDE BRACKETS) AT THE END OF THE STREAMING SESSION AND THE TIME WHEN THIS STREAMING

SESSION ENDED. THE AVERAGE TCP THROUGHPUT (IN MBPS) IS ALSO SHOWN FOR EACH SIMULATION.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

kb
ps

)

Time (seconds)

Avg. throughput UTFRC1(M1)
Avg. tfrc throughput UTFRC1(M1)

Avg. throughput TFRC2

Fig. 3. Average throughputs of flows
UTFRC1(M1) (a 1st UTFRC variant flow)
and TFRC2 (regular TFRC flow)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

kb
ps

)

Time (seconds)

Avg. throughput UTFRC1(M3)
Avg. tfrc throughput UTFRC1(M3)

Avg. throughput TFRC2

Fig. 4. Average throughputs of flows
UTFRC1(M3) (a 3rd UTFRC variant flow)
and TFRC2 (regular TFRC flow)

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

C
lie

nt
 b

uf
fe

r
fil

l l
ev

el
 (

in
 s

ec
on

ds
)

Time (seconds)

Buffer UTFRC1(M1)
Buffer TFRC2

Fig. 5. Buffer fill levels of flows UTFRC1(M1)
(a 1st UTFRC variant flow) and TFRC2 (regular
TFRC flow)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600

C
lie

nt
 b

uf
fe

r
fil

l l
ev

el
 (

in
 s

ec
on

ds
)

Time (seconds)

Buffer UTFRC1(M3)
Buffer TFRC2

Fig. 6. Buffer fill levels of flows UTFRC1(M3)
(a 3rd UTFRC variant flow) and TFRC2 (regular
TFRC flow)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600

T
ra

ns
m

is
si

on
 r

at
e

(k
bp

s)

Time (seconds)

UTFRC1(M1) transmission rate
TFRC2 transmission rate

Fig. 7. Transmission rates of flows UTFRC1(M1)
(a 1st UTFRC variant flow) and TFRC2 (regular
TFRC flow)

 0

 0.005

 0.01

 0.015

 0.02

 0 100 200 300 400 500 600

L
o
s
s
 e

v
e
n
t
ra

te

Time (seconds)

UTFRC1(M1) loss event rate
TFRC2 loss event rate

Fig. 8. Loss-event rates of flows UTFRC1(M1)
(a 1st UTFRC variant flow) and TFRC2 (regular
TFRC flow)

of these 40 consecutive video seconds groups) so that the
average bitrate of the new stream does not change, but the
bitrate distribution changes significantly. The bitrates of these
four artificial video streams are depicted in Figure 10, but
for readability of this figure, the bitrates are averaged over
groups of 40 consecutive seconds for each video stream. In
the complex network setup, flows TFRC1 and TFRC5 were
streaming the video stream #1, flows TFRC2 and TFRC6 were
streaming the video stream #2, flows TFRC3 and TFRC7 were
streaming the video stream #3 and, finally, flows TFRC4 and
TFRC8 were streaming the video stream #4.

In addition, 6 other TCP flows start at random times
between seconds 100 and 200, and seconds 300 and 400,
respectively, and they all last random times between 1 and
100 seconds. These flows add load to the network and give

 1

 2

 3

 4 0
 100

 200
 300

 400
 500

 600
 700

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

B
itr

at
e

(k
bp

s)

40sec average bitrate for stream 1
40sec average bitrate for stream 2
40sec average bitrate for stream 3
40sec average bitrate for stream 4

Stream

Time (sec.)

B
itr

at
e

(k
bp

s)

Fig. 10. 40 seconds average bitrates of the 4 artificial video streams used

a more fluctuating bandwidth. The access links of the flows’
destination and source nodes are still having a one-way delay

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 13

between 1 and 5 ms. The one-way delay of the bottleneck link
is still 50 ms, the queue policy is RED with default parameters
and the queue size is twice the bandwidth-delay product. The
network capacity of the bottleneck link is this time: 64 Mbps,
60 Mbps, 56 Mbps, 52 Mbps, 48 Mbps, 44 Mbps. We start
from a value larger than the one used in the simple setup (i.e.,
64 Mbps), because this time the network is shared by more
flows and we use fewer values in order to better summarize
the results in the table below. For each of these 6 network
bandwidths, we run 3 simulations:

• No media-friendly - a simulation in which all TFRC
flows are regular TFRC flows;

• 1st media-friendly function - a simulation in which
TFRC1, TFRC2, TFRC3, TFRC4 are modified to be
UTFRC flows using the 1st media-friendly function (and
called UTFRC1(M1), UTFRC2(M1), UTFRC3(M1),
UTFRC4(M1) in the following text) and the remaining
TFRC flows are not media-friendly;

• 3rd media-friendly function - a simulation in which
TFRC1, TFRC2, TFRC3, TFRC4 are modified to be
UTFRC flows using the 3rd media-friendly function (and
called UTFRC1(M3), UTFRC2(M3), UTFRC3(M3),
UTFRC4(M3) in the following text) and the remaining
TFRC flows are not media-friendly.

The results are summarized in Table II. This table has
approximately the same format as Table I, but in this case
we have slightly different and fewer network capacities (in
order to avoid an overly large Table II). We present the
measurements for all 8 TFRC/UTFRC flows and we omit the
streaming end time of each flow. So, for each flow the number
of empty buffer seconds is shown and, in parentheses, the
average throughput of the flow at the end of the streaming. We
can see in this table that all flows experience increasing empty
buffer counts as the network capacity drops gradually from
64 Mbps to 44 Mbps. But the UTFRC flows (flows UTFRC1,
UTFRC2, UTFRC3 and UTFRC4) manage to avoid empty
client buffers much better than the regular TFRC flows (flows
TFRC5, TFRC6, TFRC7 and TFRC8). In this table we can
see that both media-friendly functions, M1 and M3, managed
to completely avoid empty buffers when the network capacity
was 64 Mbps and in the 60 Mbps case, only 2 UTFRC flows
had empty buffer levels for the 1st media-friendly function
and 1 UTFRC flow had empty buffer levels for the 3rd media-
friendly function, while regular TFRC flows had empty buffer
counts larger than 100 (except flow TFRC8). In addition,
when the network capacity was 56 Mbps or 52 Mbps, the
empty buffer counts were significantly lower for all UTFRC
flows than the empty buffer counts obtained for regular TFRC
flows. For the 48 Mbps and 44 Mbps network capacities, most
UTFRC flows still achieved empty buffer counts smaller than
their corresponding regular TFRC flows.

Because the results obtained in the experiments performed
in the complex network setup are summarized in Table II and
because they are similar to the results obtained for the simple
network setup in the sense that they show the superiority
of the UTFRC framework (with the 1st and 3rd media-
friendly function) over TFRC for video streaming, we will

only plot two figures with typical results, one plotting average
throughput and the other plotting client buffer fill levels for the
3rd media-friendly function UTFRC. In Figure 11 we can see
the average throughput for all flows (4 TFRC and 4 UTFRC
flows) are approximately equal. This figure is obtained from a
simulation where the network capacity was 56 Mbps, the 3rd
media-friendly function was used for the UTFRC flows and
flows TFRC5, TFRC6, TFRC7, TFRC8 were regular TFRC
flows. Flows UTFRC1(M3) and TFRC5 were streaming video
stream #1 from Figure 10, flows UTFRC2(M3) and TFRC6
were streaming video stream #2, flows UTFRC3(M3) and
TFRC7 were streaming video stream #3 and, finally, flows
UTFRC4(M3) and TFRC8 were streaming video stream #4.
Since the throughputs of all flows are approximately equal
we can conclude that all UTFRC flows were TCP-friendly.
The second figure for the complex network setup is Figure
12 which depicts the client buffer fill levels for the same
experiment as the one used for Figure 11. We can see in
this figure that all UTFRC flows using the 3rd media-friendly
function (flows UTFRC1(M3), UTFRC2(M3), UTFRC3(M3)
and UTFRC4(M3)) managed to sustain higher, more stable
buffer fill levels than the other regular TFRC flows (flows
TFRC5, TFRC6, TFRC7 and TFRC8) which led to fewer
empty buffer counts for these former flows. Equivalent results
were obtained for all network capacity configurations and also
for the 1st media-friendly function, but we omit these plots due
to space constraints.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

kb
ps

)

Time (seconds)

Avg. throughput UTFRC1(M3)
Avg. throughput UTFRC2(M3)
Avg. throughput UTFRC3(M3)
Avg. throughput UTFRC4(M3)

Avg. throughput TFRC5
Avg. throughput TFRC6
Avg. throughput TFRC7
Avg. throughput TFRC8

Fig. 11. Average throughputs for 8 flows in the complex network setup
(the UTFRC flows use the 3rd media-friendly function and TFRC5, TFRC6,
TFRC7, TFRC8 are regular TFRC flows)

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700

C
lie

n
t
b
u
ff
e
r

fi
ll

le
v
e
l
(i
n
 s

e
c
o
n
d
s
)

Time (seconds)

Buffer UTFRC1(M3)
Buffer UTFRC2(M3)
Buffer UTFRC3(M3)
Buffer UTFRC4(M3)

Buffer TFRC5
Buffer TFRC6
Buffer TFRC7
Buffer TFRC8

Fig. 12. Buffer fill levels for 8 flows in the complex network setup (the
UTFRC flows use the 3rd media-friendly function and TFRC5, TFRC6,
TFRC7, TFRC8 are regular TFRC flows)

VII. CONCLUSIONS

We have presented in this paper a congestion control frame-
work more suitable for multimedia streaming applications

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 14

Network capacity
64 Mbps 60 Mbps 56 Mbps 52 Mbps 48 Mbps 44 Mbps

No media-friendly TFRC1 80 (2.351) 92 (2.282) 148 (2.153) 542 (1.924) 608 (1.794) 605 (1.670)
TFRC2 0 (2.329) 208 (2.209) 114 (2.106) 301 (2.018) 599 (1.799) 637 (1.660)
TFRC3 132 (2.438) 230 (2.202) 269 (2.092) 571 (1.940) 638 (1.840) 647 (1.649)
TFRC4 0 (2.374) 0 (2.293) 0 (2.066) 0 (2.045) 220 (1.870) 444 (1.670)
TFRC5 66 (2.465) 149 (2.230) 496 (2.009) 510 (1.946) 551 (1.828) 582 (1.691)
TFRC6 0 (2.291) 53 (2.271) 156 (2.089) 287 (2.022) 574 (1.796) 635 (1.687)
TFRC7 137 (2.321) 276 (2.181) 359 (2.058) 647 (1.871) 648 (1.794) 646 (1.612)
TFRC8 0 (2.316) 0 (2.176) 128 (1.982) 130 (1.965) 278 (1.765) 465 (1.704)

1st Media-friendly
function

UTFRC1(M1) 0 (2.293) 0 (2.218) 0 (2.071) 292 (1.979) 572 (1.733) 612 (1.641)
UTFRC2(M1) 0 (2.332) 4 (2.282) 6 (2.106) 58 (2.037) 463 (1.881) 633 (1.724)
UTFRC3(M1) 0 (2.257) 7 (2.269) 30 (2.093) 47 (2.017) 344 (1.854) 631 (1.720)
UTFRC4(M1) 0 (2.347) 0 (2.264) 21 (2.137) 271 (1.954) 488 (1.883) 580 (1.691)
TFRC5 88 (2.455) 127 (2.223) 428 (2.091) 477 (1.981) 543 (1.778) 608 (1.606)
TFRC6 0 (2.353) 112 (2.176) 325 (2.062) 457 (1.903) 622 (1.845) 636 (1.659)
TFRC7 174 (2.294) 267 (2.223) 401 (2.025) 630 (1.897) 648 (1.731) 645 (1.621)
TFRC8 0 (2.368) 0 (2.241) 0 (2.087) 172 (1.922) 266 (1.827) 515 (1.563)

3rd Media-friendly
function

UTFRC1(M3) 0 (2.370) 0 (2.134) 20 (2.116) 93 (1.944) 442 (1.861) 529 (1.812)
UTFRC2(M3) 0 (2.276) 3 (2.271) 0 (2.166) 27 (1.949) 237 (1.887) 502 (1.770)
UTFRC3(M3) 0 (2.288) 0 (2.304) 5 (2.152) 40 (1.963) 78 (1.875) 636 (1.761)
UTFRC4(M3) 0 (2.421) 0 (2.305) 0 (2.040) 94 (1.957) 158 (1.880) 489 (1.805)
TFRC5 73 (2.369) 191 (2.164) 371 (2.133) 550 (1.903) 558 (1.843) 609 (1.623)
TFRC6 0 (2.387) 122 (2.209) 381 (2.012) 388 (1.983) 637 (1.775) 635 (1.646)
TFRC7 252 (2.235) 269 (2.115) 306 (2.043) 463 (1.964) 648 (1.787) 645 (1.674)
TFRC8 0 (2.404) 0 (2.182) 0 (2.086) 257 (1.858) 292 (1.779) 507 (1.665)

TABLE II
RESULTS FOR THE COMPLEX NETWORK SETUP SIMULATION. A CELL CONTAINS: THE NUMBER OF SECONDS WHEN THE PLAYOUT BUFFER WAS EMPTY

AND THE AVERAGE THROUGHPUT (IN MBPS) OF THAT FLOW AT THE END OF ITS STREAMING SESSION (IN BRACKETS)

than classical TCP-friendly congestion control algorithms. Our
congestion control framework termed UTFRC (Utility-driven
TCP-Friendly Rate Control) relies on TFRC for achieving
TCP-friendliness and tries to make it more media-friendly or
application-friendly. Although our framework uses TFRC, it
is important to emphasize that in theory other smooth TCP-
friendly congestion control algorithms could be used by our
framework instead of TFRC, but this has to be validated in
practice. Besides the framework for building TCP-friendly and
media-friendly algorithms for multimedia streaming we have
also outlined in the paper four proof-of-concept congestion
control algorithms developed with the UTFRC framework.
From these four proof-of-concept congestion control algo-
rithms, two were presented in detail and extensively tested
through network simulations. From a theoretical point of
view, we stated and proved in the paper three theorems and
some additional propositions that give us guidelines on how
to combine the media-friendly factor and the TCP-friendly
factor in UTFRC so that the resulting congestion control
protocol is a valid one and beneficial for multimedia streaming
applications. A significant number of tests were performed
for two of the UTFRC variants presented in order to prove
they achieve TCP-friendliness and media-friendliness in the
long term. These tests also showed that UTFRC is beneficial
for video streaming applications. UTFRC is well suited for
various video streaming services like video on demand, video
broadcasting, live streaming, etc. As future work, we plan to
develop other media-friendly functions for UTFRC using other
media and application characteristics and to validate that other
TCP-friendly congestion control algorithms, besides TFRC,
can be used in UTFRC for achieving TCP-friendliness.

REFERENCES

[1] D. Damjanovic, M. Welzl, An Extension of the TCP Steady-State
Throughput Equation for Parallel Flows and Its Application in MulTFRC,
IEEE/ACM Trans. on Networking, vol. 19, no. 6, pp. 1676–1689, Dec.
2011.

[2] B. Wang, J. Kurose, P. Shenoy, D. Towsley, Multimedia Streaming
via TCP: An Analytic Performance Study, ACM Trans. on Multimedia
Computing, Communications and Applications, vol. 4, no. 2, pp. 16:1–
16:22, May 2008.

[3] S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP Friendly Rate Control,
RFC 5348, September 2008.

[4] I. Rhee, L. Xu, Limitations of Equation-based Congestion Control,
IEEE/ACM Trans. on Networking, vol. 15, no. 4, pp. 852–865, Aug.
2007.

[5] Z. Wang, S. Banerjee, S. Jamin, Media-Friendliness of A Slowly-
Responsive Congestion Control Protocol, In Proc. of NOSSDAV 2004,
pp. 82–87.

[6] F. Pereira, T. Ebrahimi, The MPEG-4 Book, Prentice Hall PTR, 2002.
[7] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-Based Congestion

Control for Unicast Applications, In Proc. of ACM SIGCOMM 2000, pp.
43–56.

[8] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP Throughput: A
Simple Model and its Empirical Validation, In Proc. of ACM SIGCOMM
1998, pp. 303–314.

[9] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, Dynamic Behavior
of Slowly-responsive Congestion Control Algorithms, In Proc. of ACM
SIGCOMM 2001, pp. 263–274.

[10] Y. R. Yang, Min Sik Kim, S. S. Lam, Transient Behaviors of TCP-
friendly Congestion Control Protocols, In Proc. of IEEE Infocom 2001,
vol. 3, pp. 1716–1725.

[11] S. Floyd, M. Handley, J. Padhye, A Comparison of Equation-
Based and AIMD Congestion Control, ACIRI, February 2000,
http://www.aciri.org/tfrc/.

[12] D. Bansal, H. Balakrishnan, Binomial Congestion Control Algorithms,
In Proc. of IEEE Infocom 2001, vol. 2, pp. 631–640.

[13] R. Rejaie, M. Handley, D. Estrin, RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet, In
Proc. of IEEE Infocom 1999, vol. 3, pp. 1337–1345.

[14] D. Sisalem, H. Schulzrinne, The Loss-Delay Based Adjustment Algo-
rithm: A TCP-Friendly Adaptation Scheme, In Proc. of NOSSDAV 1998.

[15] I. Rhee, V. Ozdemir, Y. Yi, TEAR: TCP Emulation at Receivers – Flow
Control for Multimedia Streaming, April 2000. NCSU Technical Report.

[16] J. Yan, K. Katrinis, M. May, B. Plattner, Media- and TCP-Friendly Con-
gestion Control for Scalable Video Streams, IEEE Trans. on Multimedia,
vol. 8, no. 2, pp. 196–206, April 2006.

[17] F. P. Kelly, A. K. Maulloo, D. K. H. Tan, Rate Control for Communi-
cation Networks: Shadow Prices, Proportional Fairness and Stability, J.
Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Mar. 1998.

[18] S. H. Low, D. E. Lapsley, Optimization Flow Control—I: Basic Algo-
rithm and Convergence, IEEE/ACM Trans. on Networking, vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[19] S. Floyd, K. Fall, Promoting the Use of End-to-End Congestion Control
in the Internet, IEEE/ACM Trans. on Networking, vol. 7, no. 4, pp. 458–
472, Aug. 1999.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, AUGUST 2015 15

[20] M. Vojnovic, J.-Y. Le Boudec, On the Long-Run Behavior of Equation-
Based Rate Control, IEEE/ACM Trans. on Networking, vol. 13, no. 3,
pp. 568–581, 2005.

[21] The ns-2 Network Simulator, http://www.isi.edu/nsnam/ns/.
[22] A. Sterca, UTFRC - Utility-driven TCP-Friendly Rate Control for

Multimedia Streams, In Proc. of Euromicro PDP 2009, pp. 167–172.

Adrian Sterca is a lecturer at the Faculty of
Mathematics and Computer Science, Babes-Bolyai
University, Romania. He received the Ph.D. degree
from Babes-Bolyai University in 2009. He received
2 research grants from the Romanian funding agency
and was a visiting researcher at the Institute of
Information Technology (ITEC), Klagenfurt Uni-
versity, Austria in 2003, 2004 and 2006. He is a
member of the ACM. His current research interests
are networking, multimedia streaming and image
processing.

Hermann Hellwagner is a full professor of In-
formatics in the Institute of Information Technol-
ogy (ITEC), Klagenfurt University, Austria, leading
the Multimedia Communications group. His current
research areas are distributed multimedia systems,
multimedia communications, and quality of service.
He has received many research grants from national
(Austria, Germany) and European funding agencies
as well as from industry, is the editor of several
books, and has published more than 200 scientific
papers on parallel computer architecture, parallel

programming, and multimedia communications and adaptation. He is a senior
member of the IEEE, member of the ACM, GI (German Informatics Society)
and OCG (Austrian Computer Society), and Vice President of the Austrian
Science Fund (FWF).

Florian Boian is a full professor of Computer
Science at the Faculty of Mathematics and Com-
puter Science, Babes-Bolyai University, Romania.
He has authored more than 100 scientific papers and
published several books on Java-based frameworks,
operating systems and distributed systems. He won
several research grants from the Romanian funding
agency. His current research interests are web ser-
vices and distributed systems.

Alexandru Vancea is a lecturer at the Faculty of
Mathematics and Computer Science, Babes-Bolyai
University, Romania. He received the Ph.D. degree
in Computer Science from Babes-Bolyai University
in 2000. His current research interests are parallel
programming and multimedia streaming. He has
close collaborations with the industry on medical
software.

