
Seminar VI. Multi-module programming in assembly

 Multi-module programming = building an executable file that is composed from several

obj modules.

 You will write several source files: module1.asm, module2.asm … module.asm, compile

them separately using the command:

nasm.exe –fobj module1.asm

………..

nasm.exe –fobj moduleN.asm

 and link them together in an executable file with the command:

 alink.exe -oPE -subsys console -entry start module1.obj module2.obj …moduleN.obj

 You will obtain one executable file: module1.exe.

 One module will contain the main program and the other modules describe

functions/procedures which are called from the main module.

 At the lab you will only write 2-module programs (one module containing the main

program and the other containing a function that is called from the main module.

 Using the reserved word global we can export a symbol (variable or procedure) defined

in the current module, in order to use it in another module; the other module will import

the external symbol using the reserved word extern.

Obs: Constants/equ can not be exported since they do not have a memory space.

Passing the parameters to a function/procedure defined in another module

There are three alternatives for this:

 Parameters can be passed using the registers; the problem with this is the fact that there is

a limited number of registers and some of them can be occupied with data (so they are

not available)

 Parameters can be passed to the function in the other module by declaring them global;

the problem with this is that it breaks an old and important principle of programming:

modularization (i.e. a program is better maintained if it is formed by independent

modules linked together, e.g. functions, source files etc.) and everything becomes global

(part to the same namespace which can cause name clashes – the same symbol is defined

in different places); modularization is the reason we have functions with local variables

in a program and not the whole code being written in a giant main body/function.

 Parameters can be passed using the stack – this is the most powerful and flexible solution

which is used by the majority of compiled programming languages.

Below we will give an example for each of the three mechanisms for passing the parameters

described above, all examples solving a simple problem, that of computing the expression:

x:=a+b.

Ex.1. Parameters are passed by the main module to the function in the other module using

registers.

Module main.asm Module function.asm
bits 32

global start

extern exit

bits 32

; we export the ‘addition’ function in order to be

; used in the main module

import exit msvcrt.dll

; we import the ‘addition’ function from the

; function.asm module

extern addition

segment data use32 class=data public

 a db 2

 b db 3

 x db 0

segment code use32 class=code public

start:

 ; put the parameters in registers

 mov bl, [a]

 mov bh, [b]

 ; call the function

 call addition

 ; result is in AL

 mov [x], al

 ; call exit(0)

 push dword 0

 call [exit]

global addition

segment code use32 class=code public

; the code segment contains only the addition

; function

addition:

 ; the parameters are in: BL=a, BH=b

 ; we will return the result in AL

 mov al, bl

 add al, bh

 ; return from function

 ; (it removes the Return Address from the stack

 ; and jumps to the Return Address)

 ret

Ex.2. Parameters are passed by the main module to the function in the other module using global

variables.

Module main.asm Module function.asm
bits 32

global start

extern exit

import exit msvcrt.dll

; we import the ‘addition’ function from the

; function.asm module

extern addition

; we export variables a, b and x in order to be used

; in the other module

global a

global b

global x

segment data use32 class=data public

 a db 2

 b db 3

 x db 0

segment code use32 class=code public

start:

 ; there is no need to do anything with the

 ; parameters. They are already accessible to the

bits 32

; we export the ‘addition’ function in order to be

; used in the main module

global addition

; import the a, b, x variables from the other module

extern a, b, x

segment code use32 class=code public

; the code segment contains only the addition

; function

addition:

 ; the parameters are directly accessible in global

 ; variables a, b and x (which are global)

 mov al, [a]

 add al, [b]

 mov [x], al

 ; return from function

 ; (it removes the Return Address from the stack

 ; and jumps to the Return Address)

 ret

 ; other module (because they are global).

 ; call the function

 call addition

 ; the result is already placed in x by the addition

 ; function

 ; call exit(0)

 push dword 0

 call [exit]

Ex.3. Parameters are passed by the main module to the function in the other module using the

stack.

Module main.asm Module function.asm
bits 32

global start

extern exit

import exit msvcrt.dll

; we import the ‘addition’ function from the

; function.asm module

extern addition

segment data use32 class=data public

 a db 2

 b db 3

 x db 0

segment code use32 class=code public

start:

 ; put the parameters a, b and x on the stack

 ; we can not put bytes on the stack, we will put

 ; dwords

 mov eax, 0

 mov al, [a]

 push eax

 mov al, [b]

 push eax

 mov al, [x]

 push eax

 ; call the function

 call addition

 ; the result is in the dword from the top of the stack

 pop eax

 mov [x], al ; x := a + b

 ; we still have to remove 2 dwords from the stack

 ; (the dwords corresponding to ‘a’ and ‘b’)

 add esp, 4*2

 ; instead of the above instruction we could have

 ; used two ‘pop eax’ instructions

bits 32

; we export the ‘addition’ function in order to be

; used in the main module

global addition

segment code use32 class=code public

; the code segment contains only the addition

; function

addition:

 ; the parameters are on the stack

 ; the stack looks like this:

 ; remember that a stack element is 4 bytes

 ; (dword) and the stack grows toward smaller

 ; addresses (meaning that the dword from the top

 ; of the stack is placed at the smallest memory

 ; address).

 ; the Return Address was placed on the stack by

 ; the ‘call addition’ instruction in the main module.

 mov eax, dword [esp+12]

 mov bl, al ; bl = a

 mov eax, dword [esp+8]

 add bl, al ; bl = a + b

 mov al, bl

 mov dword [esp+4], eax ; place a+b on the stack

 ; for the main module

Return Address

x

b

a

[ESP]

[ESP+4]

[ESP+8]

[ESP+12]

 ; call exit(0)

 push dword 0

 call [exit]

 ; return from function

 ; (‘ret’ removes the Return Address from the

 ; top of the stack and jumps to the Return Address)

 ret

Ex. 4. Write a program that concatenates 2 strings by calling a function from another module and

then prints the resulted string on the screen.

Main.asm module:

bits 32

global start

extern exit, printf

extern concatenare ; import ‘concatenare’ from the other module

import printf msvcrt.dll

import exit msvcrt.dll

segment data use32 class=data public

 s1 db 'abcd'

 len1 equ $-s1

 s2 db '1234'

 len2 equ $-s2

 s3 times len1+len2+1 db 0

segment code use32 class=code public

start:

 ; we place all the parameters on the stack

 push dword len1

 push dword len2

 push dword s3

 push dword s2

 push dword s1

 call concatenare

 add esp, 4*5

 push dword s3

 call [printf]

 push dword 0

 call [exit]

Function.asm module:

bits 32

global concatenare ; export concatenare

segment code use32 class=code public

 concatenare:

 ; the stack looks like this:

 ; first copy s1 in s3

 mov esi, [esp+4] ; ESI = the offset of the source string (s1)

 mov edi, [esp+12] ; EDI = the offset of the destination string(s3)

 mov ecx, [esp+20] ; ECX = len1

 cld

 rep movsb ; rep repeats movsb ECX times

 ; then, copy s2 at the end of s3

 mov esi, [esp+8] ; ESI = the offset of the source string (s2)

 ; EDI already contains the offset of the destination string

 mov ecx, [esp+16] ; ECX = len2

 rep movsb ; rep repeats movsb ECX times

 ret

Ex. 5. Write a multi-module programming which prints the value of AL in binary on the screen.

Main module:

bits 32

global start

extern exit

import exit msvcrt.dll

extern printBinary

segment code use 32 class=code

Return Address

s1

s2

s3

[ESP]

[ESP+4]

[ESP+8]

[ESP+12]

len2

len1

[ESP+16]

[ESP+20]

start:

 ; call printBinary(integer AL)

 mov al, 11000111b

 push eax

 call printBinary

 add esp, 4*1

 ; call exit(0)

 push dword 0

 call [exit]

Secondary module:

bits 32

global printBinary

extern printf

import printf msvcrt.dll

segment data use 32

format db "%c", 0

savedECX dd 0

segment code use 32

printBinary:

 ; print the low byte from dword [esp+4] in binary on the screen

 mov eax, [esp+4] ; take the parameter from the stack and store it in EAX

 ; (we only need the least significant byte)

 ; We obtain first the binary digits of AL by continuously dividing AL

 ; to 2 and then the obtained quotient to 2 and so on until we get the

 ; quotient zero. We keep the remainders which are the digits of AL in

 ; base 2, but they are in reverse order.

 ; Example: assume we want to obtain the digits of 6 in base 2:

 ; 6 div 2 = 3, 6 mod 2 = 0

 ; 3 div 2 = 1, 3 mod 2 = 1

 ; 1 div 2 = 0, 1 mod 2 = 1

 ; The digits of 6 in base 2, in reverse order are: 011.

 ; The digits of 6 in base 2 in the correct order are: 110.

 ; Because we obtain the digits in the reverse order, we print them in the correct

 ; order by placing them on the stack and then poping them, one at a time,

 ; from the stack and printing them.

 mov ecx, 0 ; ECX stores the number of digits placed on the stack

 mov dx, 0

 mov bl, 2

 repeat:

 mov ah, 0

 div bl ; AH contains the remainder (the digit)

 mov dl, ah

 push dx ; place the digit on the stack as a word; it would have been

 ; better if we pushed a dword on the stack, but it works the same this way

 inc ecx ; increment the number of digits on the stack

 cmp al, 0

 ja repeat ; when we get to quotient zero, we stop

 mov eax, 0

 ; know all we have to do is pop digits from the stack and print them one at a time

 popDigit:

 mov [savedECX], ecx ; save ECX so that it is not modified inside the printf function

 pop ax ; pop the digit from the stack

 add al, '0' ; obtain the ASCII code of the digit

 ; call printf("%c", byte c) - print the digit on the screen

 push eax ; even if we print a character (%c), we put a dword on the stack

 ; but only the least significant byte of this dword is used

 push dword format

 call [printf]

 add esp, 4*2

 mov ecx, [savedECX] ; restore ECX

 loop popDigit

 ret

