
Seminar V. Library functions call

In order to call functions from a library (e.g. a .dll or .lib library), we need to use the
call [functionname]

instruction which pushes the current memory address (i.e. the Return Address) on the stack and

performs a jump to the starting address of functionname. Before we call the function we

need to pass the actual parameters to the function. The parameters are passed to the function

using the stack using the cdecl calling convention (although there are other calling conventions

that can be used). This calling convention has the following rules:

- The parameters are passed on the stack from right to left; an element of the stack is a

dword

- The default result is returned by the function in EAX

- The EAX, ECX, EDX registers can be modified in the body of the function (there is no

warranty that they keep their initial value (i.e. the value they had before entering the

function) when exiting the function.

- The function will not free the parameters from the stack; it is the responsibility of the

calling code

A list of C run-time library functions (i.e. functions of the msvcrt.dll library) can be found here:

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/crt-alphabetical-function-

reference?view=vs-2017

For printing something on the screen, we will use the function printf(). The syntax of this

function is:

printf (string format, value1, value2, …)

where format is a string that specifies what is printed on the screen and value1, value2 … are

values (bytes, words, dwords, strings). Every character that appears in format is printed on the

screen exactly as it is, except the characters that are preceeded by ‘%’ which will be replaced by

values from the value1, value2 … list. The first character preceeded by ‘%’ from format will be

replaced when printed with value1, the second character preceeded by ‘%’ from format will be

replaced when printed with value2, … In assembly, any value from the values list can be a

constant or a variable. If it is a constant or a variable different than string, its value will be placed

on the stack. If the value is a variable of type string, its offset will be placed on the stack. Below

there are some examples:

printf(“a=%d”, x) - prints on the screen “a=[value of x]”

printf(“%d + %d=%d”,a,b,c) - prints on the screen “[value of a] + [value of b] = [value of c]”

printf(“%s %d”, s, a) - prints on the screen “[string s] [value of a]”.

Conversly, we use the function scanf() for reading from the keyboard. The syntax is:

scanf (string format, variable1, variable2, …)

where format is a string that specifies what is read from the keyboard and variable1, variable2 …

are offsets of variables in assembly (of types bytes, words, dwords, strings). The format string

should only contain ‘%’ characters followed by a type specification like %d - decimal, %s -

string, %c – character. The first ‘%’ expression describes the type of the first value that is read

and set to variable1. The second ‘%’ expression describes the type of the second value that is

read and set to variable2. Etc. Some examples below:

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/crt-alphabetical-function-reference?view=vs-2017
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/crt-alphabetical-function-reference?view=vs-2017

scanf(“%d %d”, a, b) - reads two integer/decimal values and sets them to a and b

scanf(“%s”, s) - reads a string into variable s

Ex.1. The code below will print the message ”n=” on the screen and then will read from the

keyboard the value for the number n.

bits 32
global start
extern exit, printf, scanf ; exit, printf and scanf are external functions
import exit msvcrt.dll
import printf msvcrt.dll ; tell the assembler that function printf is in msvcrt.dll
import scanf msvcrt.dll ;

segment data use32 class=data
 n dd 0
 message db "n=", 0 ; strings for C functions must end with ZERO (ASCIIZ strings)
 format db "%d", 0 ; strings for C functions must end with ZERO (ASCIIZ strings)

segment code use32 class=code
 start:

 ; calling printf(message) => "n=" will be printed on the screen
 push dword message ; we store the offset of message (not its value) on the stack
 call [printf] ; call printf
 add esp, 4*1 ; free parameters from the stack; 4 = dword size in bytes

; 1 = number of parameters
 ; remember that the stack grows towards small addresses and the elements of the stack are dwords.
 ; that is, assuming the dword from the top of the stack is at address ADR, by pushing another dword
 ; on top of the stack, the new dword is on address ADR-4. ESP always points to the top of the stack.
 ; we clear/free 4 bytes from the top of the stack by “add ESP, 4”

 ; call scanf(format, n) => read a decimal number in variable n
 ; parameters are placed on the stack from right to left
 push dword n ; push the offset of n
 push dword format ; push the offset of format
 call [scanf] ;
 add esp, 4 * 2 ; free 2 dwords from the stack

 ; call exit(0)
 push dword 0 ; punem pe stiva parametrul pentru exit
 call [exit] ; apelam exit pentru a incheia programul

Ex.2. A program that reads 2 numbers, a and b, computes their sum and prints it on the screen.

bits 32
global start
extern exit, printf, scanf

import exit msvcrt.dll
import printf msvcrt.dll
import scanf msvcrt.dll

segment data use32 class=data
 a dd 0
 b dd 0
 result dd 0
 format1 db ‘a=’, 0 ; all formats used for scanf/printf are required to be ASCIIZ strings
 format2 db ‘b=’, 0 ; all formats used for scanf/printf are required to be ASCIIZ strings
 readformat db ‘%d’, 0 ; all formats used for scanf/printf are required to be ASCIIZ strings
 printformat db ‘%d + %d = %d’, 10, 0 ; all formats are required to be ASCIIZ strings
 ; 10 is used for newline. Instead of this we could have written:
 ; printformat db `%d + %d = %d\n`,0
 ; Notice the backward apostrophes (`..`)

segment code use32 class=code
start:
 ; call printf(“a=”)
 push dword format1
 call [printf]
 add esp, 4*1

 ; call scanf(“%d”, a)
 push dword a ; push the offset of a for reading (not its value)
 push dword readformat
 call [scanf]
 add esp, 4*2

 ; call printf(“b=”)
 push dword format2
 call [printf]
 add esp, 4*1

 ; call scanf(“%d”, b)
 push dword b ; push the offset of a for reading (not its value)
 push dword readformat
 call [scanf]
 add esp, 4*2

 mov eax, [a]
 add eax, [b]
 mov [result], eax

 ; call printf(“%d + %d = %d\n”, a, b, result)
 push dword [result] ; push the value of result for printing
 push dword [b] ; push the value of b for printing

 push dword [a] ; push the value of a for printing
 push dword printformat
 call [printf]
 add esp,4*4

 push dword 0
 call [exit]

Ex. 3

; This program reads the content of a text file (a.txt), adds 1 to each byte and then writes

; these bytes to a new file (b.txt) and then renames this new file to be the old file name (a.txt).

bits 32

global start

; declare external functions needed by our program
extern exit, perror, fopen, fclose, fread, fwrite, rename, remove
import exit msvcrt.dll
import fopen msvcrt.dll
import fread msvcrt.dll
import fwrite msvcrt.dll
import fclose msvcrt.dll
import rename msvcrt.dll
import remove msvcrt.dll
import perror msvcrt.dll

segment data use32 class=data
 inputfile db 'a.txt', 0
 outputfile db 'b.txt', 0
 modread db 'r', 0
 modwrite db 'w', 0
 c db 0
 handle1 dd -1
 handle2 dd -1
 eroare db 'error:', 0

segment code use32 class=code
start:
 ; fopen(string path, string mode) - opens the file path in the specified mode. mode can be “r”
 ; for reading the file or “w” for writing the file
 push dword modread ; for strings, the offset is pushed on the stack
 push dword inputfile ; for strings, the offset is pushed on the stack
 call [fopen]
 add esp, 4*2

 ; fopen returns in EAX the file handle or zero (in case of error)

 ; this file handle is just a dword used by the operating system and is required for all subsequent
 ; function calls that work with this file.
 mov [handle1], eax ; store the handle in a local variable
 cmp eax, 0
 je theend ; if error, move to the end of the program

 ; fopen(string path, string mode)
 push dword modwrite ; open the outputfile for writting
 push dword outputfile
 call [fopen]
 add esp, 4*2

 ; fopen returns in EAX the file handle or zero (in case of error)
 mov [handle2], eax ; store the second handle in a local variable
 cmp eax, 0
 je theend

 repeat:
 ;fread(string ptr, integer size, integer n, FILE * handle) - reads n times size bytes from the
 ; file identified by handle and place the read bytes in the string ptr.
 ; we read 1 byte from the file handle1
 push dword [handle1] ; read from handle1
 push dword 1 ; read 1 time
 push dword 1 ; read 1 byte
 push dword c ; store the byte in c
 call [fread]
 add esp, 4*4

 cmp eax, 0 ; the function returns zero in EAX in case of error
 je error

 add byte [c], 1

 ;fwrite(string ptr, integer size, integer n, FILE * handle) - writes n times size bytes from
 ; the string ptr into the file identified by handle.
 ; write 1 byte in file handle2
 push dword [handle2] ; write into file handle 2
 push dword 1 ; write 1 time
 push dword 1 ; write 1 byte
 push dword c ; from c
 call [fwrite]
 add esp, 4*4

 cmp eax, 0
 je error

 jmp repeat

 error:
 ; fclose(FILE* handle) - close the file identified by handle
 push dword [handle1]
 call [fclose]
 add esp, 4*1

 ; fclose(FILE* handle) - close the file identified by handle
 push dword [handle2]
 call [fclose]
 add esp, 4*1

 ; remove(string path) - remove the file path
 push dword inputfile
 call [remove]
 add esp, 4*1

 ; rename(string oldname, string newname) - rename the fine oldname into newname
 push dword inputfile
 push dword outputfile
 call [rename]
 add esp, 4*2

 cmp eax, 0 ; returns 0 if it is successful. On an error, the function returns a nonzero value
 je theend ; and an error message which can be printed using the “perror()” function

 ; call perror(eroare) in case of error so that we see a more detailed error message.
 push dword eroare
 call [perror]
 add esp, 4*1

 theend:
 ; exit(0)
 push dword 0
 call [exit]

Ex.4. Write a program that reads a line (a string that can contain spaces) from the standard input.

Scanf() reads a string from standard input until a space character is found. If we want to read

until the newline is found we have to use (gets()).

bits 32
global start
extern exit
import exit msvcrt.dll

extern gets, printf
import gets msvcrt.dll
import printf msvcrt.dll

segment data use32 class=data
 s times 20 db 0
 format db '%s', 10, 0

; our code starts here
segment code use32 class=code
 start:
 ; call gets(string s) for reading a string that may contain spaces
 ; it reads a line from the standard input
 push dword s
 call [gets]
 add esp, 4*1

 ; call printf("%s\n",s)
 push dword s
 push dword format
 call [printf]
 add esp, 4*2

 ; exit(0)
 push dword 0 ; push the parameter for exit onto the stack
 call [exit] ; call exit to terminate the program

