
Seminar III. Little-endian representation of numbers in the

memory. Conditional and unconditional jumps. String operations

III. 1 Little-endian representation in the memory and non-destructive conversions

In the computer memory (not on the CPU registers!) numbers represented on more than 1 byte

are represented in little-endian format (i.e. the least significant byte of the representation is

placed at the smallest memory address).

We also said in the previous seminar that numbers are represented in the memory and on the

CPU registers in the unsigned representation or the signed representation. And now we are

saying numbers are represented in little-endian format in the memory. So which is it?

Well, every number in assembly is represented on 1, 2, 4 or 8 bytes (depending on the context in

which it is declared; if we have this declaration: “a dw 2”, then 2 will be represented on 2 bytes).

It is first represented in binary using signed or unsigned representation. If the number is

represented on more than 1 byte and in the memory (not on the CPU registers), the bytes of the

signed or unsigned representation are then placed in the memory in little-endian format.

Example:

a DD 0
….
mov dword [a], 12345

In the above instruction, the number 12345 is positive so it will be represented in the unsigned

representation on 4 bytes as 0000 0000 0000 0000 0011 0000 0011 1001. Let’s write this binary

number in the hexadecimal base (as we know from seminar 1 that a group of 4 bits is a

hexadecimal digit): 00003039h. This double word number will then be represented in memory in

little-endian representation on 4 bytes as:

The memory addresses: “a”, “a+1”, “a+2”, “a+3” represent the memory addresses of the 4 bytes

of variable “a”; each address is the address of 1 byte. The byte from memory address “a” is the

least significant byte of the number, the byte from memory address “a+1” is the next least

significant byte of the number and so on. We usually use the hexadecimal base when we

represent a number in the memory (because there are less digits) and we also know that 4 bits is

a hexadecimal digit. The above little-endian representation is:

 39 30 00 00

a a+1 a+3 a+2

0011 1001 0011 0000 0000 0000 0000 0000

a a+1 a+3 a+2

If we consider the next example:

mov dword [a], -12345

we first represent -12345 in the signed representation as 1111 1111 1111 1111 1100 1111 1100

0111 and we consider this sequence on 32 bits in hexadecimal as FFFFCFC7h so this will be

represented in the memory in little-endian format as:

The little-endian representation is important when we want to do “non-destructive conversions”

like: refer to the low word of a double word from the memory, refer to the high byte of a word

from the memory, etc.

Ex. 1. Write a program that computes the expression: x:=a*b+c*d where all numbers are

unsigned and represented on a word.

bits 32
global start
extern exit
import exit msvcrt.dll

segment data use32 class=data
 a dw 2
 b dw 5
 c dw 10
 d dw 40
 x dd 0

segment code use32 class=code
start:
 mov ax, [a]
 mul word [b] ; DX:AX := AX * b = 2*5 = 10
 ; we save the doubleword DX:AX into x

C7 CF FF FF

a a+1 a+3 a+2

x x+2

Memory:

CPU:

low word of x high word of x

DX AX

 mov word [x], ax ; save AX into the low word of "x" (i.e. the word from the address "a")
 mov word [a+2], dx ; save DX into the high word of "x" (i.e. the word from the address "a+2")

 mov ax, [c]
 mul word [d] ; DX:AX := AX*d = c*d = 400

 ; add DX:AX to x
 add word [x], ax ; we first add AX to the low word of "x"
 ; if there is an overflow, the CF (Carry Flag) will be set to 1
 ; otherwise CF will be set to zero
 adc word [x+2], dx ; add DX to the high word of "x", but add also the CF

 ; call exit(0)
 push dword 0
 call [exit]

New instructions:

ADC – Add with Carry

adc dest, source => dest:=dest+source+CF

SBB – Substract with borrow

sbb dest, source => dest:=dest-source-CF

III.2 Conditional and unconditional jump instructions

Conditional jump instructions are just like the “IF” instruction in a high-level programming

language. In assembly language, an “IF” is composed of 2 instructions: the compare instruction

and the conditional jump instruction.

The compare instruction:

cmp a, b : performs a non-distructive sub a, b (meaning that a does not change) and sets the

flags accordingly

The conditional jump instructions check the value of specific flags and depending on this value,

performs a “jump in the program” (i.e. moves the execution to a different part of the program – a

part of the program is identified by a label). A conditional jump instruction makes sense and

should follow a cmp instruction.

Conditional jump instructions that consider the numbers unsigned

jb label : (Jump if below) jumps to label if a<b

jbe label : (Jump if below or equal) jumps to label if a<=b

jnb label : (Jump if not below) jumps to label if a>=b

jnbe label : (Jump if not below or equal) jumps to label if a>b

ja label : (Jump if above) jumps to label if a>b

jae label : (Jump if above or equal) jumps to label if a>=b

jna label : (Jump if not above) jumps to label if a<=b

jnae label : (Jump if not above or equal) jumps to label if a<b

The a and b values from above are the a and b operands of the cmp instruction that was issued

before the conditional jump instruction.

Conditional jump instructions that consider the numbers signed

jl label : (Jump if less) jumps to label if a<b

jle label : (Jump if less or equal) jumps to label if a<=b

jnl label : (Jump if not less) jumps to label if a>=b

jnle label : (Jump if not less or equal) jumps to label if a>b

jg label : (Jump if greater) jumps to label if a>b

jge label : (Jump if greater or equal) jumps to label if a>=b

jng label : (Jump if not greater) jumps to label if a<=b

jnge label : (Jump if not greater or equal) jumps to label if a<b

The a and b values from above are the a and b operands of the cmp instruction that was issued

before the conditional jump instruction.

Unconditional jump instruction

jmp label : always jumps to the specified label

III.3 Working with strings of bytes

Memory addresses and offsets

In order to work with strings of bytes/words/dwords we need to know more about memory

addresses. So far, we have used expressions like:

mov ax, [a]

where a is a variable and the instruction above moves a word value from the memory starting at

the memory address “a”. We have seen so far that a variable name is just a constant address – the

address of that variable in the memory. To be more precise, a variable name is a constant offset.

A full address specification comes in the form of two numbers: segment_selector: offset. A

segment_selector is a 16-bit number and specifies a pointer in a segment descriptor table (GDT

– global descriptor table) which defines a memory zone. For today’s seminar you don not really

need to understand what a memory segment is (you will find more details about memory

segments and memory management at the course), just know that a memory segment is a

continuous memory zone and its address is already stored in the appropriate segment register

(CS, DS, ES or SS) by the operating system before your program starts and you are not allowed

to change it. The offset is a 32-bit number which specifies a pointer inside the segment specified

by the segment_selector. The name of a variable, like I have said before, represents just the

offset of that variable (the segment to which this offset refers to is the data segment whose

starting address is already placed in the DS register by the operating system). The full format of

an offset includes 4 quantities : a base, an index, a scale and a displacement and is presented

below in the following figure:

In an offset specification any combination of the above 4 quantities can appear (inside “[]”),

including each component individually. The displacement is just a constant number. Below you

can find some examples of offset specifications (as the second operand of the instruction):

mov ax, [a] ; only displacement

mov ax, [eax] ; only base or index

mov ax, [a+eax+ebx] ; base, index and displacement

mov ax, [eax+eax+a+2] ; base, index and displacement

mov ax, [a+4+ebx*2] ; index, scale (i.e. 2) and displacement

mov ax, [eax + ebx*4 + 20]; base, index, scale (i.e. 4) and displacement

Ex.2. Being given a string of bytes containing lowercase letters, build a new string of bytes

containing the corresponding uppercase letters.

Variant 1:
bits 32

global start

extern exit

import exit msvcrt.dll

segment data use32 class=data

 s1 db 'abcdef'

 lenS1 equ $-s1

 s2 times lenS1 db 0

; the data segment looks in the memory like this:

97 98 101 100 102 0 0 0 0 0 0 99

s1 s1+1 s1+4 s1+3 s1+5 s2+5 s2+4 s2+3 s2+2 s2+1 s2 s1+2

; the top row in the above figures represents offsets. For example, in OllyDebugger, the first byte

; from the data segment and thus the offset of s1 is always 0x00401000. The offset of variable s2

; is equal to the offset of s1 plus 6 (i.e. 0x00401006). The bottom row represents the actual

; values from the memory in base 10 (97 is the ASCII code of ‘a’, 98 is the ASCII code of ‘b’, 99

; is the ASCII code of ‘c’ …). The bytes from string s2 are initialized with zero.

; lenS1 equ $-s1 defines a constant (equ = constant, no memory space is reserved)

; $ is the location counter, the current offset in the data segment up to the code line in which it

; appears. So, before the code line lenS1 equ $-s1 , there were 6 bytes generated in the string s1

; so the current offset is $=s1+6. s1 in the above instruction is just the offset of variable s1, so

; len1 = $ - s1 = s1+6 – s1 = 6 bytes (the length in bytes of string s1).

; s2 times lenS1 db 0 defines a variable s2 which contains lenS1=6 bytes, all initialized with

; the value zero.

segment code use32 class=code

start:

 ; we solve this problem by considerring in ESI the current index in string s1 and string s2

 ; and we do a loop with lenS1=6 iterations and at each iteration we move the byte s1[ESI]

 ; into s2[ESI], after we change it to an uppercase letter. So, in this loop, ESI will have the

 ; values: 0, 1, 2, 3, 4, 5.

 mov esi, 0

 repeat:

 mov al, [s1+esi] ; AL <- the byte from the offset s1+esi

 sub al, 'a' -'A' ; obtain the corresponding uppercase letter in AL

 mov [s2+esi], al ; AL -> the byte from the offset s2+esi

 inc esi ; esi:=esi+1; move to the next index in strings s1 and s2
 cmp esi, lenS1

 jb repeat ; IF (esi < lenS1) jump to repeat,

 ; otherwise continue below

 push dword 0

 call [exit]

Variant 2:
bits 32

global start

extern exit

import exit msvcrt.dll

segment data use32 class=data

 s1 db 'abcdef'

 lenS1 equ $-s1

 s2 times lenS1 db 0

segment code use32 class=code

start:

 ; this time we solve this problem by considerring in ESI the offset of the current byte from

 ; string s1 and in EDI the offset of the current byte from string s2. We do a loop with

 ; lenS1=6 iterations and at each iteration we move the byte from offset ESI into the byte

 ; from offset EDI, after we change it to an uppercase letter. So, in this loop, ESI will have

 ; the values: s1+0, s1+1, s1+2, s1+3, s1+4, s1+5 and EDI will have the values: s1+6, s1+7,

 ; s1+8, s1+9, s1+10, s1+11.

 mov esi, s1 ; initialize esi

 mov edi, s2 ; initialize edi

 mov ecx, lenS1 ; ecx will store the number of iterations in the loop

 repeat:

 mov al, [esi] ; AL <- the byte from the offset s1+esi

 sub al, 'a' -'A' ; obtain the corresponding uppercase letter in AL

 mov [edi], al ; AL -> the byte from the offset s2+edi

 inc esi ; esi:=esi+1; move to the next byte in strings s1

 inc edi ; edi:=edi+1; move to the next byte in strings s2

 dec ecx ; exc:=ecx-1

 cmp ecx, 0 ; IF (ecx > 0) jump to repeat

 jb repeat ; otherwise exit the loop

 push dword 0

 call [exit]

