
Seminar I. Introduction to the IA-32 assembly language. Converting numbers 

between numbering bases 2, 10, 16. Representation of integer numbers in the 

computer’s memory. Signed and unsigned instructions. 

 

 
The IA-32 computing architecture is the microprocessor (CPU) architecture introduced by the 

Intel Corporation in 1985 for their 80386 microprocessor. It is an abstract model of a 

microprocessor specifying the microprocessor’s elements, structure and instruction set. The IA-

32 is a 32-bit computing architecture (basically meaning that its main elements have 32 bits in 

size) and it is based on the previous Intel 8086 computing architecture. 

 
I.1. The elements of the IA32 assembly language 

An algorithm is, as you well know, a sequence of steps/operations necessary in order to solve a 

specific (mathematical or not) problem. For example, the algorithm for solving the 2
nd

 degree 

algebraic equation a*x
2
+b*x+c=0 contains the steps: 

1) compute the value of delta 

2) if delta is greater or equal to zero, compute the solutions x
1
 and x

2
 using the well-

known formulas. 

But besides this sequence of steps/operations, al algorithm also includes a set of data/entities on 

which those steps/operations operate. For our example, the data of the algorithm is: a, b, c, delta, 

x
1
 and x

2
. 

So, an algorithm is two things: 

 a set of data/entities 

 and a sequence of operations/steps 

 

An algorithm can be described using the natural language (e.g. romanian language, English 

language etc.) or it can be described in a programming language (e.g. C, Java, python, php etc.). 

When an algorithm is specified in a programming language, we refer to this algorithm as a 

program. In a similar way, a program contains: a) a set of data/entities and b) a set of 

operations/instructions. 

 

Throughout the semester we will study the IA-32 assembly language. We will first describe the 

data part of the assembly language and later the operational part (instructions). All data used in 

an IA-32 assembly program is essentially numerical (integer numbers) and can have 3 basic 

types: 

 byte – that data is represented on 8 bits 

 word – that data is represented on 16 bits 

 doubleword – that data is represented on 32 bits 

In the IA-32 assembly language we have data that does not changes its value throughout the 

execution of the program (i.e. constant data or constants) and data that does change its value 

throughout the execution of the program (i.e. variable data or variables). 

 

I.1.1 Constants 

We have 3 types of constants in the IA-32 assembly language: 

 numbers (natural or integer): 



o written in base 2; ex.: 101b, 11100b 

o written in base 16; ex.: 34ABh, 0ABCDh 

o written in base 10; ex.: 20, -114 

 character; ex.: ‘a’, ‘B’, ‘c’ .. 

 string (sequence of characters); ex.: ‘abcd’, “test” … 

 

I.1.2 Variables 

The IA-32 assembly language has 2 kinds of variables: pre-defined variables and user-defined 

variables. A variable has a name, a data type (byte, word or doubleword), a current value and a 

memory location (where the variable is stored).   

 

Pre-defined variables (CPU registers): 

The CPU registers are memory areas located on the CPU which are used for various 

computations. The IA-32 CPU registers are: 

1) General registers (each register has 32 bits in size): 

 EAX (the lower or least significant part of EAX can be referred by AX and AX is formed 

by two 8-bit subregisters, AL and AH) 

 EBX (the lower or least significant part of EBX can be referred by BX and BX is formed 

by two 8-bit subregisters, BL and BH) 

 ECX (the lower or least significant part of ECX can be referred by CX and CX is formed 

by two 8-bit subregisters, CL and CH) 

 EDX (the lower or least significant part of EDX can be referred by DX and DX is formed 

by two 8-bit subregisters, DL and DH) 

 ESP (the lower or least significant part of ESP can be referred by SP) 

 EBP (the lower or least significant part of EBP can be referred by BP) 

 EDI (the lower or least significant part of EDI can be referred by DI) 

 ESI (the lower or least significant part of ESP can be referred by SI) 

2) Segment registers (each register has 16 bits): 

CS, DS, SS, ES, FS, GS – are not used in a program 

3) Other registers (32 bit registers): EIP and Flags. 

 

User-defined variables: 

For these variables, the programmer has to define the name, data type and initial value. 

Examples: 

1) a  DB    23       : defines the variable with the name “a”, data type byte (DB-Define Byte) 

and initial value 23 

2) a1  DW    23ABh       : defines the variable with the name “a1”, data type word (DW-Define 

Word) and initial value 23ABh 

3) a12   DD    -101       : defines the variable with the name “a12”, data type doubleword (DD-

Define DoubleWord) and initial value -101. 

 

I.1.3 Instructions 

 

MOV – assignment instruction 

Syntax: mov dest, source 



(where dest and source are either registers, variables or constants of type byte, word or 

dword; dest can not be a constant) 

Effect: dest := source 

Examples: mov ax, 2 

       mov [a], eax 

 

ADD – addition instruction 

Syntax: add dest, source 

(where dest and source are either registers, variables or constants of type byte, word or 

dword; dest can not be a constant) 

Effect: dest := dest + source 

Examples: add bx, cx 

       add [a], 101b 

 

SUB – substraction instruction 

Syntax: sub dest, source 

(where dest and source are either registers, variables or constants of type byte, word or 

dword; dest can not be a constant) 

Effect: dest := dest - source 

Examples: sub ax, 2 

       sub [a], eax 

 

 

 

 

 

 

I.2. The 1
st
 32bit 8086 assembly language program 

 

; 

; Comments are preceded by the ‘;’ sign. This line is a comment (is ignored by the assembler) 

; This program computes the expression: x:= a + b – c = 3 + 4 – 2 = 5. 

; 

; 

bits 32 

; declare the EntryPoint (a label defining the very first instruction of the program) 

global start         

 

; declare external functions needed by our program 

extern exit                      ; tell nasm that exit exists even if we won't be defining it 

import exit msvcrt.dll    ; exit is a function that ends the calling process. It is defined in msvcrt.dll 

 

 

; our data is declared here (the variables needed by our program) 

segment data use32 class=data 

    ; ... 



 a dw 3 

 b dw 4 

 c dw 2 

 x dw 0 

 

; our code starts here 

segment code use32 class=code 

start: 

 mov ax, [a]  ; ax := a = 3  

 add ax, [b]  ; ax := ax + b = 3+4 = 7 

 sub ax, [c]  ; ax := ax – c = 7 – 2 = 5 

 mov [x], ax  ; x := ax = 5 

 

           ; exit(0) 

           push    dword 0             ; push the parameter for exit onto the stack 

           call    [exit]         ; call exit to terminate the program 

 
 
 
 
 
 
 

I.3. Converting numbers between numbering bases 2, 10, 16  

 

A number is converted from a source base to a destination base. There are two algorithms that 

are mostly used for converting a natural number between numbering bases: one is based upon 

successive division operations and the other is based on successive multiplication operations. 

 

The conversion algorithm that uses successive divisions 

 This algorithm is useful when converting a number from base 10 to another numbering base 

(because computations are done in the source base; i.e. base 10) 

 The initial number is continuously divided to the destination base (i.e. the initial number is 

divided to the destination base, then the obtained quotient (romanian: catul) is divided to the 

destination base and so on..) until we get a zero quotient. The remainders (Romanian: resturile) 

obtained taken in the reverse order form the representation of the initial number in the destination 

base 

Ex.1: The representation of the number 23 (currently written in base 10) in the new base 2 is: 

10111. 

Ex.2: The representation of the number 28 (currently written in base 10) in the new base 16 is: 

1C (because the digit representing 12 in base 16 is C). 

 

The conversion algorithm that uses successive multiplications 

 This algorithm is useful when converting a number from base different than 10 to base 10 

(because computations are done in the destination base; i.e. base 10) 

 Considering that the representation of the number in base s is: anan-1… a1a0, the representation of 

this number in the destination base d will be computed like this: 



an *s^n + an-1*s^(n-1) +… +a1 *s^1 + a0*s^0 

 where computations are done in base d. 

Ex.1: The representation of the number 10111 (currently written in base 2) in the new base 10 is: 

1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 23 

Ex.2: The representation of the number 1C (currently written in base 16) in the new base 10 is: 

1*16^1 + 12*16^0 = 28 

 

Table useful for performing fast conversions between bases 2, 10 and 16 

The following table will be useful for performing fast conversions of a semi-byte (a 4 bits/binary 

digits number) from base 2 to 10 and 16 and reverse. 

Base 2 Base 10 Base 16 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

1000 8 8 

1001 9 9 

1010 10 A 

1011 11 B 

1100 12 C 

1101 13 D 

1110 14 E 

1111 15 F 

 

 

 

 

 

 

I.4. Representation of integer numbers in the computer’s memory 

 

Consider the following instruction: 

mov ax, 7 

The above instruction instructs the CPU (i.e. microprocessor) to set the value of the ax register 

(which is a memory zone on the CPU) to 7. A natural question that arises is: how does the CPU 

represent integer numbers in the memory (and also on the CPU registers) ? 

The CPU represents an integer number on 1, 2, 4 or 8 bytes on the IA-32 architecture (1 byte = 8 

consecutive bits). In fact, there are two kinds of representation of integer numbers in the 

computer’s memory: signed representation and unsigned representation. The CPU choses one of 

these two representations depending on the specific instruction it executes. 

 

 

Binary digit = Bit (a software concept that represents the smallest quantity of information) 



Unsigned representation of numbers 

 in unsigned representation we can only represent positive natural numbers 

 the unsigned representation of a positive number is equal to the representation of that 

number in base 2 

 ex.1: the unsigned representation of 17 on 8 bits is : 0001 0001 

 ex.2: the unsigned representation of 39 on 8 bits is : 0010 0111 

 

Signed representation of numbers 

 in the signed representation we can represent positive and negative integer numbers 

 the signed representation of a positive number is equal to the unsigned representation of 

that number (i.e. it is equal to the representation of that number in base 2) 

 the signed representation of a negative number is equal to the representation in 2’s 

complementary code (Romanian: codul complementar fata de 2) of that number; in order 

to obtain the 2’s complementary code of a negative number, we substract the absolute 

value of the number (Romanian: modulul numarului) from 1 followed by as many zeroes 

as needed in order to represent the absolute value of the number. 

 in the signed representation, the most significant bit (i.e. binary digit) of the 

representation is the sign bit(1=negative number; 0=positive number). 

 ex.1: the signed representation of 17 on 8 bits is : 0001 0001 (the most significant bit is 0, 

so the number is positive) 

 ex.2: the signed representation of -17 on 8 bits is : 1110 1111 (note that the sign bit is 1 in 

this case, so the number is negative) 

1 0000 0000 – 

         1 0001 

   1110 1111 

 ex.3: the signed representation of -39 on 16 bits is : 1111 1111 1101 1001 (note that the 

sign bit is 1 in this case, so the number is negative) 

1 0000 0000 0000 0000– 

                         10 0111 

   1111 1111 1101 1001 

 

Now, we can consider the reverse problem of “representation”, that is “interpretation”. Let’s 

assume that the binary content of the AL register is 1110 1111 and the next instruction to be 

executed is: 

 

mul bl 

 

The mul instruction just multiplies the value from the AL register with the value from the BL 

register and stores the result in AX (more details about the mul instruction will be given in 

seminar no. 2). When the CPU executes the above instruction it needs to ask itself the question 

(the human programmer also asks himself the same question): what integer number does the 

sequence of bits from AL (i.e. 1110 1111) represents in our conventional numbering system (i.e. 

base 10)? The CPU must interpret the sequence of bits from AL into a number in order to 

perform the mathematical operation (multiplication). 

 



Just like we have two types of “representations”, we also have two corresponding types of 

“interpretations”: signed interpretation and unsigned interpretation. 

In our example where we have in the AL register the sequence of 8 bits: 1110 1111, this value 

can be interpreted: 

 unsigned: in this case, we now that in the unsigned representation, only positive numbers 

are represented, so our sequence of bits represents a positive number and it is the 

representation in base 2 of that number; so the number in base 10 is: 

1*2^7 + 1*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 1* 2^2 + 1*2^1 + 1*2^0= 

128 + 64 + 32 + 0 + 8 + 4 + 2 + 1 = 239 

 signed: in this case, we know that in the signed representation the most significant bit of 

the representation is the sign bit; our sign bit is 1 which means that this is the signed 

representation of a negative number; in other words this is the complementary code 

representation of the negative number; in order to obtain the direct code (the 

representation in base 2 of the absolute value of the number) we use the following rule: 

take all the bits of the complementary code representation, from right to left, keep all the 

bits until the first 1, including this one, and reverse the remaining bits (1 becomes 0, 0 

becomes 1). So, for our example of 1110 1111, the direct code is: 0001 0001 = 17. So the 

sequence of 8 bits 1110 1111 from the memory is interpreted signed into the number -17. 

 

 

 

I.5. Signed and unsigned instructions 

 

 

On the IA-32 architecture, related to the unsigned and signed representation of numbers, there 

are 3 classes of instructions: 

 instructions which do not care about signed or unsigned representation of numbers: mov, 

add, sub 

 instructions which interpret the operands as unsigned numbers: div, mul 

 instructions which interpret the operands as signed numbers: idiv, imul, cbw, cwd, cwde 

 

It is important to be consistent when developing a IA-32 assembly program: either consider all 

numerical values in a program to be unsigned (in which case you should use only instructions 

from class 1 and 2) or consider all numerical values in a program to be signed (in which case you 

should use only instructions from class 1 and 3). 

 

  
 


