
RETRO: A Consistent and Recoverable RESTful Transaction Model

Alexandros Marinos Amir Razavi Sotiris Moschoyiannis Paul Krause

Department of Computing, FEPS, University of Surrey,

{a.marinos, a.razavi, s.moschoyiannis, p.krause}@surrey.ac.uk

Abstract
With REST becoming a popular paradigm for web

services, more and more use cases are applied to it,

including some that require transactional guarantees.

We propose a RESTful transaction model that satisfies

both the constraints of transactions as well as those of

the REST architectural style. We provide formal proof of

consistency and recoverability in the proposed

framework and show the robustness of its properties in

the presence of concurrent transactions.

1. Introduction

Representational State Transfer (REST) is an

architectural style introduced by Roy Fielding in [7] as a

refinement of the architectural style that had emerged in

the World Wide Web. The main features of REST

include focusing on resources identified by names, a

uniform interface to manipulate those resources,

hypermedia as a means of linking the resources and

statelessness in the client-server interactions.

REST, especially over the HTTP protocol [8], has

long been championed as a competing web service

paradigm to the WS-* stack. This claim has recently

been reinforced with the publication of works such as

[17], the more recent [11], together with the recognition

of the apparent complexity and lack of adoption of WS-*

technologies beyond the corporate firewall [19].

As is common with disruptive technologies, REST

over HTTP is evolving to compete with WS-* in

increasingly advanced usage scenarios [4], [12]. This

paper aims to be part of the next wave of REST

evolution by defining a RESTful transaction model that

is designed to operate over HTTP. To date, usage of

REST has remained at the level of serial sequences of

operations, each succeeding or failing atomically. While

its advantages have made it a popular web services

paradigm on the web, the WS-* stack provides the only

standard for unplanned transactions. Web applications

have to resort to ad-hoc solutions of variable quality in

order to address this need. A prominent example is the

shopping cart found in many e-commerce web sites

where the items (resources) in a shopping cart have to be

purchased in one step and also potentially become

unavailable when a customer adds them to a shopping

cart, the transactional concepts of atomicity and locking

respectively. Also, there is no reason not to consider

traditional service composition scenarios such as a travel

scenario necessitating the booking of a flight, hotel and

rental car, executed over the web-facing APIs of

different providers, something currently not possible.

Transactions have been defined in terms of the four

properties contained in the ACID acronym [9]. These

properties guarantee that a system is maintained in a

consistent state, even as transactions are executed within

it concurrently. This includes the situations where one or

more transactions fail to commit. When dealing with a

sequence of transactions (one transaction executed at a

time), each transaction starts with the consistent state that

its predecessor ended with. If all the transactions are

short, the data are centralised in a main memory, and all

data are accessed through a single thread, then there is no

need for concurrency. The transactions can simply be run

in sequence. Real-world interactive systems however,

often require the execution of several transactions

concurrently. Use cases such as distributed environments

[4,22] or dynamic allocation of resources to external

developers [21] illustrate this need.

While transactions are concerned with the constraints

of adhering to ACID properties, REST adheres to its own

set of constraints. These are primarily expressed by the

uniform interface constraint, but supported by the

following four constraints: Resource Identification,

Resource manipulation through representations, Self-

descriptive messages, and Hypermedia as the engine of

application state [20]. Our efforts are directed at creating

a truly RESTful transaction model that satisfies both the

constraints of REST and the ACID constraints relevant

to transactions. In this paper we describe a RESTful

framework for transactions (RETRO) in which the

locking scheme necessary for ACID transactions is

adapted to work within the architectural style of REST.

We provide a more rigorous justification of the need

for our new model in the next two sections. Following

that, we discuss how locks may be introduced for

concurrency control into RESTful working over HTTP.

In Section 5, we then elaborate this into a two-phase lock

model and demonstrate that the result is consistent,

wormhole free, and supports recoverability. Proofs of

soundness and completeness of the resulting model are

provided in Section 6, and then conclude.

2. Relevant work

Various approaches have been proposed to support

concurrent execution of transactions, but locking has

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.99

181

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

emerged as the most feasible solution [2], [15], [9], [16].

Additionally, [3] and [14] use similar principles with

different semaphores. When implementing a lock

mechanism, it is important to ensure that concurrent

execution does not have lower throughput or much

higher response times than serial execution. The second

major concern is to avoid high computational overhead

(see concurrency control laws in [9]).

The application of the transactional concept in WS-*

adds considerable complexity to the required

coordination framework [21]. This can be seen more

clearly when analysing the pattern behaviour for the

recovery model (compensation) [22], [23]. In contrast,

REST works directly with resources. This is in line with

the semantics of the basic theorems in conventional

transaction processing [9]. Transactions rely on

read/write operations on objects and RESTful HTTP,

likewise, provides GET (equivalent to ‘read’) and

DELETE, POST, PUT (equivalents of ‘write’) methods.

Various approaches have been proposed for handling

RESTful transactions. The traditional approach is to

simply design a new resource that can be used to trigger

the desired transaction on the server side. For example,

to transfer funds from one bank account to another, there

could be a ‘transfer request’ resource to which new

‘transfer requests’ can be posted. While it can be very

simple to implement at design time, this constrains users

to the predictive ability of the developers. Also, in

scenarios where a large or unpredictable variation of

transactions may take place, all the necessary resources

cannot have been designed beforehand. This situation is

similar to the static versus dynamic allocation debate

found in the database and transaction literature [2], [9].

The approach completely breaks down however, when a

transaction exceeds the scope of a single provider, the

case of distributed transactions. Other approaches such

as [13] suggest extending REST to include mutex locks,

but this would necessitate extending HTTP as well.

The alternative to these approaches is to introduce

locks on resources by modeling them as resources

themselves [17]. While this approach looks much more

capable, the details of its implementation and its

extension into transactions have neither been fleshed out

nor proven. In this paper we describe how this approach

can be extended to produce a fully specified and

theoretically robust RESTful transaction model.

3. Concurrency issues in RESTful HTTP

The classic view taken in addressing the isolation

property is to consider transactions in terms of inputs and

outputs [9], [6]. These are essentially read (input) and

write (output) operations. Write operations are described

as operations that affect the state of resources. On the

other hand, REST prescribes a uniform interface for

accessing resources. One challenge is therefore to map

the traditional input/output perspective with the RESTful

approach to the uniform interface. Since our model

operates over the HTTP protocol, we examine its four

resource interaction operations.

GET is the standard retrieve operation. Its execution

must be safe; it should have no side-effects. It should

also be idempotent. Duplicate messages should have no

adverse effects. POST is understood as an operation to

create a new resource on a server where the target URI is

not known. The representation of the resource is sent via

POST to the collection that will contain the resource.

The server determines its appropriate location and the

resulting URI is returned to the client as part of the

response. POST is neither safe nor idempotent. PUT can

be used for updating resources, by simply instructing the

server to apply a new representation as a replacement of

the previous one. It can also be used to create a new

resource, when a representation is PUT at a URI that was

previously unused. A very important point is that a PUT

operation may correspond to a Create or an Update

operation in the CRUD paradigm, and sometimes the

client may not even know which of the two is going to be

applied. This depends solely on the state of the server.

Finally, DELETE is used to request removal of the

resource representation at the target URI.

All the operations described above are used to manage

the lifecycle of the resources directly related to the

transaction itself. However, the transactions our model

can orchestrate are only those that intend to perform

GET and PUT operations. In the case of PUT, since we

guarantee that the resource exists before it is PUT to, we

are only dealing with the ‘update’ capacity of the

operation and not its ‘create’ aspect. In this sense, the

only type of non-safe operation (‘write’) that our model

currently supports is PUT, in its update capacity. Within

the scope of these assumptions, the term ‘PUT’ is used as

equivalent to ‘write’ for the rest of this paper.

As GET operations do not change the state of

resources, provided the initial state of a resource is

consistent, concurrent GET requests to the same resource

cannot cause inconsistency. On the contrary, PUT

operations of different transactions on the same resource

change the state of the resource and may violate

consistency or isolation. While we can assume that a

transaction “knows what it is doing” in terms of its

internal data manipulation, overlap between PUTs of one

transaction and GET actions of another, can violate

isolation and cause inconsistency.

Additionally, PUT-related interactions between

different concurrent transactions on the same resource

can also cause a problem. If we consider GET operations

as inputs of transactions and PUTs operations as output

operations of them, this can be expressed as:

EQ. 1: �� � ��� � ��� 	 � for allfor allfor allfor all � � �

182

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

Where �� denotes the set of resources accessed via

GET by transaction �� (its inputs), and �� the set of

resources altered via PUT by transaction �� (its outputs).

Based on EQ.1, it is appropriate to say that the set of

transactions ���� , whose outputs are disjoint from one

another’s inputs and outputs, can run in parallel with no

concurrency anomalies.

We define ‘history’ as any sequence-preserving merge

of the actions of a set of transactions into a single

sequence .A history is denoted �� � 	 ���, , !"�|$ 	
1, … , '(" . Each step of the history is a tuple ��, , !"

comprising an action a by transaction t on resource r. A

history for the set of transactions)��* is a sequence,

containing each transaction �� as a subsequence and

containing nothing else. Essentially, a history lists the

order in which actions were successfully completed.

Serial histories are one-transaction-at-a-time histories.

Since no concurrency is induced in serial histories, there

is no interdependency between transactions. Therefore

wormholes or inconsistencies will not be an issue. While

this is a useful theoretical aspect, in reality transactions

can have any order and hence histories will not be serial.

3.1. Concurrency anomalies

In this section we will analyse the result of executing

transactions concurrently, in a RESTful manner, and

highlight the potential concurrency anomalies that arise.

When two (or more) transactions access the same

resource, they may produce two (or more) different

versions of that resource (lost update), or simply they

may work with the out-of-date version of the resource

(dirty GET and unrepeatable GET). Fig. 1 shows these

three inconsistent scenarios.

As shown in Fig 1, interleaved RESTful interactions

by multiple parties may cause several concurrency

issues. A transaction GETs a resource twice, once before

another transaction’s PUT action and the second one

after the PUT action (the second transaction may PUT a

new version and commit). This means a transaction

changes the resource (PUT), when another transaction

had ongoing access (GET) to it and has not finalised its

access. On the other hand, the first transaction has to deal

with inconsistent GETs on the same resource.

The second classical problem is ‘Lost updates’ and it

occurs when the first transaction’s PUT is overwritten by

the second transaction which uses PUT based on the

initial value of the resource (second scenario in Fig. 1).

This means one of the updates will be overwritten

without being taken into account.

Finally, a problem can also occur when a transaction

relies on out-of date resources (Fig. 1). A transaction

GETs a resource between two PUT operations by

another transaction. As a result, the transaction may use

an inconsistent resource state as the other transaction has

not finished its updates on the resource and may even

roll back, rendering the retrieved representation invalid.

Figure 1 – Concurrency challenges

.

Fig 1 shows the simplest scenarios of these problems,

but they may be easily extended to multi transactions

where accessing resources are a sequence where it comes

back to the first transaction. On the other hand, accessing

a resource may look like a cycle when we try to draw a

sequence diagram for them. These classical transactional

problems are called wormholes. In the next section, we

try to provide a clear definition for them in terms of

RESTful transactions.

3.2 Wormholes

We start by defining dependencies between

transactions in a history. A transaction T is said to be

dependent on another transaction T’ in a history H if T

GET (reads) or PUT (writes) data-resources previously

PUT (written) by T’ in the history H, or if T PUT (writes)

a resource previously GET (read) by T’.

Figure 2 – Types of dependencies

We can formalise different types of dependencies

(shown in Fig. 2) through a Dependency Graph where

nodes are ‘transactions’, arcs indicate ‘transaction

dependencies’, and labels on arcs denote ‘resource

versions’. The version of a resource r at step k of a

history is an integer and is denoted by V(r,k). In the

beginning each resource has version zero (V(r,0)=0). At

step k of a history H, resource r has a version equal to the

number of writes to that resource before this step. This is

put formally as follows.

+,!, -. 	 /)��� , � , !�" 0 � /1 2 - '3 � 	 PUT('3 !� 	 !*/
The outer vertical bars represent the set cardinality

function. Each history, H, for a set of transactions ����

defines a ternary dependency relation DEP(H), defined

as follows. Let T1 and T2 be any two distinct

transactions, let r be any resource, and let i, j be any two

steps of H with $ 2 1. Suppose step �7$8 involves action

a1 of T1 on resource r, step �718 involves a2 of T2 on r,

183

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

and suppose there is no PUT on r by any transaction

between these steps (there is no �� ′, 9:�, !" in �7$;
18, … , �71 < 18). Then DEP(H) is defined as:

��, �!, +,!, 1.", �′" 0 DEP,�.

if a1 is a PUT and a2 is a PUT

a1 is a PUT and a2 is a GET

a1 is a GET and a2 is a PUT.

PUT→PUT, PUT→GET and GET→PUT

dependencies.

The dependency relation for a history defines a

directed dependency graph, where transactions are the

nodes of the graph, and resource versions are label on the

edges. If ��, �!, 1", �′" 0 DEP,�., then the graph has an

edge from node T to node T’ labeled by �!, 1" . Two

histories are equivalent, if they have the same

dependency relation.

The dependency relation of a history defines a time

order of the transactions. Conventionally this ordering is

signified by 222 and it is the transitive closure of 22
2 H. It is the smallest relation satisfying the equation

T 222? T′
 if �T, r, T′" 0 DEP,�. for some resource

version r, or T 222? T′′
 and �T′′, r, T′" 0 DEP,�. for

some transaction T′′ and some resource r. Whenever

� 222 �′ there is a path in the corresponding

dependency graph from transaction T to transaction �′.
The 222 ordering defines the set of all transactions that

run before or after T as follows.

BEFORE,�. 	 ��′|�′ 222 ��

AFTER,�. 	 ��′|� 222 �′�

If T runs fully isolated (ex: it is the only transaction,

or it GET and PUT resources not accessed by any other

transactions), then its BEFORE and AFTER sets are

empty (it can be scheduled in any way). When a

transaction is both after and before the other distinct

transaction, it is called wormhole transaction (�′ here):

�′ 0 BEFORE,�. � AFTER,�.

 for some resource version r, or (for some

transaction , and some resource r).This means that any

cycle in a dependency graph is a wormhole. Using a

well-formed and two phase locking mechanism is a

conventional method for avoiding wormholes [9]. In the

next section we describe how such a locking mechanism

is adapted to RESTful transactions as a practical way for

avoiding wormholes and then prove that our RESTful

transaction model is wormhole-free.

4. Locks in RESTful HTTP

In order to handle concurrency challenges in HTTP,

we introduce the concept of locks. This is done in a way

that does not affect the always available and backwards

compatible nature of the web.

4.1. Locking resources

For an API to be characterized as RESTful according

to the hypermedia constraint, it must allow a client to

interact with the service solely by being given a single

URI and understanding of the relevant media types. This

enforces loose-coupling and elimination of assumptions.

Lockable Resource (R): Ideally, any resource that

can be served by an HTTP server should be lockable

regardless of serialization format. This however would

require the HTTP protocol to carry the metadata for the

locking mechanism. Since we wish to preserve the HTTP

protocol, we opt for a fragment of XML that is to be

included in an XML representation of a resource. This

approach could potentially be extended to other formats

such as JSON [5] but not to binary files such as images

or zip archives. The information that should be in the

fragment is the location of the lock collection and the

location of the transaction collection. The inclusion of

this fragment (Fig. 3) makes any resource lockable.

Namespaces could also be utilized to avoid namespace

collision but this would limit the approach to

serializations that support namespaces.

<lockable>

 <link rel=”lock_collection” href=”http://example.org/resource/locks/” />

 <link rel=”transaction_collection” href=”http://example.org/transactions/” />

</lockable>

Figure 3 – (R) XML Fragment

Lock Resource (R-L): The lock resource is

represented by a dedicated media type and should

contain the elements in Table 1.

ResourceURI: a link back to the resource that this lock affects.

TransactionURI: a link to the transaction that controls the lock.
Type: “S” or “X” depending on the type of the lock.
PrevLockURI: a link to the previous lock in the lock sequence.
Timestamp: Server’s timestamp when the lock was granted.
Duration: Indicates the interval that the lock has been granted for.
ConditionalResourceURI: A link to the representation of the resource that will

come into effect once the lock is committed.

Table 1 - Elements of R-L

The type element can take one of two values, X or S,

corresponding to the available lock types. X stands for

XLOCK: eXclussive Lock, and S stands for SLOCK:

Shared Lock. To place a new lock, the server must

authenticate the user as the owner of the transaction that

is referenced by the lock. The length of time of

effectiveness that is granted to a lock is dependent on the

maximum length of time that the server is prepared to

grant a guarantee to the client. Once the duration of the

lock expires, the lock is aborted. To avoid violating 2PL,

once a lock of a transaction expires, all other locks of the

same transaction expire.

The result of the GET operation does not change until

a lock of type X is committed. In this sense, the locks

and transactions are transparent to the GET which on

184

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

commit reacts as if a simple PUT was applied. This was

a specific design objective. PUT and DELETE

operations return a ‘405 Method Not Allowed’ HTTP

response for the duration of a lock's effect. GET requests

should still return successfully. This behaviour maintains

backwards compatibility, with the understanding that if a

client requires further guarantees on the future state of

the resource, the client should seek to place a lock. In all

other cases, the semantics of GET are unaffected, as a

GET on a resource does not guarantee that the state will

remain unchanged for any period of time.

4.2. Well-formed collections of locks

As expected, a transaction cannot lock a resource that

is locked by another transaction. But if two or more

transactions want to GET the content of a resource, they

are not going to change the resource state. This will

therefore not cause any conflict or access to data which

has been PUT to a resource by another transaction, but

the first transaction has not committed and may change

the version of the resource again). Table 2 shows the

lock compatibility. The inferred rules constrain the set of

allowed histories. Histories that satisfy the locking

constraints are called legal histories.

 Mode of Preceding Lock

M
o

d
e

O
f

N
e

w

Lo
ck

 Share Exclusive

Share Yes No

Exclusive No No

Table 2 – Legal lock sequences

Resource Lock Collection (R-Lc): The R-Lc

contains locks in sequences that follow the compatibility

rules stated in Table 2, rendering the transaction well-

formed. The lock collection is represented as an Atom

Feed [12]. Since ATOM does not support sequencing

entries, we use the ‘PrevLockURI’ element of the lock

resource to create a linked list of locks. The client can

retrieve the lock collection via GET to determine if the

resource is locked. An empty feed indicates an unlocked

resource. New locks can be submitted to the resource

collection via the POST method.

5. Two phase locking and recoverability

In the previous section, we described how our model

provides a well-formed locking system for GET and

PUT. We now show that by adding two-phase locking,

the model becomes wormhole-free. We then show how

this facilitates recoverability in RETRO and illustrate the

key ideas with a simple example.

GET Returns the resource’s collection of locks.

POST Adding a new lock to the related resource

Table 3 - Available Operations for R-Lc

5.1. Two phase locking is wormhole free

In two-phase locking [10ref?] each transaction can

use locking in two phases. In the first phase (growth), it

can acquire locks for resources (SLOCK or XLOCK)

and in the second phase (shrink), it releases them. These

two phases should not have any overlap. When the

transaction starts to UNLOCK a resource, it cannot lock

any more resources under any circumstances. So,

unlocking resources means that the transaction is either

successfully committing or aborting.

We have seen in discussing ‘Lock Resource (R-L)’

(Section 4-1), that each transaction in our RESTful

transaction model can use two different types of Locks

for its resources (SLOCK for GET and XLOCK for

PUT). Therefore, in � 	 ���, , !"�|$ 	 1, … , '(" we

consider two extra actions for ‘ ’ : SLOCK; and,

XLOCK. Since these locks at some point should be

released, we also have UNLOCK as another action for

‘a’. Now, we want to show that if all transactions are

well-formed and two-phase, any legal history will be

isolated (wormhole-free). In what follows, we first show

how the additional actions required for the two-phase

locking are incorporated in our well-formed RESTful

transactions, and then invoke the well-known Wormhole

Theorem from conventional transactions [9] to show that

our model is wormhole-free.

 Suppose H is a legal history of the execution of a set

of transactions, each of which is well-formed and two-

phase. For each transaction, T, define SHRINK(T) to be

the index of the first unlock step of � in history H .

Formally:

SHIRINK,�. 	
F$',$|�7$8 	 ��,UNLOCK,!" for some resource.).

Since each transaction T is non-null and well-formed,

it must contain an UNLOCK step. Thus SHRINK is well

defined for each transaction. First we need to show that

if there is path in the dependency graph from a

transaction T to a transaction T’, then the first unlock step

of T will happen before that of T’. This is summarised in

the following lemma.

Lemma: If � 222 � ′, �P' SHRINK,�. 2
SHRINK,�′..

Suppose � 222 � ′, then suppose there is a resource r

and steps $ 2 1 of history H, such that �7$8 	 ��, , !",

�718 	 ��′, ′, !"; either action a or action a’ is a PUT

(this assertion comes directly from the definition of

DEP,�. in section 3). Suppose that the action a of T is a

PUT. Since T is well-formed, then, step $ is covered by T

doing an XLOCK on r. Similarly, step j must be covered

by T’ doing an SLOCK or XLOCK on r. H is a legal

history, and these locks would conflict, so there must be

a k1 and k2, such that:

$ 2 -1 2 -2 2 1 and �7-18 	 ��,UNLOCK, !" and

185

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

either �7-28 	 ��,SLOCK, !" or �7-28 	
�� ′,XLOCK, !".

Because T and T’ are two-phase, all their LOCK

actions must precede their first UNLOCK, action; thus,

SHRINK,�. T -1 2 -2 2 SHRINK,�′.. This proves the

lemma for the 	 PUT case. The argument for the

 ′ 	 PUT case is almost identical. The SLOCK of T will

be incompatible with the XLOCK of T’; hence, there

must be an intervening ��,UNLOCK, !" followed by a

��′,XLOCK, !" action in H. Therefore, if � 222 �′, then

SHRINK,�. 2 SHRINK,�′. . Proving both these cases

establishes the lemma. We may now invoke the

Wormhole Theorem [9] and infer that H is wormhole-

free by contradiction.

Assume that H is not wormhole-free. Then the

Wormhole Theorem dictates that there must be a

sequence of transactions ��U, �V, �W, … , �X" , such that

each is before the other (i.e., �� 222Y ��ZU), and the last

is before the first (i.e., �X 222Y �U). Using the above

lemma, this in turn means that SHRINK,�U. 2
SHRINK,�V. 2 [2 SHRINK,�X. 2 SHRINK,�U. .

Hence, we have SHRINK,�U. 2 SHRINK,�U. which

gives the desired contradiction. Thus, H cannot have any

wormholes.

5.2. Transaction Resource

Determining the scope of each transaction and

whether it is in a GROWTH or SHRINK phase is

necessary. We therefore introduce the required resources.

Transaction (T) : This resource can be represented

by a dedicated media type (e.g. application/vnd.retro-

transaction+xml), containing the elements in Table 4.

TransactionCollectionURI:

OwnerURI:

TransactionLockCollectionURI:

Table 4 - Elements of T

These elements identify the resources vital a

transaction. The owner of the transaction can locate these

collections by GETting the transaction resource.

Transaction Collection (Tc): The transaction

collection is a resource where new transactions are

submitted via the POST operation which creates a new

transaction and returns the URI for its representation.

The resource itself cannot be accessed via GET as the

clients that need to know the location of a specific

resource are informed at the time of POSTing.

Transaction Lock Collection (T-Lc) : The

transaction lock collection contains links to the locks that

belong to a specific transaction, formatted as an Atom

feed. Clients cannot abort single locks directly but must

do so through the T-Lc which aborts all the locks of a

transaction, leaving the transaction void and is equivalent

to aborting the transaction.

GET Returns the collection of locks relevant to a transaction

DELETE Aborts all the locks of the relevant transaction. This can only

be performed by an owner of the transaction.

Table 5 - Available Operations for T-Lc

5.3. Recoverability

Based on the Rollback Theorem, a transaction that

unlocks an exclusive lock and then performs a ‘Rollback’

is not well-formed and can potentially cause a wormhole

unless the transaction is degenerated. As the theorem is

well-known, we refer the interested reader to [9] for the

proof. The important point of the theorem is that we have

to degenerate the transaction to effect rollback. For this

purpose, our model does not store potential updates on

the actual resources but works on the shadow of the

locked data, the conditional resource representation.

Conditional Resource Representation (R-C): A

resource that is of identical media type as the locked

resource. The conditional resource representation is

essentially the state that will be applied to the resource

once the XLOCK is committed.

GET Returns the representation that will be committed if the relevant

XLOCK is committed.

PUT Creates a new conditional state that will replace the current state of

the locked resource once the linking XLOCK is committed.

DELETE Deletes the conditional state. If the XLOCK is committed, there

will be no write action performed.

Table 6 - Available Operations for R-C

5.4. Model overview

Having defined all the resource types, it is easy to see

that an interconnected network arises. Figure 4 displays

the interconnections of the resource graph. It can be

observed that having a URI for R is enough to locate all

other resources in the network. The connection from Tc

to T is different from the other connections as there is no

GET ability for the Tc resource, for security reasons. The

URI of a given T is only returned as a response to the

initial POST operation on Tc performed by the

transaction’s owner.
R R-Lc

Tc

T-Lc

R-L

R-C

T

Figure 4 – Resource Hypermedia connections

Table 7 summarizes all the relevant resource types that

comprise our model together with a short description and

a list of the allowed operations.

186

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

Client Operation Resource Response Description

A GET R2 200 OK GETting R2 to extract location of TC and R2-LC

A POST <new transaction> TC 201 CREATED {Location: T1} Creating a new transaction

A POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC

B GET R1 200 OK GETting R1 to extract location of TC and R1-LC

B POST <new transaction> TC 201 CREATED {Location: T2} Creating a new transaction

B POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC

A GET R1 200 OK GETting R1 to extract location of R1-LC

A POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC

B GET R1 200 OK GETting the locked representation of R1

A GET R1 200 OK GETting the locked representation of R1

A GET R2 200 OK GETting the locked representation of R2

B GET R2 200 OK GETting R2 to extract location of R2-LC

B POST <LOCK {type:X}> R2-LC 403 Forbidden POSTing an XLOCK to R2-LC. R2 is locked, POST fails.

A GET R2-L1 200 OK GETting R1 to extract location of R2-L1-CR

A PUT <new version> R2-L1-CR 201 CREATED Creating a conditional Representation of R2

A DELETE T1 200 OK Commiting R2-C to R2 and Unlocking R1 and R2

B POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC

B GET R2 200 OK GETting the locked representation of R2

B PUT <new version> R2-C 201 CREATED Creating a conditional Representation of R2

B PUT <new version> R2-C 200 OK Updating the conditional Representation of R2

B DELETE T2 200 OK Commiting R2-C to R2 and Unlocking R1 and R2

Figure 5 – example of two transactions operating on the same resources

The example in Figure 5 shows how two separate

transactions can safely operate on the same resources,

purely through HTTP operations. We can also see that

while the two transactions are able to place an SLOCK

on R1, client B is not allowed to XLOCK R2 while client

A already has an XLOCK on it, a direct application of

the lock compatibility rules seen in Table 2. Instead,

client B continues the transaction when R2 is unlocked.

Lockable Resource (R) A resource that locks can be applied to

Operations: GET, [By XLOCK owner: PUT]

Resource Lock Collection

 (R-Lc)
The collection of locks that apply to a particular

resource. Operations: GET, POST

Lock Resource (R-L) The representation of a specific lock

Operations: GET

Conditional Resource

Representation (R-C)
The potential representation of a locked resource,

once its lock is committed. Operations: GET, [By

XLOCK owner: PUT, DELETE]

Transaction Collection (Tc) The collection of transactions on the server.

Operations: POST

Transaction Resource (T) The representation of a specific transaction.

Operations: GET

Transaction Lock

Collection (T-Lc)
The collection of locks connected to a specific

transaction. Operations: GET, [By transaction

owner: DELETE]

Table 7 – Resources and operations

6. Soundness / Completeness

One may argue the necessity of a well-formed and

two-phase history, which our approach carefully follows.

To prove the soundness of these properties, we use the

converse locking theorem [9]. If a transaction is not well-

formed or two-phase, it is possible to write another

transaction such that the resulting pair has a legal but not

isolated history, unless the transaction is degenerated.

If transaction � 	 \��, � , !�"|$ 	 1, … , '] is not well-

formed and not degenerated, then for some -, �7-8 is a

GET or PUT action that is not covered by a lock. The

GET case is proved here; the PUT case is similar.

Let �7-8 	 ��,GET, !". Define the transaction,

� ′ 	

��� ′,XLOCK, !", �� ′,WRITE, !", �� ′,WRITE, !", �� ′,UNLOCK, !""

That is, �′ is a double update to resource r. By

inspection, �′is two-phase and well-formed. Consider the

history;
� 	

\�7$8|$ 2 -]`�� ′7718, � ′7728, �7-8, � ′738, � ′748"(c\�7$8|$ d -](

That is, H is the history that places the first update of

�′ just before the uncovered GET and the second update

just after the uncovered GET. H is a legal history, since

no conflicting locks are granted on resource r at any

point of the history. In addition, for some 1, �� ′, �!, 1", �"

and ��, �!, 1", �′" must be in the DEP(H); hence, � 22
2Y e ′ 222Y �. Thus T is a wormhole in the history H.

Invoking the wormhole theorem, H is not an isolated

history. Intuitively, T will see resource r while it is being

updated by �′. This is a concurrency anomaly.

Now it is possible to show, if a history is not two-

phase it can be legal but not isolated;

Suppose that transaction � 	 \��, � , !�"|$ 	 1, … , ']

is not two-phase and not degenerate.

Then for some 1 2 - , �718 	 ��,UNLOCK, !1" and

�7-8 	 ��,SLOCK, !2" or �7-8 	 ��,XLOCK, !2".
Define the transaction

� ′ 	

��� ′,XLOCK, !1", �� ′,XLOCK, !2", �� ′,WRITE, !1", �� ′,WRITE, !2",
��′,UNLOCK, !1", ��′,UNLOCK, !2"

"

That is �′ updates resource r1 and r2. By inspection,

�′ is two-phase and well-formed. Consider the history:
� 	 \�7$8|$ T 1]c�′c\�7$8|$ d 1]((

187

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

This says that H is the history that places �′ just after

the UNLOCK of r1 by T. H is a legal history, since no

conflicting locks are granted on resource r1 at any point

in the history. In addition, since T is not degenerate, it

must GET or PUT resource r1 before the unlock at step j

and must GET or PUT resource r2 after the lock at step

k. From this ��, �!1, 11", �′" and ��, �!2, 12", �′" must be

in the DEP(H). Hence � 222 � ′ 222 � , and T is a

wormhole in the history H. Invoking the Wormhole

Theorem, H is not isolated history. Intuitively, T sees

resource r1 before it is updated by �′ and sees resource

r2 after it is been updated by �′; thus T is before and

after �′. This is a concurrency anomaly.

7. Conclusions and future work

We have provided a RESTful framework for

transactions by adapting the conventional locking

mechanism to work within the architectural style of

REST. We have shown that this locking mechanism is

well-formed and sound. While this model can cover

multi-service transactions by emulating 2PC, the full

examination of such capabilities belongs in future work.

Other extensions to this work include multiple owner

transactions. Also the model can be extended to express

transactions that include any HTTP operation rather than

our current limited scope. Further plans include long-

running transactions with relaxed ACID constraints.

8. Acknowledgements

This work was supported by the EU-FP6 funded

project OPAALS Contract No 034824.

9. REFERENCES

[1] Astrahan, M.M. et al. A history and evaluation of System

R. Communications of the ACM 24, 632-646, 1981.

[2] Bernstein, P.A., Hadzilacos, V., and Goodman, N.

Concurrency control and recovery in database systems.

Addison-Wesley, Boston, MA, USA, 1987

[3] Cabrera, L.F. et al. Web Services Atomic Transaction

(WS-AtomicTransaction). Version 1.0, IBM

developerWorks 2005, http://www-128.ibm.com

/developerworks/library/specification/ws-tx/#

[4] Castro, P., and Nori, A. Astoria: A Programming Model

for Data on the Web. Data Engineering, In IEEE ICDE

2008. pp. 1556-1559, 2008.

[5] Crockford, D. JSON: The fat-free alternative to XML.

Proc. of XML 2006.

[6] Date, C.J. An Introduction to Database Systems. 5th

Edition, Addison-Wesley, Reading, MA, USA, 1996.

[7] Fielding, R.T. Architectural Styles and the Design of

Network-based Software Architectures. University of

California - Irvine, 2000.

[8] R.Fielding, J.Gettys, J.Mogul, H.Frystyk, T. Berners-Lee.,

“Hypertext Transfer Protocol--HTTP/1.1. RFC 2616,” The

Internet Engineering Task Force, 1999.

[9] Gray, J. & Reuter, A. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann Publishers Inc. San

Francisco, CA, USA, 1993

[10] Greenberg, S. & Marwood, D. Real time groupware as a

distributed system: concurrency control and its effect on

the interface. ACM conference on Computer supported

cooperative work, pp. 207-217, 1994

[11] Hadley, M. & Sandoz, P. JSR 311: Java api for RESTful

web services. Technical report, Java Community Process,

Sun Microsystems, 2007.

[12] Hoffman, P. & Bray, T. Atom Publishing Format and

Protocol (atompub). IETF, 2006.

[13] Khare, R. & Taylor, R.N. Extending the Representational

State Transfer (REST) Architectural Style for

Decentralized Systems. Proc. 26th Int’l Conference on

Software Engineering (ICSE) 23, 428-437, 2004

[14] McGuffin, L.J. & Olson, G.M. ShrEdit: A Shared

Electronic Work Space. University of Michigan,

Cognitive Science and Machine Intelligence Laboratory,

1992

[15] Ramakrishnan, R. & Gehrke, J. Database Management

Systems. McGraw-Hill Science/Engineering/Math, 2003

[16] Razavi, A., Moschoyiannis, S. & Krause, P. Concurrency

Control and Recovery Management in Open e-Business

Transactions. Proc. WoTUG Communicating Process

Architectures (CPA 2007) 267–285, IOS Press, 2007.

[17] Richardson, L. & Ruby, S. RESTful Web Services.

O'Reilly Media, Inc., 2007

[18] Sun, C., Ellis, C. Operational transformation in real-time

group editors: issues, algorithms, and achievements. Proc.

Computer Cooperative Work. ACM 59-68, 1998

[19] Vinoski, S. WS-nonexistent standards. Internet

Computing, IEEE 8, 94-96, 2004

[20] Vinoski, S. Demystifying RESTful Data Coupling.

Internet Computing, IEEE 12, 87-90, 2008

[21] A. Razavi, S. Moschoyiannis, P. Krause. A Coordination

Model for Distributed Transactions in Digital Ecosystems.

In IEEE Digital Ecosystems and Technologies (IEEE-

DEST’07), 2007

[22] P. Furnis and A. Green. Choreology Ltd. Contribution to

the OASIS WS-TX Technical Committee relating to WS-

Coordination, WSAtomicTransaction and WS-

BusinessActivity. November 2005

[23] F.H. Vogt, S. Zambrovski, B. Grushko et al. Implementing

Web Service Protocols in SOA: WS-Coordination and

WSBusinessActivity. In Proc.7th IEEE E-Commerce

Technology Workshops, pp. 21-26, 2005.

188

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore. Restrictions apply.

