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Abstract 
With REST becoming a popular paradigm for web 

services, more and more use cases are applied to it, 

including some that require transactional guarantees. 

We propose a RESTful transaction model that satisfies 

both the constraints of transactions as well as those of 

the REST architectural style. We provide formal proof of 

consistency and recoverability in the proposed 

framework and show the robustness of its properties in 

the presence of concurrent transactions. 

1. Introduction 

Representational State Transfer (REST) is an 

architectural style introduced by Roy Fielding in [7] as a 

refinement of the architectural style that had emerged in 

the World Wide Web. The main features of REST 

include focusing on resources identified by names, a 

uniform interface to manipulate those resources, 

hypermedia as a means of linking the resources and 

statelessness in the client-server interactions.  

REST, especially over the HTTP protocol [8], has 

long been championed as a competing web service 

paradigm to the WS-* stack. This claim has recently 

been reinforced with the publication of works such as 

[17], the more recent [11], together with the recognition 

of the apparent complexity and lack of adoption of WS-* 

technologies beyond the corporate firewall [19]. 

As is common with disruptive technologies, REST 

over HTTP is evolving to compete with   WS-* in 

increasingly advanced usage scenarios [4], [12]. This 

paper aims to be part of the next wave of REST 

evolution by defining a RESTful transaction model that 

is designed to operate over HTTP. To date, usage of 

REST has remained at the level of serial sequences of 

operations, each succeeding or failing atomically. While 

its advantages have made it a popular web services 

paradigm on the web, the WS-* stack provides the only 

standard for unplanned transactions. Web applications 

have to resort to ad-hoc solutions of variable quality in 

order to address this need. A prominent example is the 

shopping cart found in many e-commerce web sites 

where the items (resources) in a shopping cart have to be 

purchased in one step and also potentially become 

unavailable when a customer adds them to a shopping 

cart, the transactional concepts of atomicity and locking 

respectively. Also, there is no reason not to consider 

traditional service composition scenarios such as a travel 

scenario necessitating the booking of a flight, hotel and 

rental car, executed over the web-facing APIs of 

different providers, something currently not possible.  

Transactions have been defined in terms of the four 

properties contained in the ACID acronym [9]. These 

properties guarantee that a system is maintained in a 

consistent state, even as transactions are executed within 

it concurrently. This includes the situations where one or 

more transactions fail to commit. When dealing with a 

sequence of transactions (one transaction executed at a 

time), each transaction starts with the consistent state that 

its predecessor ended with. If all the transactions are 

short, the data are centralised in a main memory, and all 

data are accessed through a single thread, then there is no 

need for concurrency. The transactions can simply be run 

in sequence. Real-world interactive systems however, 

often require the execution of several transactions 

concurrently. Use cases such as distributed environments 

[4,22] or dynamic allocation of resources to external 

developers [21] illustrate this need.  

While transactions are concerned with the constraints 

of adhering to ACID properties, REST adheres to its own 

set of constraints. These are primarily expressed by the 

uniform interface constraint, but supported by the 

following four constraints: Resource Identification, 

Resource manipulation through representations, Self-

descriptive messages, and Hypermedia as the engine of 

application state [20]. Our efforts are directed at creating 

a truly RESTful transaction model that satisfies both the 

constraints of REST and the ACID constraints relevant 

to transactions. In this paper we describe a RESTful 

framework for transactions (RETRO) in which the 

locking scheme necessary for ACID transactions is 

adapted to work within the architectural style of REST. 

We provide a more rigorous justification of the need 

for our new model in the next two sections. Following 

that, we discuss how locks may be introduced for 

concurrency control into RESTful working over HTTP. 

In Section 5, we then elaborate this into a two-phase lock 

model and demonstrate that the result is consistent, 

wormhole free, and supports recoverability. Proofs of 

soundness and completeness of the resulting model are 

provided in Section 6, and then conclude. 

2. Relevant work 

Various approaches have been proposed to support 

concurrent execution of transactions, but locking has 
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emerged as the most feasible solution [2], [15], [9], [16]. 

Additionally, [3] and [14] use similar principles with 

different semaphores. When implementing a lock 

mechanism, it is important to ensure that concurrent 

execution does not have lower throughput or much 

higher response times than serial execution. The second 

major concern is to avoid high computational overhead 

(see concurrency control laws in [9]). 

The application of the transactional concept in WS-* 

adds considerable complexity to the required 

coordination framework [21]. This can be seen more 

clearly when analysing the pattern behaviour for the 

recovery model (compensation) [22], [23]. In contrast, 

REST works directly with resources. This is in line with 

the semantics of the basic theorems in conventional 

transaction processing [9]. Transactions rely on 

read/write operations on objects and RESTful HTTP, 

likewise, provides GET (equivalent to ‘read’) and 

DELETE, POST, PUT (equivalents of ‘write’) methods. 

Various approaches have been proposed for handling 

RESTful transactions. The traditional approach is to 

simply design a new resource that can be used to trigger 

the desired transaction on the server side. For example, 

to transfer funds from one bank account to another, there 

could be a ‘transfer request’ resource to which new 

‘transfer requests’ can be posted. While it can be very 

simple to implement at design time, this constrains users 

to the predictive ability of the developers. Also, in 

scenarios where a large or unpredictable variation of 

transactions may take place, all the necessary resources 

cannot have been designed beforehand. This situation is 

similar to the static versus dynamic allocation debate 

found in the database and transaction literature [2], [9]. 

The approach completely breaks down however, when a 

transaction exceeds the scope of a single provider, the 

case of distributed transactions.  Other approaches such 

as [13] suggest extending REST to include mutex locks, 

but this would necessitate extending HTTP as well. 

The alternative to these approaches is to introduce 

locks on resources by modeling them as resources 

themselves [17]. While this approach looks much more 

capable, the details of its implementation and its 

extension into transactions have neither been fleshed out 

nor proven. In this paper we describe how this approach 

can be extended to produce a fully specified and 

theoretically robust RESTful transaction model. 

3. Concurrency issues in RESTful HTTP 

The classic view taken in addressing the isolation 

property is to consider transactions in terms of inputs and 

outputs [9], [6]. These are essentially read (input) and 

write (output) operations. Write operations are described 

as operations that affect the state of resources. On the 

other hand, REST prescribes a uniform interface for 

accessing resources. One challenge is therefore to map 

the traditional input/output perspective with the RESTful 

approach to the uniform interface. Since our model 

operates over the HTTP protocol, we examine its four 

resource interaction operations. 

GET is the standard retrieve operation. Its execution 

must be safe; it should have no side-effects. It should 

also be idempotent. Duplicate messages should have no 

adverse effects. POST is understood as an operation to 

create a new resource on a server where the target URI is 

not known. The representation of the resource is sent via 

POST to the collection that will contain the resource. 

The server determines its appropriate location and the 

resulting URI is returned to the client as part of the 

response. POST is neither safe nor idempotent. PUT can 

be used for updating resources, by simply instructing the 

server to apply a new representation as a replacement of 

the previous one. It can also be used to create a new 

resource, when a representation is PUT at a URI that was 

previously unused. A very important point is that a PUT 

operation may correspond to a Create or an Update 

operation in the CRUD paradigm, and sometimes the 

client may not even know which of the two is going to be 

applied. This depends solely on the state of the server. 

Finally, DELETE is used to request removal of the 

resource representation at the target URI. 

All the operations described above are used to manage 

the lifecycle of the resources directly related to the 

transaction itself. However, the transactions our model 

can orchestrate are only those that intend to perform 

GET and PUT operations. In the case of PUT, since we 

guarantee that the resource exists before it is PUT to, we 

are only dealing with the ‘update’ capacity of the 

operation and not its ‘create’ aspect. In this sense, the 

only type of non-safe operation (‘write’) that our model 

currently supports is PUT, in its update capacity. Within 

the scope of these assumptions, the term ‘PUT’ is used as 

equivalent to ‘write’ for the rest of this paper. 

As GET operations do not change the state of 

resources, provided the initial state of a resource is 

consistent, concurrent GET requests to the same resource 

cannot cause inconsistency. On the contrary, PUT 

operations of different transactions on the same resource 

change the state of the resource and may violate 

consistency or isolation. While we can assume that a 

transaction “knows what it is doing” in terms of its 

internal data manipulation, overlap between PUTs of one 

transaction and GET actions of another, can violate 

isolation and cause inconsistency. 

Additionally, PUT-related interactions between 

different concurrent transactions on the same resource 

can also cause a problem. If we consider GET operations 

as inputs of transactions and PUTs operations as output 

operations of them, this can be expressed as: 

 

EQ. 1: �� � ��� � ��� 	      �  for allfor allfor allfor all  � � � 
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Where  ��  denotes  the set of resources accessed via 

GET by transaction ��  (its inputs), and ��   the set of 

resources altered via PUT by transaction �� (its outputs). 

Based on EQ.1, it is appropriate to say that the set of 

transactions ���� , whose outputs are disjoint from one 

another’s inputs and outputs, can run in parallel with no 

concurrency anomalies. 

We define ‘history’ as any sequence-preserving merge 

of the actions of a set of transactions into a single 

sequence .A history is denoted �� � 	 ���,  , !"�|$ 	
1, … , '(" . Each step of the history is a tuple ��,  , !" 

comprising an action a by transaction t on resource r. A 

history for the set of transactions )��*  is a sequence, 

containing each transaction ��  as a subsequence and 

containing nothing else. Essentially, a history lists the 

order in which actions were successfully completed.  

Serial histories are one-transaction-at-a-time histories. 

Since no concurrency is induced in serial histories, there 

is no interdependency between transactions. Therefore 

wormholes or inconsistencies will not be an issue. While 

this is a useful theoretical aspect, in reality transactions 

can have any order and hence histories will not be serial. 

3.1. Concurrency anomalies 

In this section we will analyse the result of executing 

transactions concurrently, in a RESTful manner, and 

highlight the potential concurrency anomalies that arise.  

When two (or more) transactions access the same 

resource, they may produce two (or more) different 

versions of that resource (lost update), or simply they 

may work with the out-of-date version of the resource 

(dirty GET and unrepeatable GET). Fig. 1 shows these 

three inconsistent scenarios. 

As shown in Fig 1, interleaved RESTful interactions 

by multiple parties may cause several concurrency 

issues. A transaction GETs a resource twice, once before 

another transaction’s PUT action and the second one 

after the PUT action (the second transaction may PUT a 

new version and commit).  This means a transaction 

changes the resource (PUT), when another transaction 

had ongoing access (GET) to it and has not finalised its 

access. On the other hand, the first transaction has to deal 

with inconsistent GETs on the same resource. 

The second classical problem is ‘Lost updates’ and it 

occurs when the first transaction’s PUT is overwritten by 

the second transaction which uses PUT based on the 

initial value of the resource (second scenario in Fig. 1). 

This means one of the updates will be overwritten 

without being taken into account. 

Finally, a problem can also occur when a transaction 

relies on out-of date resources (Fig. 1). A transaction 

GETs a resource between two PUT operations by 

another transaction. As a result, the transaction may use 

an inconsistent resource state as the other transaction has 

not finished its updates on the resource and may even 

roll back, rendering the retrieved representation invalid. 

 

 
Figure 1 – Concurrency challenges 

. 

Fig 1 shows the simplest scenarios of these problems, 

but they may be easily extended to multi transactions 

where accessing resources are a sequence where it comes 

back to the first transaction. On the other hand, accessing 

a resource may look like a cycle when we try to draw a 

sequence diagram for them. These classical transactional 

problems are called wormholes. In the next section, we 

try to provide a clear definition for them in terms of 

RESTful transactions.  

3.2  Wormholes 

We start by defining dependencies between 

transactions in a history. A transaction  T is said to be 

dependent on another transaction T’ in a history H if T 

GET (reads) or PUT (writes) data-resources previously 

PUT (written) by T’ in the history H, or if T PUT (writes) 

a resource previously GET (read) by T’. 

 

 
Figure 2 – Types of dependencies 

 

We can formalise different types of dependencies 

(shown in Fig. 2) through a Dependency Graph where 

nodes are ‘transactions’, arcs indicate ‘transaction 

dependencies’, and labels on arcs denote ‘resource 

versions’. The version of a resource r at step k of a 

history is an integer and is denoted by V(r,k). In the 

beginning each resource has version zero (V(r,0)=0). At 

step k of a history H, resource r has a version equal to the 

number of writes to that resource before this step. This is 

put formally as follows. 

+,!, -. 	 /)��� ,  � , !�" 0 � /1 2 -  '3  � 	 PUT(  '3 !� 	 !*/ 
The outer vertical bars represent the set cardinality 

function. Each history, H, for a set of transactions ���� 

defines a ternary dependency relation DEP(H), defined 

as follows. Let T1 and T2 be any two distinct 

transactions, let r be any resource, and let i, j be any two 

steps of H with $ 2 1. Suppose step �7$8 involves action 

a1 of T1 on resource r, step �718 involves a2 of T2 on r, 
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and suppose there is no PUT on r by any transaction 

between these steps (there is no �� ′, 9:�, !"  in �7$ ;
18, … , �71 < 18). Then DEP(H) is defined as: 

��, �!, +,!, 1.", �′" 0 DEP,�.   

if a1 is a PUT and a2 is a PUT 

a1 is a PUT and a2 is a GET 

a1 is a GET and a2 is a PUT. 

PUT→PUT, PUT→GET and GET→PUT  

dependencies. 

The dependency relation for a history defines a 

directed dependency graph, where transactions are the 

nodes of the graph, and resource versions are label on the 

edges. If ��, �!, 1", �′" 0 DEP,�., then the graph has an 

edge from node T to node T’ labeled by �!, 1" . Two 

histories are equivalent, if they have the same 

dependency relation. 

The dependency relation of a history defines a time 

order of the transactions. Conventionally this ordering is 

signified by 222 and it is the transitive closure of 22
2 H. It is the smallest relation satisfying the equation 

T 222? T′
 if �T, r, T′" 0 DEP,�.  for some resource 

version r, or T 222? T′′
 and �T′′, r, T′" 0 DEP,�.  for 

some transaction T′′  and some resource r. Whenever 

� 222 �′  there is a path in the corresponding 

dependency graph from transaction T to transaction �′. 
The 222 ordering defines the set of all transactions that 

run before or after T as follows. 

BEFORE,�. 	 ��′|�′ 222 �� 

AFTER,�. 	 ��′|� 222 �′� 

If T runs fully isolated (ex: it is the only transaction, 

or it GET and PUT resources not accessed by any other 

transactions), then its BEFORE and AFTER sets are 

empty (it can be scheduled in any way). When a 

transaction is both after and before the other distinct 

transaction, it is called wormhole transaction (�′ here): 

�′ 0 BEFORE,�. � AFTER,�. 

   for some resource version r, or ( for some 

transaction , and some resource r).This means that any 

cycle in a dependency graph is a wormhole. Using a 

well-formed and two phase locking mechanism is a 

conventional method for avoiding wormholes [9]. In the 

next section we describe how such a locking mechanism 

is adapted to RESTful transactions  as a practical way for 

avoiding wormholes and then prove that our RESTful 

transaction model is wormhole-free. 

4. Locks in RESTful HTTP 

In order to handle concurrency challenges in HTTP, 

we introduce the concept of locks. This is done in a way 

that does not affect the always available and backwards 

compatible nature of the web. 

4.1. Locking resources 

For an API to be characterized as RESTful according 

to the hypermedia constraint, it must allow a client to 

interact with the service solely by being given a single 

URI and understanding of the relevant media types. This 

enforces loose-coupling and elimination of assumptions. 

Lockable Resource (R): Ideally, any resource that 

can be served by an HTTP server should be lockable 

regardless of serialization format. This however would 

require the HTTP protocol to carry the metadata for the 

locking mechanism. Since we wish to preserve the HTTP 

protocol, we opt for a fragment of XML that is to be 

included in an XML representation of a resource. This 

approach could potentially be extended to other formats 

such as JSON [5] but not to binary files such as images 

or zip archives. The information that should be in the 

fragment is the location of the lock collection and the 

location of the transaction collection. The inclusion of 

this fragment (Fig. 3) makes any resource lockable. 

Namespaces could also be utilized to avoid namespace 

collision but this would limit the approach to 

serializations that support namespaces. 

 
<lockable> 

      <link rel=”lock_collection” href=”http://example.org/resource/locks/” /> 

      <link rel=”transaction_collection” href=”http://example.org/transactions/” /> 

</lockable> 

Figure   3 – (R) XML Fragment 
 

Lock Resource (R-L): The lock resource is 

represented by a dedicated media type and should 

contain the elements in Table 1. 

 
ResourceURI: a link back to the resource that this lock affects. 

TransactionURI: a link to the transaction that controls the lock. 
Type: “S” or “X” depending on the type of the lock. 
PrevLockURI: a link to the previous lock in the lock sequence. 
Timestamp: Server’s timestamp when the lock was granted. 
Duration: Indicates the interval that the lock has been granted for. 
ConditionalResourceURI: A link to the representation of the resource that will 

come into effect once the lock is committed. 

Table 1 - Elements of R-L 
 

The type element can take one of two values, X or S, 

corresponding to the available lock types. X stands for 

XLOCK: eXclussive Lock, and S stands for SLOCK: 

Shared Lock. To place a new lock, the server must 

authenticate the user as the owner of the transaction that 

is referenced by the lock. The length of time of 

effectiveness that is granted to a lock is dependent on the 

maximum length of time that the server is prepared to 

grant a guarantee to the client. Once the duration of the 

lock expires, the lock is aborted. To avoid violating 2PL, 

once a lock of a transaction expires, all other locks of the 

same transaction expire.  

The result of the GET operation does not change until 

a lock of type X is committed. In this sense, the locks 

and transactions are transparent to the GET which on 
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commit reacts as if a simple PUT was applied. This was 

a specific design objective. PUT and DELETE 

operations return a ‘405 Method Not Allowed’ HTTP 

response for the duration of a lock's effect. GET requests 

should still return successfully. This behaviour maintains 

backwards compatibility, with the understanding that if a 

client requires further guarantees on the future state of 

the resource, the client should seek to place a lock. In all 

other cases, the semantics of GET are unaffected, as a 

GET on a resource does not guarantee that the state will 

remain unchanged for any period of time. 

4.2. Well-formed collections of locks  

As expected, a transaction cannot lock a resource that 

is locked by another transaction. But if two or more 

transactions want to GET the content of a resource, they 

are not going to change the resource state. This will 

therefore not cause any conflict or access to data which 

has been PUT to a resource by another transaction, but 

the first transaction has not committed and may change 

the version of the resource again). Table 2 shows the 

lock compatibility. The inferred rules constrain the set of 

allowed histories. Histories that satisfy the locking 

constraints are called legal histories.  

 

 Mode of Preceding Lock 

M
o

d
e

 

O
f 

N
e

w
 

Lo
ck

  Share Exclusive 

Share Yes No 

Exclusive No No 

Table 2 – Legal lock sequences 

 

Resource Lock Collection (R-Lc): The R-Lc 

contains locks in sequences that follow the compatibility 

rules stated in Table 2, rendering the transaction well-

formed. The lock collection is represented as an Atom 

Feed [12]. Since ATOM does not support sequencing 

entries, we use the ‘PrevLockURI’ element of the lock 

resource to create a linked list of locks. The client can 

retrieve the lock collection via GET to determine if the 

resource is locked. An empty feed indicates an unlocked 

resource. New locks can be submitted to the resource 

collection via the POST method.  

5. Two phase locking and recoverability 

In the previous section, we described how our model 

provides a well-formed locking system for GET and 

PUT. We now show that by adding two-phase locking, 

the model becomes wormhole-free. We then show how 

this facilitates recoverability in RETRO and illustrate the 

key ideas with a simple example. 

 
GET Returns the resource’s collection of locks. 

POST Adding a new lock to the related resource 

Table 3 - Available Operations for R-Lc 

5.1. Two phase locking is wormhole free 

In two-phase locking [10ref?] each transaction can 

use locking in two phases. In the first phase (growth), it 

can acquire locks for resources (SLOCK or XLOCK) 

and in the second phase (shrink), it releases them. These 

two phases should not have any overlap. When the 

transaction starts to UNLOCK a resource, it cannot lock 

any more resources under any circumstances. So, 

unlocking resources means that the transaction is either 

successfully committing or aborting. 

We have seen in discussing ‘Lock Resource (R-L)’ 

(Section 4-1), that each transaction in our RESTful 

transaction model can use two different types of Locks 

for its resources (SLOCK for GET and XLOCK for 

PUT). Therefore, in � 	 ���,  , !"�|$ 	 1, … , '("  we 

consider two extra actions for ‘  ’ : SLOCK; and, 

XLOCK. Since these locks at some point should be 

released, we also have UNLOCK as another action for 

‘a’. Now, we want to show that if all transactions are 

well-formed and two-phase, any legal history will be 

isolated (wormhole-free). In what follows, we first show 

how the additional actions required for the two-phase 

locking are incorporated in our well-formed RESTful 

transactions, and then invoke the well-known Wormhole 

Theorem from conventional transactions [9] to show that 

our model is wormhole-free. 

 Suppose H is a legal history of the execution of a set 

of transactions, each of which is well-formed and two-

phase. For each transaction, T, define SHRINK(T) to be 

the index of the first unlock step of �  in history H . 

Formally: 

SHIRINK,�. 	
F$',$|�7$8 	 ��,UNLOCK,!" for some resource.).  

Since each transaction T is non-null and well-formed, 

it must contain an UNLOCK step. Thus SHRINK is well 

defined for each transaction.  First we need to show that 

if there is path in the dependency graph from a 

transaction T to a transaction T’, then the first unlock step 

of T will happen before that of T’. This is summarised in 

the following lemma. 

Lemma: If � 222 � ′, �P' SHRINK,�. 2
SHRINK,�′.. 

Suppose � 222 � ′, then suppose there is a resource r 

and steps $ 2 1 of history H, such that �7$8 	 ��,  , !", 

�718 	 ��′,  ′, !"; either action a or action a’ is a PUT 

(this assertion comes directly from the definition of 

DEP,�. in section 3). Suppose that the action a of T is a 

PUT. Since T is well-formed, then, step $ is covered by T 

doing an XLOCK on r. Similarly, step j must be covered 

by T’ doing an SLOCK or XLOCK on r. H is a legal 

history, and these locks would conflict, so there must be 

a k1 and k2, such that: 

$ 2 -1 2 -2 2 1 and �7-18 	 ��,UNLOCK, !" and 

185

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 11:41:21 UTC from IEEE Xplore.  Restrictions apply. 



either �7-28 	 ��,SLOCK, !"  or �7-28 	
�� ′,XLOCK, !". 

Because T and T’ are two-phase, all their LOCK 

actions must precede their first UNLOCK, action; thus, 

SHRINK,�. T -1 2 -2 2 SHRINK,�′.. This proves the 

lemma for the  	 PUT  case. The argument for the 

 ′ 	 PUT case is almost identical. The SLOCK of T will 

be incompatible with the XLOCK of T’; hence, there 

must be an intervening ��,UNLOCK, !"  followed by a 

��′,XLOCK, !" action in H. Therefore, if � 222 �′, then 

SHRINK,�. 2 SHRINK,�′. . Proving both these cases 

establishes the lemma.  We may now invoke the 

Wormhole Theorem [9] and infer that H is wormhole-

free by contradiction.  

Assume that H is not wormhole-free. Then the 

Wormhole Theorem dictates that there must be a 

sequence of transactions ��U, �V, �W, … , �X" , such that 

each is before the other (i.e., �� 222Y ��ZU), and the last 

is before the first (i.e., �X 222Y �U). Using the above 

lemma, this in turn means that SHRINK,�U. 2
SHRINK,�V. 2 [ 2 SHRINK,�X. 2 SHRINK,�U. .  

Hence, we have  SHRINK,�U. 2 SHRINK,�U.  which 

gives the desired contradiction. Thus, H cannot have any 

wormholes. 

5.2. Transaction Resource 

Determining the scope of each transaction and 

whether it is in a GROWTH or SHRINK phase is 

necessary. We therefore introduce the required resources.  

Transaction (T) : This resource can be represented 

by a dedicated media type (e.g. application/vnd.retro-

transaction+xml), containing the elements in Table 4. 

 
TransactionCollectionURI:  

OwnerURI:  

TransactionLockCollectionURI:  

Table 4 - Elements of T 
 

These elements identify the resources vital a 

transaction. The owner of the transaction can locate these 

collections by GETting the transaction resource. 

Transaction Collection (Tc): The transaction 

collection is a resource where new transactions are 

submitted via the POST operation which creates a new 

transaction and returns the URI for its representation. 

The resource itself cannot be accessed via GET as the 

clients that need to know the location of a specific 

resource are informed at the time of POSTing.  

Transaction Lock Collection (T-Lc) : The 

transaction lock collection contains links to the locks that 

belong to a specific transaction, formatted as an Atom 

feed. Clients cannot abort single locks directly but must 

do so through the T-Lc which aborts all the locks of a 

transaction, leaving the transaction void and is equivalent 

to aborting the transaction. 

 
GET Returns the collection of locks relevant to a transaction 

DELETE Aborts all the locks of the relevant transaction. This can only 

be performed by an owner of the transaction. 

Table 5 - Available Operations for T-Lc 

5.3. Recoverability 

Based on the Rollback Theorem, a transaction that 

unlocks an exclusive lock and then performs a ‘Rollback’ 

is not well-formed and can potentially cause a wormhole 

unless the transaction is degenerated. As the theorem is 

well-known, we refer the interested reader to [9] for the 

proof. The important point of the theorem is that we have 

to degenerate the transaction to effect rollback. For this 

purpose, our model does not store potential updates on 

the actual resources but works on the shadow of the 

locked data, the conditional resource representation. 

Conditional Resource Representation (R-C): A 

resource that is of identical media type as the locked 

resource. The conditional resource representation is 

essentially the state that will be applied to the resource 

once the XLOCK is committed.  

 
GET Returns the representation that will be committed if the relevant 

XLOCK is committed. 

PUT Creates a new conditional state that will replace the current state of 

the locked resource once the linking XLOCK is committed. 

DELETE  Deletes the conditional state. If the XLOCK is committed, there 

will be no write action performed. 

Table 6 - Available Operations for R-C 

5.4. Model overview 

Having defined all the resource types, it is easy to see 

that an interconnected network arises. Figure 4 displays 

the interconnections of the resource graph. It can be 

observed that having a URI for R is enough to locate all 

other resources in the network. The connection from Tc 

to T is different from the other connections as there is no 

GET ability for the Tc resource, for security reasons. The 

URI of a given T is only returned as a response to the 

initial POST operation on Tc performed by the 

transaction’s owner. 
R R-Lc

Tc

T-Lc

R-L

R-C

T
 

Figure 4 – Resource Hypermedia connections 
 

Table 7 summarizes all the relevant resource types that 

comprise our model together with a short description and 

a list of the allowed operations.  
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Client Operation Resource Response Description 

A GET R2 200 OK GETting R2 to extract location of  TC and R2-LC 

A POST <new transaction> TC 201 CREATED {Location: T1} Creating a new transaction 

A POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC 

B GET R1 200 OK GETting R1 to extract location of  TC and R1-LC 

B POST <new transaction> TC 201 CREATED {Location: T2} Creating a new transaction 

B POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC 

A GET R1 200 OK GETting R1 to extract location of  R1-LC 

A POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC 

B GET R1 200 OK GETting the locked representation of R1 

A GET R1 200 OK GETting the locked representation of R1 

A GET R2 200 OK GETting the locked representation of R2 

B GET R2 200 OK GETting R2 to extract location of  R2-LC 

B POST <LOCK {type:X}> R2-LC 403 Forbidden POSTing an XLOCK to R2-LC. R2 is locked, POST fails. 

A GET R2-L1 200 OK GETting R1 to extract location of  R2-L1-CR  

A PUT <new version> R2-L1-CR 201 CREATED Creating a conditional Representation of R2 

A DELETE T1 200 OK Commiting R2-C to R2 and Unlocking R1 and R2 

B POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC 

B GET R2 200 OK GETting the locked representation of R2 

B PUT <new version> R2-C 201 CREATED Creating a conditional Representation of R2 

B PUT <new version> R2-C 200 OK Updating the conditional Representation of R2 

B DELETE T2 200 OK Commiting R2-C to R2 and Unlocking R1 and R2 

Figure 5 – example of two transactions operating on the same resources 
 

The example in Figure 5 shows how two separate 

transactions can safely operate on the same resources, 

purely through HTTP operations. We can also see that 

while the two transactions are able to place an SLOCK 

on R1, client B is not allowed to XLOCK R2 while client 

A already has an XLOCK on it, a direct application of 

the lock compatibility rules seen in Table 2. Instead, 

client B continues the transaction when R2 is unlocked. 

 
Lockable Resource (R) A resource that locks can be applied to 

Operations: GET, [By XLOCK owner: PUT] 

Resource Lock Collection 

 (R-Lc) 
The collection of locks that apply to a particular 

resource. Operations:  GET, POST 

Lock Resource (R-L) The representation of a specific lock 

Operations: GET 

Conditional Resource 

Representation (R-C) 
The potential representation of a locked resource, 

once its lock is committed. Operations: GET, [By 

XLOCK owner: PUT, DELETE] 

Transaction Collection (Tc) The collection of transactions on the server. 

Operations: POST 

Transaction Resource (T) The representation of a specific transaction. 

Operations: GET 

Transaction Lock 

Collection (T-Lc) 
The collection of locks connected to a specific 

transaction. Operations: GET, [By transaction 

owner: DELETE] 

Table 7 – Resources and operations 

6. Soundness / Completeness 

One may argue the necessity of a well-formed and 

two-phase history, which our approach carefully follows. 

To prove the soundness of these properties, we use the 

converse locking theorem [9]. If a transaction is not well-

formed or two-phase, it is possible to write another 

transaction such that the resulting pair has a legal but not 

isolated history, unless the transaction is degenerated. 

If transaction � 	 \��,  � , !�"|$ 	 1, … , '] is not well-

formed and not degenerated, then for some -, �7-8 is a 

GET or PUT action that is not covered by a lock. The 

GET case is proved here; the PUT case is similar.  

Let �7-8 	 ��,GET, !". Define the transaction, 

� ′ 	 

��� ′,XLOCK, !", �� ′,WRITE, !", �� ′,WRITE, !", �� ′,UNLOCK, !"" 
 

That is, �′  is a double update to resource r. By 

inspection, �′is two-phase and well-formed. Consider the 

history; 
� 	 

\�7$8|$ 2 -]`�� ′7718, � ′7728, �7-8, � ′738, � ′748"(c\�7$8|$ d -]( 
 

That is, H is the history that places the first update of 

�′ just before the uncovered GET and the second update 

just after the uncovered GET. H is a legal history, since 

no conflicting locks are granted on resource r at any 

point of the history. In addition, for some 1, �� ′, �!, 1", �" 

and ��, �!, 1", �′"  must be in the DEP(H); hence, � 22
2Y e ′ 222Y �. Thus T is a wormhole in the history H. 

Invoking the wormhole theorem, H is not an isolated 

history. Intuitively, T will see resource r while it is being 

updated by �′. This is a concurrency anomaly. 

Now it is possible to show, if a history is not two-

phase it can be legal but not isolated; 

Suppose that transaction � 	 \��,  � , !�"|$ 	 1, … , '] 

is not two-phase and not degenerate.  

 

Then for some  1 2 - , �718 	 ��,UNLOCK, !1"  and 

�7-8 	 ��,SLOCK, !2" or �7-8 	 ��,XLOCK, !2".  
Define the transaction  

� ′ 	 

��� ′,XLOCK, !1", �� ′,XLOCK, !2", �� ′,WRITE, !1", �� ′,WRITE, !2",
��′,UNLOCK, !1", ��′,UNLOCK, !2"

" 

That is �′ updates resource r1 and r2. By inspection, 

�′ is two-phase and well-formed. Consider the history: 
� 	 \�7$8|$ T 1]c�′c\�7$8|$ d 1](( 
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This says that H is the history that places �′ just after 

the UNLOCK of r1 by T. H is a legal history, since no 

conflicting locks are granted on resource r1 at any point 

in the history. In addition, since T is not degenerate, it 

must GET or PUT resource r1 before the unlock at step j 

and must GET or PUT resource r2 after the lock at step 

k. From this ��, �!1, 11", �′" and ��, �!2, 12", �′" must be 

in the DEP(H). Hence � 222 � ′ 222 � , and T is a 

wormhole in the history H. Invoking the Wormhole 

Theorem, H is not isolated history. Intuitively, T sees 

resource r1 before it is updated by �′ and sees resource 

r2 after it is been updated by �′; thus T is before and 

after �′. This is a concurrency anomaly. 

7. Conclusions and future work 

We have provided a RESTful framework for 

transactions by adapting the conventional locking 

mechanism to work within the architectural style of 

REST. We have shown that this locking mechanism is 

well-formed and sound. While this model can cover 

multi-service transactions by emulating 2PC, the full 

examination of such capabilities belongs in future work. 

Other extensions to this work include multiple owner 

transactions. Also the model can be extended to express 

transactions that include any HTTP operation rather than 

our current limited scope. Further plans include long-

running transactions with relaxed ACID constraints. 
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