
Conceptual Graphs Based Modeling of
Semi-Structured Data

Viorica Varga, Christian Săcărea, and Andrea Eva Molnar

Babes-Bolyai University, Cluj Napoca, 400081 str. Kogalniceanu 1, RO
andrea.molnar@math.ubbcluj.ro

ivarga@cs.ubbcluj.ro

csacarea@math.ubbcluj.ro

Abstract. Due to the fast growing of data in the digital world, not only
in volume but also in its variety (structured, un-structured or hybrid),
traditional RDBMS are complemented with a rich set of systems, known
as NoSQL. One of the main categories of NoSQL databases are doc-
ument stores which are specifically designed to handle semi-structured
data, for instance XML documents. In this paper, we present a modeling
method for semi-structured data based on Conceptual Graphs and exem-
plify the method on an XML document. The expressive power of Concep-
tual Graphs makes them particularly suitable for conceptual modeling
of semi-structured data.

1 Introduction and Related Work

NoSQL data stores vary not only in their data but also in their query model.
Document based NoSQL systems are based on the semi-structured data model,
but most NoSQL data stores do not enforce any structural constraints on the
data; they are usually referenced as schema-less data. On the other hand, for
managing and retrieving data, its inherent structure proves to be significant. Not
knowing the general structure of the data, makes tasks like application develop-
ment or data analysis very difficult. Especially for modeling purposes, conceptual
design of semi-structured data proves to be an important task. Several visualiza-
tion methods have been developed over time in order to enhance understanding
and to offer reasoning support for non-experts. For instance, Visual Query Sys-
tems (VQS) give a visual solution for non expert users which no longer have to
understand query languages such as SQL or XQuery. A survey on visual query
systems is given in [7] with the purpose of facilitating querying databases to
non expert users. For instance, the modeling language of Conceptual Graphs
(CG) can be used to model relational database design and querying [14]. In this
research, we continue the ideas developed in [14] and describe how CG can be
employed for conceptual modeling of semi-structured data.

Originally, CGs have been introduced by J. Sowa in [11] to model database
interfaces and then further elaborated in [12]. Since then, CG have been used as
a conceptual schema language, as well as a knowledge representation language
with goal to provide a graphical representation for logic which is able to support



human reasoning. Among the plethora of interesting applications, we would like
to mention a consistent, graphical interface for database interaction. CG have
been successfully mathematically formalized for representing database structures
in [3] and [4].

A unified CG approach to represent database schema - including relations
between tables, and to model queries in databases has been described in [14].
XQuery, the standard language to query XML data, is gaining increasing popu-
larity among computer scientists. A representation method of XQuery using CG
which proves to be a good visual tool for even for non-experts has been discussed
in [8], [9]. The structure of the XML data is given as a CG, helping the user
to construct the query on the selected data. A graphical user interface BBQ
(Blended Browsing and Querying) is proposed in [10] for browsing and querying
XML data sources. BBQ is a query language for XML-based mediator systems
(a simplification of XML-QL) which allows queries incorporating one or more of
the sources. In BBQ XML elements and attributes are shown in a directory-like
tree and the users specify possible conditions and relationships (as joins) among
elements.

In this paper, we continue our previous research on modeling various databases
using FCA and CG [14], [13] and we propose a CG based modeling of semi-
structured data. This conceptual model can be useful both for document-oriented
database design and for XML data modeling. We exemplify the developed meth-
ods on a toy XML data set. This research come along with a software tool for
XML data design using CG. This tool has been developed targeting a wide range
of users, from researchers wanting to validate their work using the CG grounded
conceptual model developed in this paper to non-experts who would like to rely
on the expressive power of CG as a visual interface which gives the user the
possibility to formulate a specific hierarchical view without any knowledge of
the detailed structure and the content of the database constructs.

2 Graphic Representation of Semi-Structured Data
Model by Conceptual Graphs

In the following, we propose a CG grounded representation of semi-structured
data model.The method is similar to the representation with E/R diagrams and
consists of the following three main steps:

Step 1: Identify all complex objects. Every object will be modeled as a CG
concept and graphically represented as a rectangle.

Step 2: Define the relationships between the objects. The relationship be-
tween two or more concepts will be represented by means of a relation and
graphically represented as an oval. Similarly to the approach in [11], a directed
arc from the first concept node to the relation node and another arc from the
relation to the second concept node will represent this relationship. If a rela-
tion has only one element, the arrowhead is omitted. If a relation has more than
two elements, the arrowheads are replaced by integers 1, . . . , n. The direction of
arcs are from the root to leaf levels. According to the type of the relationship
between the objects, a relation can be:



Fig. 1: CG describing a connection between the related objects O1 and O2.

• hasOne: models a one-to-one relationship between two objects.
• hasMore: illustrates a one-to-many relationship.
• hasKey: specifies the key object of a given object;
• refers: represents a reference between two or more object. It can be consid-

ered as a graphical representation of the foreign key constraint: the directed
arc points from the foreign key to the key element.

• isOptional: designs the case when the minimum number of occurrences of
an object is zero. If this relation is omitted, the default value of the number
of occurrences (of the corresponding object) is one.

The structure of the semi-structured data gives a natural representation of the
one-to-many relationships. The most common representation is that the child
object is embedded into the parent object. The advantage of this modeling is
that we do not have to perform a separate query in order to get the details of the
embedded data, so the execution time of a query will decrease. The disadvantage
is that we cannot access the embedded details as independent entities.

By contrast, the modeling of many-to-many relationship is particularly chal-
lenging in XML, but there exist a couple of possible solutions to model it: nested
in one of the parents and one foreign key referencing to the other parent, or as in
relational databases, at root level with two foreign keys. The most common rep-
resentations use the first possibility. Figure 1 presents the way of designing the
relationship between two related objects. Let O1 and O2 be two complex objects.
We assume that O1n is the key object (represented by the relation hasKey) of
O1. Object O21 (as foreign key) of O2 references O1n, represented by the relation
refers.

Step 3: Identify all descendant objects of the complex objects, defined at Step
1. Remark that, in the case of Document Store Databases there is no possibility
to define the type of the elementary attributes. Hence, this step will be presented
in detail in the next paragraph, concerning to the XML Data Model.

3 CG Based Representation of XML Data Structure

Similar to the above concept, we present in the following how XML data struc-
ture can be represented using CGs (referenced as XML Schema CG in the fol-
lowing).

Step 1. Identify all complex elements. The concept type can represent: an
element (E); an attribute (A); a root element (R); the type of the data (T); an
enumeration constraint (N). At the same time, the concept referent can be:



• the name of the corresponding node (element or attribute);
• the data type of a simple element or an attribute;
• the set of acceptable values of the corresponding element, in the case of

enumeration. In this particular case, the concept name will be composed by
the predefined values of the enumeration, separated by (|).

Step 2. Define the relationship between the nodes. As we defined earlier, the
relationship between two or more concepts will be illustrated by a CG relation.
The relations presented in the previous section are adaptable also to the XML
Schema documents. Hence, we analyze only the additional relations:

• refers: as in the general case, it represents a linkage between two or more
complex elements. In the case of XML Schema, this relation can express the
ID/IDREF couples with the help of the hasKey relation.

• hasType: defines the data type of a simple element or an attribute. If the
hasKey relation is set, this relation can be omitted in the case of the corre-
sponding element or attribute.

• hasChoice and isPossibility: specify the child elements of a choice com-
positor. In the XML Schema representation, the definition of a choice element
allows only one of the elements contained in the declaration to be present
within the containing element.

• isEnum: represents the enumeration constraint, which limits the content of
an element to a set of acceptable values.

Step 3. Identify all child elements or attributes of the complex elements, de-
fined at Step 1, give the data type for each one and specify also the potential
restrictions of the elements or attributes.

4 An example to illustrate the representation of XML
Schema with Conceptual Graphs

In this section, we present the previously detailed methods on a graphical repre-
sentation of XML Schema using CG through a detailed example. Let us consider
the structure of data in the case of a university. The data is stored in XML docu-
ments, but we want a graphical representation which illustrates more profoundly
the hierarchical structure of our data.1

Step 1. We define a concept, called University, which will represent the root
element of the XML Schema. The University element contains some different
child elements, e.g. Specializations and Disciplines, which are all complex
elements. So, let us construct their descendants and let us define the relationships
among them.

Step 2. Students of a specialization are organized in groups. Therefore, we
have three complex elements in the graph as concepts according to the follow-
ing hierarchy: Specialization becomes the root element, while StudentGroups

1 Due to obvious space reasons, we have not included the complete XML schema
(referred as UniversityXSD in the following) and the corresponding XML document,
but they can be consulted at http://www.cs.ubbcluj.ro/∼fca/semistructured-data/.



(a) With embedding.

(b) Without embedding.

Fig. 2: Two possible solutions for designing the many-to-many relationships
between the Students and Disciplines elements.

and Students become child elements of Specialization and StudentGroups,
respectively; this parent-child relationship will be represented by hasMore re-
lations. Now, let us construct the elements Disciplines and StudentGrades.
Notice that students have grades for more disciplines. Hence, there exists a many-
to-many relationship between Students and Disciplines, which is represented
by the StudentGrades element. Figures 2a and 2b show two main possible hi-
erarchies, which can be formulated for this many-to-many relationship. Figure
2a designs the classic solution: the StudentGrades element is nested into the
Students element. Hence, the relationship between these two elements is de-
fined. The linkage between Disciplines and StudentGrades elements is repre-
sented by the dyadic relation refers, which links the DiscID (as ”foreign key”)
from StudentGrades with the key element of Disciplines element, i.e. the key
attribute DiscID. Remark that, in the UniversityXSD XML Schema the many-
to-many relationship is represented in this standard way. Another possibility
to illustrate this type of relationship would be embedding the StudentGrades

element into the Disciplines element. This representation is identical to the
above solution, so we omit its graphical representation.

Figure 2b shows the third possible method for designing the many-to-many
relationship. The StudentGrades element is selected as the child of the root
element. In this situation, the StudentGrades element links the Students el-
ement with Disciplines element through the reference elements StudID and
DiscID, respectively. Remember that, in the case of ID/IDREF couples the use
of hasType relation and the data type concept, respectively, could be omitted
(see the attributes StudID and DiscID). Notice also that the name of the con-
necting nodes can be different in the parent and child elements.



Fig. 3: The part of the University XML Schema CG emphasizing the hi-
erarchy between the Specializations, StudentGroups and Students ele-
ments and showing the structure of the Specializations, StudentGroups and
Disciplines elements.

Step 3. A detailed design for the complex elements is illustrated in Figures
3 and 4. Let us analize the Students element (see Figure 4). We have two
possibilities to define the StudentName element, using the hasChoise relation:
we can give the full name of the student as one string or we can give the parts
of the name separately. According to the definition of the choice element, one of
the possibilities must be selected. Element BirthPlace is selected as optional.
Notice that, a hasMore relation can connect a complex element with a simple
element, e. g. the relation between Students and PhoneNumber elements. In the
case of the Disciplines element it is defined an enumeration constraint by the
DiscType element, see Figure 3: we can choose between Required and Optional.

5 The Visual Interface

We have implemented a tool, named XSD Builder, which provides a user-friendly
interface in form of CGs and gives the user the possibility to build the graphs of
personalized XML Scheme. A snippet from the structure of the detailed XML
Schema example, presented in the previous section (UniversityXSD) visualized
by XSD Builder can be seen in Figure 5. The user can select one concept or
relation from the toolbox, by dragging it to the schema pane. Then, the user can
give the name of the selected object, by writing it into the rectangle or the oval.
It is also easy to specify the relationship between the concepts and relations: the
user can draw a line between them. The tool gives the possibility to generate
XML Scheme from the CG designed in it with a single click. Also, given an XSD
file, the application will visualize the corresponding CG.



Fig. 4: The snippet of the University XML Schema CG illustrating the structure
of the Students and StudentGrades elements.

6 Conclusions and Future Work

The goal of CGs is to provide a graphical representation for logic which is able
to support human reasoning. This article proposes an application which pro-
vides a graphical interface for Semi-Structured Data Design in form of CGs. We
implemented a software for XML Data Design using CG. Our future goal is to
extend the list of available tools in the case of XML schema representation (e.g.
involving the group element). The presented representation using CG can be
implemented as a tool for MongoDB data structure too.

References

1. Braga, D., Campi, A., Ceri, S.: XQBE (XQuery By Example): A visual interface
to the standard XML query language. ACM Trans. Database Syst. 30(2), 398–443
(Jun 2005)

2. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39(4), 12–27
(May 2011)

3. Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship
to Predicate Logic, Lecture Notes on Computer Science, vol. 2892. Springer Berlin,
Heidelberg (2003)

4. Dau, F., Hereth, J.C.: Nested concept graphs: Mathematical foundations and ap-
plications for databases. In: Using Conceptual Structures. Contributions to ICCS,
pp. 125–139. Shaker Verlag, Aachen (2003)

5. Elmasri, R., Li, Q., Fu, J., Wu, Y., Hojabri, B., Ande, S.: Conceptual modeling
for customized XML schemas. Data and Knowledge Engineering 54(1), 57–76 (7
2005)

6. Guy, M.W., Moulin, B., eds., J.S. (eds.): Conceptual Graphs for Knowledge Rep-
resentation, Lecture Notes in AI, vol. 699. Springer (1993)



Fig. 5: Application screen-shot for UnivesityXSD design

7. Lloret-Gazo, J.: A survey on visual query systems in the web era. In: Database
and Expert Systems Applications: 27th International Conference, DEXA 2016,
Porto, Portugal, September 5-8, 2016, Proceedings, Part II, pp. 343–351. Springer
International Publishing (2016)

8. Molnar, A., Varga, V., Sacarea, C.: Conceptual graph driven modeling and query-
ing methods for RDMBS and XML databases. In: Proceedings of the 13th Interna-
tional Conference on Intelligent Computer Communication and Processing (ICCP
2017), pp. 55–62. IEEE (2017)

9. Molnar, A., Varga, V., Sacarea, C.: Conceptual graphs based modeling and query-
ing of XML data. In: Proceedings of the 25th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pp. 23–28. IEEE (2017)

10. Munroe, K.D., Papakonstantinou, Y.: BBQ: A visual interface for integrated brows-
ing and querying of XML. In: Proceedings of the Fifth Working Conference on Vi-
sual Database Systems: Advances in Visual Information Management. pp. 277–296.
VDB 5, Kluwer, B.V., Deventer, The Netherlands, The Netherlands (2000)

11. Sowa, J.F.: Conceptual graphs for a database interface. IBM Journal of Research
and Development 20(4), 336–357 (1976)

12. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

13. Varga, V., Janosi-Rancz, K.T., Kalman, B.: Conceptual design of document NoSQL
database with Formal Concept Analysis. Acta Polytechnica Hungarica 13(2), 229–
248 (2016)

14. Varga, V., Sacarea, C., Takacs, A.: Conceptual graphs based representation and
querying of databases. In: Proceedings of the International Conference on Automa-
tion, Quality and Testing, Robotics (AQTR) - Volume 03, pp. 1–6. IEEE (2010)


