Image of circles through remarkable analytical functions

Diana - Florina HALIŢĂ Faculty of Mathematics and Computer Science Babeş-Bolyai University Cluj-Napoca, România

19th September 2014

TABLE OF CONTENTS

1 Why

2 Applications

- Univalent functions
- S class
- S* class
- K class
- The class of spiralike functions
- Extremal functions
- Open-door function

Abstract

- Geometric Function Theory
 - = Complex Analysis + Geometry;
- Applied Computer Science in Mathematics;
- Remarkable Analytical Functions Analysis;
- Special Classes of Univalent Functions;
- Special properties seen in function's graphical representation.

SPECIAL CLASSES OF UNIVALENT FUNCTIONS

- The class of univalent functions in the unit disc and normalized ;
- The class of starlike functions;
- The class of convex functions;
- **The class of** α **-convex functions**;
- The class of spiralike functions.

ヘロト 人間 とくほとくほう

IMAGE OF CIRCLES THROUGH REMARKABLE ANALYTICAL FUNCTIONS

- Observing special properties in function's graphical representation;
- Using Maple for representing these images.

Definition

An holomorphic function and injective on the domain D from \mathbb{C} is univalent on D.

Remark

We denote by $\mathcal{H}_u(D)$ the set of univalent functions on the domain D

Application

Given $f_a(z) = z + az^2$, $a \in \{0.3, 0.5, 0.6\}$, $r \in \{0.5, 0.7, 0.9, 1\}$, find the image of circles $C_r = C(O; r)$, where r is the radius and O the center of the circle and the origin of the cartesian system.

Figure: a=0.5,r=0.5

Figure: a=0.5,r=0.7

Figure: a=0.6,r=0.5

Figure: a=0.6,r=0.7

Figure: a=0.6,r=0.9

S CLASS THE CLASS OF UNIVALENT FUNCTIONS IN THE UNIT DISC AND NORMALIZED

Definition

$$S = \{ f \in \mathcal{H}_u(U) \mid f(0) = 0, f'(0) = 1 \}$$

Example

Function
$$f : \mathbb{C} \to \mathbb{C}$$
, $f(z) = az^2 + z$ with $a \in (-\frac{1}{2}, \frac{1}{2})$ is univalent.

S^* CLASS The starlike functions

Definition

$$S^* = \left\{ f \in \mathcal{H}(U) \mid f(z) = z + a_2 z^2 + \dots, \ Re(\frac{zf'(z)}{f(z)}) > 0, \ z \in U \right\}.$$

S^* CLASS The starlike functions

Application

Given the Koebe function
$$k(z) = \frac{z}{(1-z)^2}$$
,
 $r \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$ find the image of circles $C_r = C(O; r)$.

S^* CLASS The starlike functions

CLASA *S*^{*} The starlike functions

Figure: r=0.8

Figure: r=0.9

CLASA *S*^{*} The starlike functions

Application

Function $f(z) = -2z + z^2 + 6\log \frac{2+z}{z}$ is a function with a positive real part of the derivative. This function is not a starlike function

Applications

CLASA *S** The starlike functions

Figure: r=1,zoom

Definition

$$\mathcal{K} = \{ f \in A : Re\frac{zf''(z)}{f'(z)} + 1 > 0, z \in U \}$$

イロト イロト イモト イモト

Application

Given the Koebe convex function $s(z) = \frac{z}{1-z}$, $r \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$ find the image of circles $C_r = C(0; r)$. The s function is called the Koebe convex function because zs'(z) = k(z).

Figure: r=0.8

Figure: r=0.9

Definition

A function f is a γ -spiralike function in U if $f \in \mathcal{H}_u(U)$, with f(0) = 0, and U is a γ -spiralike domain.

Application

Given
$$f(z) = \frac{z}{(1-z)^{2e^{-i\gamma}} \cos \gamma}$$
, find the image of circles
 $C_r = C(0; r)$ for different values of γ and r .

イロト イロト イモト イモト

Figure: $\gamma = \frac{\pi}{6}$, r=0.4 Figure: $\gamma = \frac{\pi}{6}$, r=0.6 Figure: $\gamma = \frac{\pi}{6}$, r=0.8

イロト イポト イヨト イヨト

Figure: $\gamma = \frac{\pi}{4}$, r=0.4 Figure: $\gamma = \frac{\pi}{4}$, r=0.6 Figure: $\gamma = \frac{\pi}{4}$, r=0.8

イロト イポト イヨト イヨト

Figure: $\gamma = \frac{\pi}{3}$, r=0.4

Figure: $\gamma = \frac{\pi}{3}$, r=0.6 Figure: $\gamma = \frac{\pi}{3}$, r=0.8

EXTREMAL FUNCTIONS

Application

Given the functions $f(z) = z + az^2$ with negative coefficients, find the image of the unit disc for $a \in \left\{\frac{-1}{2}, \frac{-1}{3}, \frac{-1}{4}\right\}$

EXTREMAL FUNCTIONS

- $f_2(z) = z \frac{z^2}{2}$ is an extremal function for the class of starlike functions;
- for *n* = 2 the image of the unit disc through this function is a starlike set;

■
$$f_4(z) = z - \frac{z^2}{4}$$
 is an extremal function for the class of convex functions;

pentru n = 4 the image of the unit disc through this function is a convex set;

•
$$f_3(z) = z - \frac{z^2}{3}$$
 is not an extremal function.

EXTREMAL FUNCTIONS


```
Figure: r=1,a=-1/2
```

Figure: r=1,a=-1/3

Figure: r=1,a=-1/4

◆□▶ ◆圖▶ ◆注▶ ◆注▶

OPEN-DOOR FUNCTION

Application

Function $f(z) = \frac{1+z}{1-z} + \frac{2n\alpha z}{1-z^2}$ is called the open-door function. Given that, find the image of circles through this function.

The open-door function was named by S. S. Miller si P. T. Mocanu, because through it, the unity disc is transformed into the complex plane cut by a little door, formed by: $Re\omega = 0$ and $|Im\omega| \ge \sqrt{n\alpha(n\alpha + 2)}$, so left-half and right-half planes are united through an open door.

(1)

OPEN-DOOR FUNCTION

Figure: $r=0.8, \alpha = 1, n=3$

イロト イ理ト イヨト イヨト

Figure: $r=0.8, \alpha = 1, n=1$

OPEN-DOOR FUNCTION

Figure: $r=0.8, \alpha = 1, n=2$

Figure: r=0.8,α = 100,n=1

Thank you!

Q & A

